TUGboat, Volume 45 (2024), No. 2

Extending Peter Flynn’s bookshelf package
for multilanguage libraries

Boris Veytsman

Due to the COVID, TUG2020 was held online. Fig-
ure 1 shows the drawing for the conference by Jen-
nifer Claudio. As befits a true artist, Jennifer man-
ages to reproduce the Zeitgeist with a well-chosen
detail: the stylized bookshelves. They were created
with the bookshelf package [1], which was released
during the pandemic. It was used by many of us
to generate the backgrounds for remote meetings.
These bookshelves remind one of the time of endless
meetings, fear, loneliness, sickness and death.

Peter’s package uses a clever algorithm to create
interesting images, different for each TEX run. It
takes a BIBTEX catalog of books (many electronic
book managers, like Calibre [2], can export the book
list in this format). For each book it performs the
following steps:

1. Select a random rectangle size.

2. Select random foreground and background col-
ors. If the contrast is too low, repeat.

3. Select a random font.
4. Typeset author and title to fit in the box.

The result for my electronic library is shown on
Figure 2. (Grayscaled for print; online, you might
like to zoom in to see the variety of colors and fonts
used.)

Besides creation of backgrounds, this package
may be used also for an amusing game, which is quite
suitable for long boring remote meetings. Take a look
at some spines (Figure 3). Can you guess which fonts

TEX AND IATEX
TYPOGRAPHY
TYPESETTING

4157 ANNURL CONFERENCE OF THE TgX USERS GROUP

TUG

.20

X u

dante AADELAIDE

KEYNOTE SPEAKERS
Steve Matteson, Monotype
John MacFarlane, UC Berkeley

R I T e AN,

GVGI'\QCH

Figure 1: Jennifer Claudio’s drawing for TUG2020

193

were used to typeset them? You may add a point for
each correctly guessed font, and additional points
for correctly guessed author or style. To check your
answers you need to know that the little numbers
after the books are actually the numbers of the fonts
in the main list of fonts used by the package. For
example, looking at the font numbers on Figure 3,
we get:

589: AvenirLTStd-Heavy

9541: KyivTypeTitling-Bold2

2784: Concoursed4Italic, Stylistic Set 3

17266: XITS-BoldItalic

68: Alegreya-ExtraBoldItalic, Stylistic Set 4
13971: Nunito-ExtraLight

16390: SourceSansPro-Black, Small Caps
10119: KyivTypeTitling-Bold, Stylistic Set 4
15373: RobotoSerif-Black, Old Style Numbers
536: Arsenal-Bold, Stylistic Set 2

1490: BradleyDJR-Micro, Historical Ligatures

An astute reader might understand at this point
that Figures 2 and 3 were not produced by the orig-
inal version of Peter’s package. The reason is that
some of the books on Figure 3 have Cyrillic spines
(Ukrainian and Russian, to be precise). The fonts
used for these books (XITS, Alegreya, Nunito, Source-
SansPro, KyivTypeTitling) contain Cyrillic glyphs.
However, since the font selection is random (see
item 3 in the algorithm above), we can get fonts inca-
pable of typesetting the spines. Since the number of
books with non-Latin scripts in my library is large,
the probability of such events is close to 1.

At first I restricted the selection of fonts only
to those that had both Latin and Cyrillic glyphs.
However, there were fonts I liked to see on my shelf
which did not have Cyrillic letters. Also, I wanted
a solution suitable for libraries more versatile than
mine, with books in Arabic, Hebrew, Malayalam,
Sanskrit, etc. I wanted to be able to typeset any
catalog with any number of languages, and use any
suitable font.

One solution would be to use Language tag of
the fonts: we can add this tag to each book, cre-
ate separate pools of fonts for each script, and then
randomly select a font from the given pool. How-
ever this would require manual tagging of each book
and a rather complicated font selection algorithm,
especially for the books with several scripts in the
title. Therefore I decided to use the same logic Peter
used for color selection: for the given book select a
random font. If the book spine can be typeset with
this font, use it, otherwise repeat selection.

To check whether we can typeset the given string
with the given font we use the primitive \iffontchar.

Extending Peter Flynn’s bookshelf package for multilanguage libraries

doi.org/10.47397/tb/45-2/tb140veytsman-bookshelf

https://doi.org/10.47397/tb/45-2/tb140veytsman-bookshelf

194

TUGboat, Volume 45 (2024), No. 2

Figure 2: The author’s electronic library

- Volume 1

Michael J. Foy

Stories - Part XLIV: 2024 Annual (1889-1897)

— David Marcum
The MX Book of Mew Sherlock Holmes Stories
- Part XLIII: 2024 Annual (1874-1888)

David Marcum
IOpiu ITasaoseuu Bunnuuyx

Sherlock Holmes - A Study in

Illustrations

589 9541 2784 17266 68 13971

z

s = o

s 5 > <

s S i B

= 5 & ¢

& 2 o = g

s X = P

- S g s 2 :

(] § £ = = |

= = g X

§ g | q
3 [

! | g : N |
: = o) * <
! — £ =] o g
d 2 I © a = :
: = H L = N
i o 3 & @ = :
] a 0 s = 1
‘ = S g K S 3

<) o g = = 2

b= g < < =]
) ? G Q

@ o] 4] 5] [4
' < A & & 4 £
—

16390 10119 15373 536 1490 14¢

Figure 3: Several books from the author’s library

Boris Veytsman

The logic of the algorithm is straightforward: we
map the primitive over the string, and bail out
early if we find a character that cannot be type-
set. The implementation is easier in expl3 lan-
guage; see Figure 4. This code defines a macro
\CanTypesetTF{(string)}{ (true)}{(false)}. It calls
either {(¢rue)} branch or {(false)} branch depending
on the results of the typesetting test.

Since I wanted to demonstrate the possibilities
of my fonts, I decided to change the source of them
in the package. Both X{IEX and LuaTgEX can use
system fonts (those in the locations known to all
applications on your machine), and TEX fonts (those
known to your TEX installation). Peter’s package
can use any source, but the scripts provided with it
get the list of fonts in the system directories. TEX
Live has a very large collection of interesting fonts,
to which I have added some that I've purchased or
downloaded. Thus I decided to switch to the TEX
fonts. I also wanted to demonstrate stylistic variants,
swashes, old-style figures, so I wrote a script that
lists these variants for the given font, as shown on
Figure 5.

These changes lead to another problem. The
number of fonts together with their variants turned
out to be huge (19183 on my machine). The trial-
and-error algorithm for choosing a random font may
open several fonts per book. A decent library (Fig-
ure 2 has 1584 books) probes many fonts from this
list. Thus the package may want to open thousands
of fonts for a single run. The number of fonts that a
modern engine can open is much larger than in the
old days, and can be further extended by changing
the config file (I am grateful to Frank Mittelbach

TUGboat, Volume 45 (2024), No. 2 195

\prg_new_conditional:Nnn __SIL_primitive_font_glyph_if_exists:n {TF,F}
{
\tex_iffontchar:D \1l_fontspec_font ‘#1 \scan_stop:
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
\prg_new_conditional:Nnn __SIL_can_typeset:n {TF}
{
\typeout{Trying ~ to ~ typeset ~ #1}
\bool_set_true:N \1l_tmpa_bool
\str_map_inline:nn {#1} {
__SIL_primitive_font_glyph_if_exists:nTF {##1} {}{
\bool_set_false:N \1_tmpa_bool
\typeout{Cannot ~ typeset ~ ##1}
\str_map_break:
}
}
\bool_if:nTF \1_tmpa_bool {\prg_return_true:} {\prg_return_false:}
}
\cs_generate_variant:Nn __SIL_can_typeset:nTF {x}
\NewDocumentCommand\CanTypesetTF { m m m}{
__SIL_can_typeset:xTF{#1}{#2}{#3}

}
Figure 4: Checking whether a given string can be typeset with a given font
A:;:;Lmo—Bold_ttf use the general list, but randomly select the font
Arimo-BoldItalic.ttf from the stack.
Arimo-Ttalic.ttf With these changes the package was able to typeset

Arimo-Regular.ttf
Arsenal-Bold.otf
Arsenal-Bold.otf hist

Figure 2.

The code is now available at the Github repos-
Arsenal-Bold.otf smcp itory. github. com/borisveytsman/booksl}elf. Pe-
Arsenal-Bold.otf ssOi ter kindly allowed me to take over the maintenance
Arsenal-Bold.otf ss02 of the package on CTAN, so the new version with
Arsenal-Bold.otf swsh all these changes will be released after some code
cleaning. There are some features I'd like to add,
including colorblind palettes, streamlining the type-
setting, making the package aware of the size of the
actual book (so large books have larger spines).

It is difficult to find a “practical” application
for this package. Still, it brought much fun to me. I
am grateful to Peter for inventing it, and hope my
extensions are welcomed by other users.

Figure 5: Fragment of the font list

for this remark). Still, I found out that the engines
choke when the number of fonts in the document ex-
ceeds 5500. I did not want to recompile the engines,
so I employed several mitigation strategies:

1. The package does not load different sizes of a
font to fit a spine. Instead, it changes the sizes
of the rectangle that represents the spine, and [1] P. Flynn. The bookshelf package, 2020.

References

then uses \resizebox. Generally, such resizing ctan.org/pkg/bookshelf
of fonts is a bad typographic practice; thisis one 2] K. Goyal. calibre User Manual, 2024.
of the rare cases when it seems to be appropriate. manual.calibre-ebook. com
2. The actual algorithm for choosing a random font
has two stages. On the first stage we randomly ¢ Boris Veytsman
select a font from the general list and save its TEX Users Group

borisv (at) 1k dot net

number in the stack of opened fonts. When the :
https://borisv.lk.net

size of this stack exceeds the limit, we no longer

Extending Peter Flynn’s bookshelf package for multilanguage libraries

https://github.com/borisveytsman/bookshelf
https://ctan.org/pkg/bookshelf
https://manual.calibre-ebook.com

