
TUGboat, Volume 45 (2024), No. 2 211

Markdown themes in practice
Vít Starý Novotný

Abstract
The Markdown package for TEX supports themes
that allow TEXnicians to tailor the presentation of
Markdown and YAML content on the page. In this
article, I will show the current state of Markdown
themes using the example of LATEX templates that
I developed for the International Software Testing
Qualifications Board (ISTQB). Readers will leave
with actionable steps to create or modify Markdown
themes for LATEX, and insights into extending these
principles to other TEX engines.

Introduction
Although TEX has beautiful output, its input macro
language is an acquired taste for many authors. The
Markdown package for TEX allows authors to type
familiar Markdown and YAML directly into a TEX
document and receive a similarly beautiful output.

In my previous article, I introduced Markdown
themes [5]. Much like CSS stylesheets, Markdown
themes allow TEXnicians to tailor the presentation
of Markdown and YAML content without compli-
cating the document markup for authors. While
that article used simple examples to explain the ba-
sic concepts behind Markdown themes, it did not
demonstrate their application on a larger scale in
real-world software projects.

In July 2023, I began working with the Interna-
tional Software Testing Qualifications Board (ISTQB)
to help them typeset their certification study ma-
terials from Markdown and YAML sources. In this
article, I discuss my work as a case study of using the
Markdown package in a real-world software project.

Project overview
In my work, I developed a LATEX document class and
six Markdown themes [1].

The LATEX document class is named istqb and
it is stored in file template/istqb.cls. It imple-
ments the design of all ISTQB documents, defines the
meaning of common Unicode characters, and defines
LATEX markup such as \istqbunnumberedsection,
\istqblandscapebegin, and \istqblandscapeend.

The Markdown themes are named istqb/* and
stored in files template/markdowntheme*.tex and
*.sty; see also Figure 1. Here is what they do:

• The theme istqb/common enables Markdown
syntax extensions, implements the loading of
YAML language definitions and document meta-
data into TEX macros, and defines the mapping

between Markdown elements and LATEX markup.
The remaining themes are based on this theme
and they implement support for specific types
of ISTQB documents.

• The istqb/body-of-knowledge and syllabus
themes are used in ISTQB Body of Knowledge
and Syllabus documents. At the time of writing,
the themes implement no extra functionality.

• The theme istqb/sample-exam implements the
loading of YAML question definitions into TEX
macros in ISTQB Sample Exam Questions and
Answers documents. The following two themes
are based on this theme.

• The theme istqb/sample-exam/questions im-
plements the typesetting of questions in ISTQB
Sample Exam Questions documents.

• The theme istqb/sample-exam/answers im-
plements typesetting of answer keys and answers
in ISTQB Sample Exam Answers documents.

In the rest of this article, I show the main concepts
behind Markdown themes using the examples of
ISTQB Sample Exam Questions and Answers docu-
ments, which use the themes istqb/sample-exam/
/questions and /answers.

With Markdown themes, your document can
wear many different disguises, just like the wolf.

doi.org/10.47397/tb/45-2/tb140starynovotny-markdown-themes

Markdown themes in practice

https://doi.org/10.47397/tb/45-2/tb140starynovotny-markdown-themes

212 TUGboat, Volume 45 (2024), No. 2

istqb/common

metadata
language

istqb/syllabus istqb/body-of-knowledge
istqb/sample-exam

questions

istqb/sample-exam/questions

istqb/sample-exam/answers

answer-key
answers

Figure 1: A class diagram of the six Markdown themes that I developed for the
International Software Testing Qualifications Board (ISTQB). The snippets metadata,
language, questions, answer-key, and answers specify the public interface of the
themes and arrows specify inheritance.

a

ISTQB®

Questions

Question #1 (1 Point)
What is the answer to life, the universe, and everything?

a) 24

b) 42

c) 64

d) 84

Select ONE option.

Question #5 (1 Point)
What’s France’s capital?

a) Berlin

b) Madrid

c) Paris

d) Rome

Select ONE option.

Question #6 (2 Points)
Which two of the following animals are classified as mammals?

a) Shark

b) Dolphin

c) Eagle

d) Whale

e) Crocodile

Select TWO options.

0 0

©

b

ISTQB®

Answer key

Question
Number (#)

Correct
Answer

Learning
Objective (LO)

K-Level Number of
Points

1 b EXMPL-1.2.3 K1 1
5 c EXMPL-4.5.6 K2 1
6 b, d EXMPL-7.8.9 K3 2

Page 0 of 1

© International Software Testing Qualifications Board

c

ISTQB®

Answers

Question
Number (#)

Correct
Answer

Explanation / Rationale Learning
Objective (LO)

K-Level Number of
Points

1 b The answer to life, the universe, and everything is a concept from
Douglas Adams’ science fiction series “The Hitchhiker’s Guide to the
Galaxy”, where the supercomputer Deep Thought gives the answer 42.

EXMPL-1.2.3 K1 1

5 c The capital of France is Paris, known for art, fashion, and culture. EXMPL-4.5.6 K2 1

6 b, d Dolphins and whales are classified as mammals because they are
warm-blooded, breathe with lungs, and feed their young milk.

EXMPL-7.8.9 K3 2

Page 1 of 1

© International Software Testing Qualifications Board

Figure 2: Three different ways to typeset question definitions in ISTQB Sample
Exam Questions and Answers documents: a) a list of questions, b) an answer key,
and c) a list of answers.

Vít Starý Novotný

TUGboat, Volume 45 (2024), No. 2 213

1 Question definitions
As an example of question definitions, I use the
following YAML file named questions.yml:
num-questions: 3
max-score: 4
pass-score: 50 # percent
duration: [10, 15] # minutes
questions:

1:
learning-objective: 1.2.3
k-level: K1
number-of-points: 1
question: >

What is the answer to life,
the universe, and everything?

answers: {a: 24, b: 42, c: 64, d: 84}
correct: [b]
explanation: >

The answer to life, the universe,
and everything is a concept from
Douglas Adams’ science fiction
series “The Hitchhiker’s Guide to
the Galaxy”, where the supercomputer
Deep Thought gives the answer 42.

5:
learning-objective: 4.5.6
k-level: K2
number-of-points: 1
question: What’s France’s capital?
answers: {a: Berlin, b: Madrid,

c: Paris, d: Rome}
correct: [c]
explanation: >

The capital of France is Paris,
known for art, fashion, and culture.

6:
learning-objective: 7.8.9
k-level: K3
number-of-points: 2
question: >

Which two of the following animals
are classified as mammals?

answers: {a: Shark, b: Dolphin,
c: Eagle, d: Whale,
e: Crocodile}

correct: [b, d]
explanation: >

Dolphins and whales are classified
as mammals because they are
warm-blooded, breathe with lungs,
and feed their young milk.

The file specifies three questions. For each question,
it provides up to five possible answers.

2 User interface
In this section, I show how we can use themes istqb/
/sample-exam/questions, and /answers to typeset
the question definitions from the previous section.

2.1 Typesetting questions
As an example of an ISTQB Sample Exam Questions
document, I use the following LATEX file:
\documentclass{istqb}
\usepackage{markdown}
\markdownSetup {

import = {
istqb/sample-exam/questions =

questions as qst
}

}
\begin{document}
\istqbunnumberedsection{Questions}
\markdownInput[snippet=qst]{questions.yml}
\end{document}
The file imports the snippet questions from theme
istqb/sample-exam/questions and uses it to:

1. Process question definitions in questions.yml.
2. Typeset the list of questions shown in Figure 2a.

2.2 Typesetting answer key and answers
As an example of an ISTQB Sample Exam Answers
document, I use the following LATEX file:
\documentclass{istqb}
\usepackage{markdown}
\markdownSetup {

import = {
istqb/sample-exam/answers = {

answer-key as key,
answers as ans,

},
}

}
\begin{document}
\istqblandscapebegin
\istqbunnumberedsection{Answer key}
\markdownInput[snippet=key]{questions.yml}
\istqbunnumberedsection{Answers}
\markdownInput[snippet=ans]{questions.yml}
\istqblandscapeend
\end{document}
The file imports snippets answers and answer-key
from theme istqb/sample-exam/answers and uses
them to:

1. Process question definitions in questions.yml.
2. Typeset the answer key shown in Figure 2b.
3. Typeset the list of answers shown in Figure 2c.

Markdown themes in practice

214 TUGboat, Volume 45 (2024), No. 2

3 Implementation
In this section, I show the implementation of ISTQB
Sample Exam Questions and Answers documents. To
make programming easier, I use the high-level expl3
language in addition to plain TEX and LATEX 2ε.

3.1 Processing question definitions
Both the snippet questions from the theme istqb/
/sample-exam/questions and the snippet answers
from the theme /answers process question defini-
tions before typesetting them. For the processing,
they use the snippet questions from the theme
istqb/sample-exam, which I describe in this section.

First, I define a key–value istqb/questions:
1 \keys_define:nn
2 { istqb / questions }
3 { num-questions .int_gset:N =
4 \g_istqb_num_questions_int,
5 max-score .int_gset:N =
6 \g_istqb_max_score_int,
7 pass-score .int_gset:N =
8 \g_istqb_pass_score_int }

The key–value stores the values in top-level unstruc-
tured fields num-questions, max-score, and pass-
-score from question definitions to variables.

Next, I define a key–value istqb/questions/
/duration:

9 \keys_define:nn
10 { istqb / questions / duration }
11 { 1 .int_gset:N =
12 \g_istqb_duration_min_int,
13 2 .int_gset:N =
14 \g_istqb_duration_max_int }

The key–value stores the values in the top-level struc-
tured field duration to variables.

Then, I define the snippet questions itself:
15 \seq_new:N \g_istqb_questions_seq
16 \markdownSetupSnippet
17 { questions }
18 { jekyllData,
19 expectJekyllData,
20 renderers = {
21 jekyllDataBegin = {
22 \seq_gclear:N
23 \g_istqb_questions_seq },
24 jekyllData(String|Number) = {
25 \keys_set:nn
26 { istqb / questions }
27 { { #1 } = { #2 } }},
28 jekyllDataMappingBegin = ,
29 jekyllDataSequenceBegin = {
30 \str_case:nn
31 { #1 }
32 { { duration } {
33 \markdownSetup

34 { code = \group_begin:,
35 renderers = {
36 jekyllData(String
37 |Number) = {
38 \keys_set:nn
39 { istqb / questions /
40 duration }
41 {{ ##1 } = { ##2 }}},
42 jekyllDataSequenceEnd =
43 \group_end: }}}}},
44 jekyllData(Mapping|Sequence)Begin += {
45 \str_case:nn
46 { #1 }
47 { { questions } {
48 \markdownSetup
49 { code = \group_begin:,
50 renderers = {
51 jekyllData(Mapping
52 |Sequence)End =
53 },
54 snippet = istqb
55 / sample-exam / questions
56 / list,
57 renderers = {
58 jekyllData(Mapping
59 |Sequence)End
60 += \group_end: }}}}}}}

The snippet processes question definitions as follows:
1. Define an empty sequence that will store ques-

tion numbers.
2. Pass unstructured top-level fields to the key–

value istqb/questions.
3. Pass the structured top-level field duration to

the key–value istqb/questions/duration.
4. Pass the structured top-level field questions to

a snippet questions/list.
Next, I define the snippet questions/list:

61 \markdownSetupSnippet
62 { questions / list }
63 { renderers = {
64 jekyllDataMappingBegin = {
65 \group_begin:
66 \tl_set:Nn
67 \l_istqb_current_question_tl
68 { #1 }
69 \seq_gput_right:NV
70 \g_istqb_questions_seq
71 \l_istqb_current_question_tl
72 \markdownSetup
73 { renderers = {
74 jekyllDataMappingEnd = },
75 snippet = istqb / sample-exam
76 / questions / *,
77 renderers = {
78 jekyllDataMappingEnd +=
79 \group_end: }}}}}

Vít Starý Novotný

TUGboat, Volume 45 (2024), No. 2 215

The snippet processes each question as follows:
1. Store the current question number.
2. Pass all fields to a snippet questions/*.

Then, I define key–value istqb/questions/*:
80 \prop_new:N
81 \g_istqb_question_learning_objective_prop
82 \prop_new:N
83 \g_istqb_question_k_level_prop
84 \prop_new:N
85 \g_istqb_question_number_of_points_prop
86 \prop_new:N
87 \g_istqb_question_text_prop
88 \prop_new:N
89 \g_istqb_question_explanation_prop
90 \keys_define:nn
91 { istqb / questions / * }
92 { learning-objective .code:n = {
93 \prop_gput:cVn
94 { g_istqb_question_learning_objective
95 _prop }
96 \l_istqb_current_question_tl
97 { #1 } },
98 k-level .code:n = {
99 \prop_gput:NVn

100 \g_istqb_question_k_level_prop
101 \l_istqb_current_question_tl
102 { #1 } },
103 number-of-points .code:n = {
104 \prop_gput:cVn
105 { g_istqb_question_number_of_points
106 _prop }
107 \l_istqb_current_question_tl
108 { #1 } },
109 question .code:n = {
110 \prop_gput:NVn
111 \g_istqb_question_text_prop
112 \l_istqb_current_question_tl
113 { #1 } },
114 explanation .code:n = {
115 \prop_gput:NVn
116 \g_istqb_question_explanation_prop
117 \l_istqb_current_question_tl
118 { #1 } }}

The key–value stores the values in unstructured
fields number-of-points, learning-objective, k-
-level, explanation, and question to dicts. The
dicts use the current question number as the key.

Next, I define the snippet questions/*:
119 \markdownSetupSnippet
120 { questions / * }
121 { renderers = {
122 jekyllData(String|Number) = {
123 \keys_set:nn
124 { istqb / questions / * }
125 { { #1 } = { #2 } }},
126 jekyllDataSequenceBegin = {
127 \str_case:nn

128 { #1 }
129 { { correct } {
130 \markdownSetup
131 { code = \group_begin:,
132 renderers = {
133 jekyllDataSequenceEnd =
134 },
135 snippet = istqb
136 / sample-exam / questions
137 / * / correct,
138 renderers = {
139 jekyllDataSequenceEnd +=
140 \group_end: }}}}},
141 jekyllDataMappingBegin = {
142 \str_case:nn
143 { #1 }
144 { { answers } {
145 \markdownSetup
146 { code = \group_begin:,
147 renderers = {
148 jekyllDataMappingEnd = },
149 snippet = istqb
150 / sample-exam / questions
151 / * / answers,
152 renderers = {
153 jekyllDataMappingEnd +=
154 \group_end: }}}}}}}

The snippet processes question definitions as follows:
1. Pass unstructured fields to the key–value istqb/

/questions/*.
2. Pass the structured field correct to a snippet

questions/*/correct.
3. Pass the structured field answers to a snippet

questions/*/answers.
Notice the design pattern on lines 44–60, 64–

79, and 126–154 that locally applies a ⟨snippet⟩ to
an ⟨element⟩.1 This pattern redefines the renderer
⟨element⟩Begin, which is placed to the output when
the ⟨element⟩ starts, as follows:

1. Open a TEX group and apply the ⟨snippet⟩.
2. Redefine the renderer ⟨element⟩End, which is

placed to the output when the ⟨element⟩ ends,
so that it closes the TEX group.
Finally, I define snippets questions/*/answers

and /correct:
155 \prop_new:N \g_istqb_answer_keys_prop
156 \prop_new:N \g_istqb_answers_prop
157 \seq_new:N \l_istqb_current_answer_keys_seq
158 \markdownSetupSnippet
159 { questions / * / answers }

1 Such design patterns can be repetitive and difficult to
understand without additional comments in the code. Mark-
down Enhancement Proposal (MEP) 445 [6] envisions support
for higher-order snippets that would make it possible to hide
such design patterns behind easy-to-read shorthands.

Markdown themes in practice

216 TUGboat, Volume 45 (2024), No. 2

160 { renderers = {
161 jekyllData(String|Number) = {
162 \seq_put_right:Nn
163 \l_istqb_current_answer_keys_seq
164 { #1 }
165 \tl_set:NV
166 \l_tmpa_tl
167 \l_istqb_current_question_tl
168 \tl_put_right:Nn
169 \l_tmpa_tl
170 { / #1 }
171 \prop_gput:NVn
172 \g_istqb_answers_prop
173 \l_tmpa_tl
174 { #2 } },
175 jekyllDataMappingEnd += {
176 \clist_set_from_seq:NN
177 \l_istqb_current_answer_keys_clist
178 \l_istqb_current_answer_keys_seq
179 \prop_gput:NVv
180 \g_istqb_answer_keys_prop
181 \l_istqb_current_question_tl
182 { l_istqb_current_answer_keys
183 _clist } }}}
184 \prop_new:N \g_istqb_answer_correct_keys_prop
185 \seq_new:N
186 \l_istqb_current_answer_correct_keys_seq
187 \markdownSetupSnippet
188 { questions / * / correct }
189 { renderers = {
190 jekyllData(String|Number) = {
191 \seq_put_right:cn
192 { l_istqb_current_answer_correct
193 _keys_seq }
194 { #2 } },
195 jekyllDataSequenceEnd += {
196 \clist_set_from_seq:cc
197 { l_istqb_current_answer_correct
198 _keys_clist }
199 { l_istqb_current_answer_correct
200 _keys_seq }
201 \prop_gput:NVv
202 \g_istqb_answer_correct_keys_prop
203 \l_istqb_current_question_tl
204 { l_istqb_current_answer_correct
205 _keys_clist } }}}

The snippets accumulate potential and correct an-
swer letters in a sequence, respectively. Then, they
store the sequence as a comma-list to a dict that
uses the current question number as the key.

Moreover, the snippet questions/*/answers
stores potential answer texts to a dict that uses
⟨current question number⟩/⟨answer letter⟩ as key.

Notice that I used no format-specific code in
this section. Therefore, I can use the theme istqb/
/sample-exam with any format that supports expl3
such as plain TEX and ConTEXt, not just with LATEX.

3.2 Typesetting questions
In this section, I describe the snippet questions
from theme istqb/sample-exam/questions. This
snippet typesets the list of questions in Figure 2a.

First, I import the theme istqb/sample-exam
and I use the snippet questions from this theme to
process question definitions:

1 \markdownSetup
2 { import = istqb / sample-exam }
3 \markdownSetupSnippet
4 { questions }
5 { snippet = istqb / sample-exam
6 / questions,

After the question definitions have been pro-
cessed, I iterate over all question numbers. For each
question number, I define a variable with code that
typesets the corresponding question:

7 renderers = {
8 jekyllDataEnd = {
9 \seq_map_inline:Nn

10 \g_istqb_questions_seq
11 { \tl_set:Nn
12 \l_istqb_question_tl
13 {

First, I add a section heading for the question:
14 \tl_set:Nn
15 \l_tmpa_tl
16 { Question~\# ##1~(}
17 \prop_get:cnN
18 { g_istqb_question_number
19 _of_points_prop }
20 { ##1 }
21 \l_tmpb_tl
22 \tl_put_right:NV
23 \l_tmpa_tl
24 \l_tmpb_tl
25 \tl_put_right:Nn
26 \l_tmpa_tl
27 { ~Point }
28 \int_compare:VNnF
29 \l_tmpb_tl = { 1 }
30 { \tl_put_right:Nn
31 \l_tmpa_tl
32 { s } }
33 \tl_put_right:Nn
34 \l_tmpa_tl
35 {) }
36 \exp_args:NNV
37 \subsection *
38 \l_tmpa_tl
39 \exp_args:NVV
40 \markboth
41 \l_tmpa_tl
42 \l_tmpa_tl
43 \exp_args:NnnV
44 \addcontentsline

Vít Starý Novotný

TUGboat, Volume 45 (2024), No. 2 217

45 { toc }
46 { subsection }
47 \l_tmpa_tl

Next, I add the question text and potential answers:
48 \prop_item:Nn
49 \g_istqb_question_text_prop
50 { ##1 }
51 \prop_get:NnN
52 \g_istqb_answer_keys_prop
53 { ##1 }
54 \l_tmpa_clist
55 \begin { enumerate }
56 \clist_map_inline:Nn
57 \l_tmpa_clist
58 { \item [####1)]
59 \prop_item:Nn
60 \g_istqb_answers_prop
61 { ##1 / ####1 } }
62 \end { enumerate }
63 \medskip

Lastly, I add the text “Select ⟨number of correct
answers⟩ option(s).”:

64 \prop_get:cnN
65 { g_istqb_answer_correct
66 _keys_prop }
67 { ##1 }
68 \l_tmpa_clist
69 \int_set:Nn
70 \l_tmpa_int
71 { \clist_count:N
72 \l_tmpa_clist }
73 Select~\int_case:nn
74 { \l_tmpa_int }
75 { { 1 } { ONE~option }
76 { 2 } { TWO~options } }
77 }

Finally, I typeset the code from the variable at
natural height and store the result to a vertical box:

78 \vbox_set:NV
79 \l_tmpa_box
80 \l_istqb_question_tl

For short questions, I insert the box to the current
list for typesetting to prevent page breaks within the
question. For longer questions, I place the content of
the variable to the input stream, so that page breaks
can occur naturally:

81 \dim_compare:nNnTF
82 { \box_ht:N \l_tmpa_box }
83 >
84 { 0.3 \paperheight }
85 { \tl_use:N
86 \l_istqb_question_tl }
87 { \box_use:N \l_tmpa_box }
88 \par }}}}

3.3 Typesetting the answer key
In this section, I describe the snippet answer-key
from the theme istqb/sample-exam/answers. This
snippet typesets the answer key in Figure 2b.

First, I load packages multicol and supertabular:
1 \RequirePackage { multicol }
2 \RequirePackage { supertabular }
3 \RequirePackage { array }
4 \newcolumntype
5 { C }
6 [1]
7 { >{ \centering\arraybackslash } p { #1 } }

The packages allow me to typeset the answer key as
a table in a two-column layout that automatically
inserts column breaks.

Next, I import the theme istqb/sample-exam
and I use the snippet questions from this theme to
process question definitions:

8 \markdownSetup
9 { import = istqb / sample-exam }

10 \markdownSetupSnippet
11 { answer-key }
12 { snippet = istqb / sample-exam
13 / questions,

After the question definitions have been pro-
cessed, I start a two-column layout:

14 renderers = {
15 jekyllDataEnd = {
16 \begin { multicols } { 2 }

Then, I set the heading and the tail of the table:
17 \tablehead
18 { \hline
19 \textbf
20 { Question~Number~(\#) } &
21 \textbf
22 { Correct~Answer } &
23 \textbf
24 { Learning~Objective~(LO) } &
25 \textbf
26 { K-Level } &
27 \textbf
28 { Number~of~Points } \\ }
29 \tabletail { \hline }
30 \tablelasttail { \hline }

Next, I define a variable that typesets the table:
31 \tl_set:Nn
32 \l_istqb_answer_key_table_tl
33 {

First, I start the table:
34 \begin
35 { supertabular }
36 { | C { 1.9cm } | C { 1.5cm }
37 | C { 2.4cm } | C { 1.4cm }
38 | C { 1.9cm } | } }

Markdown themes in practice

218 TUGboat, Volume 45 (2024), No. 2

Next, I iterate over all question numbers:
39 \seq_map_inline:Nn
40 \g_istqb_questions_seq
41 {
42 \tl_put_right:Nn
43 \l_istqb_answer_key_table_tl
44 { \hline }

For each question, I add the question number:
45 \tl_put_right:Nn
46 \l_istqb_answer_key_table_tl
47 { \textbf { ##1 } & }

Next, I add the correct answer letters:
48 \prop_get:cnN
49 { g_istqb_answer_correct
50 _keys_prop }
51 { ##1 }
52 \l_tmpa_clist
53 \tl_put_right:Ne
54 \l_istqb_answer_key_table_tl
55 { \clist_use:Nn
56 \l_tmpa_clist
57 { ,~ } & }

Then, I add the learning objective:
58 \tl_put_right:NV
59 \l_istqb_answer_key_table_tl
60 \g_istqb_prefix_tl
61 \tl_put_right:Nn
62 \l_istqb_answer_key_table_tl
63 { - }
64 \prop_get:cnN
65 { g_istqb_question_learning
66 _objective_prop }
67 { ##1 }
68 \l_tmpa_tl
69 \tl_put_right:NV
70 \l_istqb_answer_key_table_tl
71 \l_tmpa_tl
72 \tl_put_right:Nn
73 \l_istqb_answer_key_table_tl
74 { & }

Next, I add the K-level:
75 \prop_get:NnN
76 \g_istqb_question_k_level_prop
77 { ##1 }
78 \l_tmpa_tl
79 \tl_put_right:NV
80 \l_istqb_answer_key_table_tl
81 \l_tmpa_tl
82 \tl_put_right:Nn
83 \l_istqb_answer_key_table_tl
84 { & }

Lastly, I add the number of points:
85 \prop_get:cnN
86 { g_istqb_question_number
87 _of_points_prop }
88 { ##1 }

89 \l_tmpa_tl
90 \tl_put_right:NV
91 \l_istqb_answer_key_table_tl
92 \l_tmpa_tl
93 \tl_put_right:Nn
94 \l_istqb_answer_key_table_tl
95 { \\ }
96 }

After I have iterated over all question numbers, I
end the table, I place the content of the variable to
the input stream, and I end the multicolumn layout:

97 \tl_put_right:Nn
98 \l_istqb_answer_key_table_tl
99 { \end { supertabular } }

100 \tl_use:N
101 \l_istqb_answer_key_table_tl
102 \end { multicols } }}}

3.4 Typesetting answers
In this section, I describe the snippet answers from
the theme istqb/sample-exam/answers. This snip-
pet typesets the list of answers in Figure 2c.

First, I load package longtable:
1 \RequirePackage { longtable }
2 \dim_const:Nn
3 \c_explanation_width_dim
4 { 11.15cm }

The package allows me to typeset the list of answers
as a table that automatically inserts page breaks.

Next, I use the snippet questions from theme
istqb/sample-exam to process question definitions:

5 \markdownSetupSnippet
6 { answers }
7 { snippet = istqb / sample-exam
8 / questions,

After the question definitions have been pro-
cessed, I define a variable that typesets the table:

9 renderers = {
10 jekyllDataEnd = {
11 \group_begin:
12 \tl_set:Nn
13 \l_istqb_answers_table_tl
14 {

First, I start the table and I set its heading:
15 \begin
16 { longtable }
17 { | C { 1.9cm } | C { 1.5cm }
18 | p
19 { \c_explanation_width_dim }
20 | C { 2.4cm } | C { 1.4cm }
21 | C { 1.9cm } | }
22 \hline
23 \textbf
24 { Question~Number~(\#) } &
25 \textbf { Correct~Answer } &

Vít Starý Novotný

TUGboat, Volume 45 (2024), No. 2 219

26 \multicolumn
27 { 1 }
28 { C
29 { \c_explanation_width_dim }
30 | }
31 { \textbf
32 { Explanation~/~Rationale }
33 } &
34 \textbf
35 { Learning~Objective~(LO) } &
36 \textbf { K-Level } &
37 \textbf { Number~of~Points } \\
38 \hline
39 \endhead }

Next, I iterate over all question numbers:
40 \seq_map_inline:Nn
41 \g_istqb_questions_seq
42 {

For each question, I add the question number:
43 \tl_put_right:Nn
44 \l_istqb_answers_table_tl
45 { \textbf
46 { ##1 }
47 \addcontentsline
48 { toc }
49 { subsection }
50 { Question~\# ##1 } & }

Next, I add the correct answer letters:
51 \prop_get:cnN
52 { g_istqb_answer_correct
53 _keys_prop }
54 { ##1 }
55 \l_tmpa_clist
56 \tl_put_right:Ne
57 \l_istqb_answers_table_tl
58 { \clist_use:Nn
59 \l_tmpa_clist
60 { ,~ } & }

Then I add the explanation text:
61 \tl_put_right:Nn
62 \l_istqb_answers_table_tl
63 { \begin
64 { minipage }
65 [t]
66 \c_explanation_width_dim }
67 \prop_get:cnN
68 { g_istqb_question_explanation
69 _prop }
70 { ##1 }
71 \l_tmpa_tl
72 \tl_put_right:NV
73 \l_istqb_answers_table_tl
74 \l_tmpa_tl
75 \tl_put_right:Nn
76 \l_istqb_answers_table_tl
77 { \end { minipage }

78 \medskip }
79 \tl_put_right:Nn
80 \l_istqb_answers_table_tl
81 { & }

Next, I add the learning objective:
82 \tl_put_right:NV
83 \l_istqb_answers_table_tl
84 \g_istqb_prefix_tl
85 \tl_put_right:Nn
86 \l_istqb_answers_table_tl
87 { - }
88 \prop_get:cnN
89 { g_istqb_question_learning
90 _objective_prop }
91 { ##1 }
92 \l_tmpa_tl
93 \tl_put_right:NV
94 \l_istqb_answers_table_tl
95 \l_tmpa_tl
96 \tl_put_right:Nn
97 \l_istqb_answers_table_tl
98 { & }

Then, I add the K-level:
99 \prop_get:NnN

100 \g_istqb_question_k_level_prop
101 { ##1 }
102 \l_tmpa_tl
103 \tl_put_right:NV
104 \l_istqb_answers_table_tl
105 \l_tmpa_tl
106 \tl_put_right:Nn
107 \l_istqb_answers_table_tl
108 { & }

Lastly, I add the number of points:
109 \prop_get:cnN
110 { g_istqb_question_number_of
111 _points_prop }
112 { ##1 }
113 \l_tmpa_tl
114 \tl_put_right:NV
115 \l_istqb_answers_table_tl
116 \l_tmpa_tl
117 \tl_put_right:Nn
118 \l_istqb_answers_table_tl
119 { \\ \hline } }

After I have iterated over all question numbers, I
end the table and I place the content of the variable
to the input stream:

120 \tl_put_right:Nn
121 \l_istqb_answers_table_tl
122 { \end { longtable } }
123 \tl_use:N
124 \l_istqb_answers_table_tl
125 \group_end: }}}

Markdown themes in practice

220 TUGboat, Volume 45 (2024), No. 2

Conclusion
In this article, I have demonstrated the practical ap-
plication of Markdown themes through a project that
enabled the International Software Testing Qualifi-
cations Board (ISTQB) to produce their certification
study materials from Markdown and YAML sources.
While my previous article [5] focused on the un-
derlying concepts of Markdown themes, this article
provides concrete code used in a real-world software
project. I hope this practical demonstration raises
awareness of Markdown themes and illustrates how
users can incorporate them into their own projects.

For ISTQB, the project has yielded numerous
benefits: Writing text in a structured format using
Markdown and YAML, while generating visually ap-
pealing outputs with LATEX, facilitates the separation
of content from formatting. This ensures consistent
application of the document’s visual style across all
ISTQB content. Additionally, the structured text
enables content verification against YAML schemas
and ISTQB writing rules and allows for the creation
of a complex knowledge base through automated
processing. This enhances the quality of learning
materials and reduces administrative overhead.

Moreover, the plain text formats of Markdown
and YAML offer significant advantages over binary
formats like Microsoft Office. They allow for efficient
version control, better tracking of changes, collabora-
tive editing, and fewer defects in the final products.
The capability to produce various output formats,
such as EPUB, HTML, and PDF with functional hy-
perlinks and cross-references, further amplifies the
utility of this approach.

Related work
In my approach, I developed an event-based LATEX
parser that constructs and typesets expl3 data struc-
tures that represent YAML files.2 My approach works
in any TEX engine with shell access, such as pdfTEX
and X ETEX, not just LuaTEX.

In the previous issue of TUGboat [4], Erik Nijen-
huis showed a different approach towards typesetting
YAML files in LATEX. In their approach, Erik used
their lua-placeholders library [3] to load YAML files
into Lua tables and then query them from TEX code.
Erik’s approach requires LuaTEX but can be more
convenient for non-programmers.

2 My focus on processing and typesetting YAML files may
seem contrary to the title of this article “Markdown themes
in practice”. However, authors may use Markdown markup in
YAML files. In the examples from this article, we might use
Markdown to format questions, answers, and explanations.

Both Erik’s and my approaches use the tinyyaml
Lua library [2]. LuaTEX users who are interested in
processing YAML files directly from Lua code may
find it convenient to use tinyyaml directly.

Acknowledgements
I wish to extend my special thanks to Tereza Vrab-
cová, Marei Peischl, Daniel Poľan, and Petr Sojka for
their invaluable insights and thorough review of my
work. Their expertise and thoughtful feedback have
been instrumental in shaping the final manuscript.

I would also like to thank Greg at fiverr.com/
quickcartoon for their illustrations of the wolf mas-
cot, which have provided an engaging visual identity
of the Markdown package over the past four years.

References
[1] ISTQB.ORG. LATEX+Markdown template, 2024.

github.com/istqborg/istqb_product_base

[2] Z. Lee. lua-tinyyaml: A tiny YAML (subset)
parser for pure Lua, 2023.
ctan.org/pkg/lua-tinyyaml

[3] E. Nijenhuis. lua-placeholders: Specifying
placeholders for demonstration purposes, 2024.
ctan.org/pkg/lua-placeholders

[4] E. Nijenhuis. Specifying and populating
documents in YAML with lua-placeholders
in LATEX. TUGboat 45(1):65–76, 2024.
doi.org/10.47397/tb/45-1/tb139nijenhuis-
placeholders

[5] V. Novotný. Markdown 2.10.0: LATEX themes
& snippets, two flavors of comments, and
luametaTEX. TUGboat 42(2):186–193, 2021.
doi.org/10.47397/tb/42-2/tb131novotny-
markdown

[6] V. Starý Novotný. Parametric snippets, 2024.
github.com/Witiko/markdown/issues/445

⋄ Vít Starý Novotný
Studená 453/15
Brno 63800, Czech Republic
witiko (at) mail dot muni dot cz
github.com/witiko

Vít Starý Novotný

https://fiverr.com/quickcartoon
https://fiverr.com/quickcartoon
https://github.com/istqborg/istqb_product_base
https://ctan.org/pkg/lua-tinyyaml
https://ctan.org/pkg/lua-placeholders
https://doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders
https://doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders
https://doi.org/10.47397/tb/42-2/tb131novotny-markdown
https://doi.org/10.47397/tb/42-2/tb131novotny-markdown
https://github.com/Witiko/markdown/issues/445

	Question definitions
	User interface
	Typesetting questions
	Typesetting answer key and answers

	Implementation
	Processing question definitions
	Typesetting questions
	Typesetting the answer key
	Typesetting answers

