
TUGboat, Volume 45 (2024), No. 2 203

Profiling TEX input files

Martin Ruckert

Abstract

A profiler is a tool used by programmers to analyze
the runtime behavior of the code they write. The
profiler can map the CPU time of a program to spe-
cific files and lines, or it can map the time to indi-
vidual procedures. This information is necessary if
a programmer wants to optimize the code for speed.

No such tool has been available to date to pro-
grammers who write macro packages for TEX. This
paper presents texprof and texprofile, two pro-
grams working together to profile TEX input files.

1 Who needs a profiler?

The TEX profiler is a tool for programmers writ-
ing TEX macros. This does not mean that an au-
thor who occasionally writes a TEX macro should
use or even needs to use this tool. Optimizing a
macro for speed should be done only if the macro
is used very often. To get a feeling for what “very
often” means, consider the following: Under reason-
able assumptions (200 watt peak power consump-
tion of your PC and 500g of CO2 emission per kWh
electric power use) one second of CPU time results
in 28mg of CO2 emission. Again under reasonable
assumptions (2370g of CO2 emission per liter fuel
and 6l fuel consumption per km) driving 200km re-
sults in 28kg of CO2 emission. That means that you
need to save millions of seconds in CPU time before
it has any substantial impact on your CO2 footprint
or your budget.

So for the occasional macro writer there are bet-
ter opportunities to invest time and intelligence than
optimizing macros for speed. But of course there are
macro packages for TEX that have millions of users
that use these macros in multiple runs every day,
and if you are the programmer of such a package,
you might be interested to know if there are oppor-
tunities for optimization, where these opportunities
are hiding in your code, and how much you might
gain when optimizing this code. Maybe even more
important, a profiler can tell you where not to look
for optimizations, and—after the optimization— if
the changes to your code had the desired effect. As
a general rule, you should never optimize code for
speed without using a profiler.

2 How does the TEX profiler work?

2.1 Mapping commands to files and lines

Every TEX engine is an interpreter that executes the
built-in commands of TEX, like creating a horizon-

tal box, incrementing a count register, or adding a
character to the current paragraph. The TEX pro-
filer, called texprof, is such an engine with exten-
sions to map every command to a file and a line in
that file. If texprof reads such a command from
an input file, it can determine the file name and the
line number from the data structures that every TEX
engine maintains to display good error messages. If
on the other hand, such a command was part of a
format file, the file name and the line number is not
known. We will see below how using a format file
can be avoided.

But even if we avoid using a format file, many
commands are not read directly from an input file,
instead they come from expanding a macro. When
a macro is defined, TEX stores the commands that
belong to the macro body in a hash table, and when
the macro is used, TEX retrieves the commands from
the hash table and inserts them into the input. Since
the file and line are known when a macro is defined,
this information can be stored in the hash table and
retrieved along with the commands when a macro
is expanded. The same mechanism comes into play
when TEX reads ahead, for example when scanning
a keyword, and discovers that the commands seen
must be pushed back into the input for later process-
ing: the commands take their file and line numbers
with them.

There are a few rare cases where this mecha-
nism does not work. For example TEX inserts a pair
of curly braces around an output routine to make
sure that commands executed in an output routine
do not have unexpected global effects. These extra
commands are marked as coming from the “system”
file in line zero.

There are other “line numbers” in the “system”
pseudo-file that the profiler will use. TEX invokes
system procedures like breaking a paragraph into
lines or writing a page to the DVI file that can be
quite time consuming. It would be misleading if
the time spent in these routines would be mapped
to whatever command happened to be executed at
the end of a paragraph or caused the page builder to
eject a page. So texprof associates these times with
the “system” pseudo-file and uses the line number
to indicate the responsible procedure in TEX.

2.2 Mapping execution times to commands

Most of TEX’s commands, but not all, are executed
in TEX’s main_control procedure. There we find
a loop that reads a command and then executes
the command by branching to its code to execute
it using the so-named big_switch (the label in the
Pascal code). texprof looks up the current time at

doi.org/10.47397/tb/45-2/tb140ruckert-profiler

Profiling TEX input files

https://doi.org/10.47397/tb/45-2/tb140ruckert-profiler

204 TUGboat, Volume 45 (2024), No. 2

the start of each iteration of this loop. The time is
taken from a hardware clock using a low-level rou-
tine provided by the operating system. The time
taken from the clock is the start time of a new time
interval and simultaneously the end time of the pre-
vious time interval. After reading the start time,
texprof continues with the normal processing of
TEX and reads the next command from its input
stack. Once the command is known, texprof takes
note of the command, its file, its line (and the macro
it comes from—but let’s focus for the moment on
commands; macros will be explained later). Then
normal processing continues and the command is
executed using the big_switch which ends with a
jump to the beginning of the loop. There texprof

will again look up the time, compute the time dif-
ference and record command, file, line, and time dif-
ference in a large array.

Occasionally, a command is “reswitched”. That
means, it is replaced in the big_switch by another
command and the big_switch is used again to ex-
ecute it. texprof ignores this replacement and will
record the entire time together with the command,
file, and line that was obtained at the beginning of
the current iteration. This introduces some impreci-
sion into the measurements but does not cause sig-
nificant errors.

A much bigger effect on the association of time
to file and line is caused by the existence of TEX‘s
main_loop. The big_switch will jump to this loop
whenever it encounters a character and it will stay
in this loop as long as the commands are the typi-
cal commands found in plain text: characters, spa-
ces, kerns, ligatures, font changes, and a few more
such things. The complete time spent in this loop
is then recorded with the command, file, and line
that started the loop. So the time used to process
an entire paragraph might be associated with the
first letter of that paragraph. The decision to forgo
a more precise attribution of time in this case is jus-
tified by the following considerations: First, such a
paragraph is normally processed only once and the
time it takes is usually not a significant fraction of
the total run time. Second, using a profiler, we are
usually not interested in the time spent on letters,
spaces and other parts of plain text. After all, no
author optimizes the text for the speed of processing
it. And finally, this reduces considerably the number
of time intervals that texprof needs to record.

TEX’s main_control procedure exits when ex-
ecuting the “stop” command. This ends the record-
ing of time intervals. As part of TEX’s closing pro-
cedure, texprof will write all the data collected to
a binary file. The name of this file is obtained by

appending .tprof to the \jobname. All further pro-
cessing of the collected data is not done by texprof

but by a second program called texprofile. Its use
will be illustrated below.

2.3 The problem of measuring time

Operating systems usually provide several clocks to
choose from. texprof uses the common function
clock_gettime to measure the CPU time of the
current thread in nanoseconds. A measurement of
nanoseconds seems like very precise information, but
the actual precision is more on the order of a hun-
dred microseconds, for several reasons. First, mod-
ern computers run many different processes at the
same time and switch the available CPUs from one
process to another. The time to switch processes
includes of course the time needed to swap out and
swap in the contents of memory caches. So when a
process was recently swapped in, a load instruction
from a location in main memory might take consid-
erately longer if that memory location is no longer
in the cache. This extra time is then associated with
the TEX command that happens to be executing.

Second, modern CPUs use a technique called
frequency scaling in order to reduce energy consump-
tion. While you just type text in the editor, you lap-
top might run with a frequency below 1GHz; shortly
after you have started TEX, your operating system
might notice that there is a lot of work to do and in-
crease its clock frequency to 4GHz. All commands
that are executed after this change will need less
time than the same commands before this change.

Third, in recent years manufacturers have be-
gun to combine on one chip a few performance cores
with a few efficiency cores. The former use sophis-
ticated superscalar pipelines to execute multiple in-
structions per clock cycle; the latter use simple in-
order execution which requires far less power and
produces far less heat but might need multiple clock
cycles per instruction. So if your operating system
decides to move texprof from an efficiency core to a
performance core in the middle of running, this has
a drastic effect on the command times. The operat-
ing system might move it even back to the efficiency
core if texprof starts to do file input/output which
causes it to wait for the disk.

There are a few possibilities to mitigate these
effects like computing the average over multiple runs
or using synthetic times, but none of them is cur-
rently implemented.

2.4 Mapping computing times to macros

When TEX encounters an active character or a con-
trol sequence, it knows it has to execute a macro. It

Martin Ruckert

TUGboat, Volume 45 (2024), No. 2 205

looks up the list of commands that form the body
of the macro and pushes this list on its input stack.
When TEX needs the next command from the input,
it takes it from the topmost list on the input stack.
And when TEX reaches the end of the topmost list,
it pops it from the stack and continues to read com-
mands from where it was before in the next lower
list on the stack. The input stack is used not only
for macro calls, but also for implicit calls to other
routines. The page builder will, for example, push
the output routine on the input stack when a new
page is ready. Or at the beginning of a paragraph,
the system will push the commands specified with
\everypar on the stack. Entire files are pushed on
the stack when you use \input. It is also very com-
mon that TEX reads ahead, for example to check for
a possible keyword, and pushes unused tokens back
on the input stack to be read again if the keyword
was not found.

Most of the information texprof needs to keep
track of macros can be found on TEX’s input stack—
but not all of it. Notably, the input stack will not
contain information about the correct nesting level
of the macros. The reason for this is a clever op-
timization that TEX uses on its input stack called
last call optimization: Before a new macro body is
pushed on the input stack, TEX checks repeatedly if
the topmost list on the input stack is already empty.
And if so, it will remove the empty list from the
stack. Only after all empty lists have been removed
the body of the new macro is pushed. Using this op-
timization, a loop that is implemented by a recursive
macro, calling itself as the last action of the macro
body, can run without overflowing the stack. Un-
fortunately this technique will remove a macro from
the input stack while its last sub-macro is still run-
ning; and it will push new macros at a lower nesting
level than their “true” nesting level.

So texprof adds information about the “true”
current macro nesting level to TEX’s input stack and
maintains a separate stack that contains informa-
tion about all macros up to the true nesting level:
the name as well as the file and line number of the
macros definition. This stack provides information
about the true begin and end of a macro call which
is recorded together with the timing information of
executed commands.

3 Analyzing profiling data

The raw data that texprof writes to the output
file is just a long list of thousands of “command
file line time” records interspersed with records that
reflect the changing of the macro stack. Extracting

useful information from this data is the job of the
texprofile program.

To explain the use of texprof and texprofile,
it is best to use examples. For the first example, I
was looking for a large document with a focus on
text. Searching the internet for such an example,
I found a TEX version of the bible (github.com/
vermiculus/bible). With a few changes I made it
use the “plain” TEX format so that it makes only
a limited use of macros. Most macros are taken
from plain TEX, but there are also some user defined
macros. Running texprof -prof bible will cre-
ate bible.tprof with a size of 17Mbyte. Running
tprof bible without further command line options
will print the following summary:

Total time measured: 728.92 ms
Total number of samples: 2157642
Average time per sample: 337.00 ns
Total number of files: 69
Total number of macros: 1097
Maximum stack nesting depth: 7

You can use command line options to specify which
data tables texprofile should display and how it
should display the information.

3.1 The top ten lines

Given the -T option, for example, texprofile will
traverse the data, add up the times for each file and
line combination separately, then sort the results,
and display the ten lines with the highest cumulative
times: the “Top Ten” lines. The output is shown in
Fig. 1.

The first line in the table is attributed to the
“system” pseudo-file. The entry shows the accumu-
lated time for an important system routine using the
line number to identify the specific routine like pro-
ducing the output DVI file (shipout), or a bit further
down breaking a paragraph into lines (linebrk), or
breaking the document into pages (buildpg). These
times do not depend on the use of macros but simply
on the size of the document.

From the next line, we can see that line 29 of
bible.tex is responsible for 17.63% of the total run
time and therefore is a good candidate for optimiza-
tion, which we will try to do in the next section. The
line by itself is quite fast, on average only 2.85µs are
spent on this line, but the line is used very often:
54649 times.

The fact that the remaining six lines all con-
tibute less than 1% to the overall runtime means
that we need not consider any of them for optimiza-
tion.

Profiling TEX input files

https://github.com/vermiculus/bible
https://github.com/vermiculus/bible

206 TUGboat, Volume 45 (2024), No. 2

file line percent absolute count average file

system shipout 17.68% 156.05 ms 1130 138.09 µs system
5 29 17.63% 155.65 ms 54649 2.85 µs bible.tex

system linebrk 15.21% 134.26 ms 25777 5.21 µs system
system buildpg 1.69% 14.89 ms 55190 269.00 ns system

5 56 0.86% 7.61 ms 4750 1.60 µs bible.tex
5 15 0.62% 5.43 ms 6183 878.00 ns bible.tex
3 555 0.47% 4.17 ms 8549 487.00 ns plain.tex
3 1204 0.28% 2.44 ms 3390 719.00 ns plain.tex
3 1201 0.26% 2.33 ms 2260 1.03 µs plain.tex
3 1203 0.25% 2.20 ms 2258 973.00 ns plain.tex

Figure 1: Running tprof -T bible

file line percent absolute count average file

system shipout 18.35% 156.29 ms 1130 138.31 µs system
system linebrk 15.64% 133.23 ms 25777 5.17 µs system

5 29 12.85% 109.48 ms 60839 1.80 µs bible-opt.tex
3 666 1.95% 16.61 ms 55847 297.00 ns plain.tex

system buildpg 1.74% 14.85 ms 55190 269.00 ns system
5 55 0.78% 6.67 ms 3552 1.88 µs bible-opt.tex
5 15 0.63% 5.39 ms 6183 871.00 ns bible-opt.tex
3 555 0.49% 4.18 ms 8549 489.00 ns plain.tex
3 1204 0.29% 2.43 ms 3390 716.00 ns plain.tex
3 1201 0.27% 2.29 ms 2260 1.01 µs plain.tex

Figure 2: Running tprof -T bible-opt

3.2 Optimizing a macro

Line 29 of bible.tex defines the \Versemacro (for-
matted on two lines here for TUGboat):

\def\Verse{\global\advance\vcount

by 1${}^{\the\vcount}$}

It is used to add the number of each verse, in small
print and raised a bit above the baseline, to the be-
ginning of every verse, like this:

We optimize this macro for speed: The \global
prefix is not needed because the macro is used only
on the global level. by is an optional keyword and
can be left out. Any literal constant like “1” is
stored in the macro body as a sequence of charac-
ters which is rescanned and converted to an integer
every time the macro is called. It is more efficient
to use one of TEX’s registers instead. Last but not
least, using math mode just to raise a number and

use a small font is a lot of processing for a simple
effect. Here is the optimized version:

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{\advance\vcount\1

\leavevmode\raise\3

\hbox{\sevenrm\the\vcount}}

It uses two registers for the necessary constants and
requires a call to \leavevmode because \raise is
not allowed in vertical mode.

The top ten lines after optimization are shown
in Fig. 2. Line 29 of bible.tex dropped from sec-
ond place with 17.63% down to third place with only
12.85%. But this is not the full story: New is line
666 of plain.tex on fourth place with a 1.95%. So
we get an overall speed-up of almost 3% from 17.63%
down to 14.80%.

If we want to know what caused the increased
use of plain TEX, looking at the call graph can shed
some light on it.

3.3 The call graph

The call graph gives us information on a higher level
of abstraction than what we gain from looking at
the top ten lines. Consider if a different layout dis-
tributed the macro in line 29 that we have consid-
ered over 10 lines. We would have had 10 entries
with about 1.8% each and none of them would have

Martin Ruckert

TUGboat, Volume 45 (2024), No. 2 207

time loop percent count/total macro
\Verse

174.51 ms 24.64% * \Verse

101.50 ms 58.16% 31011 \Verse

73.01 ms 41.84% 31011/31011 \leavevmode

\output

121.22 ms 17.11% * \output

1.15 ms 0.95% 1130 \output

120.07 ms 99.05% 1130/1130 \plainoutput

\plainoutput

120.07 ms 16.95% * \plainoutput

106.71 ms 88.87% 1130 \plainoutput

6.99 ms 5.82% 1130/1130 \makeheadline

2.76 ms 2.30% 1129/1130 \pagebody

2.75 ms 2.29% 1130/1130 \makefootline

859.36 µs 0.72% 1130/1130 \advancepageno

\leavevmode

73.01 ms 10.31% * \leavevmode

20.09 ms 27.52% 31011 \leavevmode

52.92 ms 72.48% 495/1130 \output

Figure 3: Running tprof -G bible-opt

made it to the top of the list. The time recorded for
a macro, on the other hand, does not depend on the
layout of your source files. A macro gives a sequence
of commands a common name, typically expressing
its purpose, or the task that it will accomplish. To
accomplish a task, a macro usually calls other mac-
ros, that we call child macros in the following. Such
a child macro in turn might call again its own child
macros. Along the chain of macro calls, a macro
might eventually even call itself creating a recursive
loop (as we will see below) where a macro becomes
its own ancestor.

So when we look at the runtime of TEX from
the macro perspective, we want to know how much
time was spent in a certain macro, including all its
descendants, because this is the time used to ac-
complish the task that the macro name promises to
accomplish. We call this the cumulative time for the
macro. Further we want to know how the cumula-
tive time splits up into the time used by the macro
itself and the time used by each of its child macros.
This is the information that we gain by looking at
the call graph. Fig. 3 shows the four macros that
take the greatest percentage of the total run time.

We see the \Verse macro on top; 174.51ms are
spent executing this macro which is almost a quarter
of the total run time. But during the 31011 calls to
this macro only 101.50ms or 58.16% of the 174.51ms
are spent on the \Verse macro itself while the re-
maining 73.01ms are spent on calls to \leavevmode.

Looking at the last group of entries in Fig. 3,
we see how the time used for \leavevmode is spent:
roughly one quarter is spent on \leavevmode itself
while the remaining three quarters are due to 495
calls to the \output routine. The total number of
calls to the \output routine is 1130, which equals
the number of pages of the document.

From the remaining entries, one for \output

and one for \plainoutput, we see that \output

does little more than call \plainoutput, which does
most of the work itself, delegating only a small frac-
tion of the work to properly named child macros.

3.4 Emulating pdfTEX

Our second example is texprof itself; to be pre-
cise: its documentation. texprof is an extension
of TEX, and since TEX is implemented by a “liter-
ate” program, texprof is implemented by extend-
ing it. This literate program can be processed to
obtain texprof.c from which a compiler can create
an executable. Further it can be processed to obtain
texprof.tex from which tex or pdftex can create
a nicely typeset document.

Surprisingly creating a PDF with pdftex is sig-
nificantly slower (2327ms) than creating a DVI file
with tex (273ms). Of course, PDF is a much more
complex file format than DVI and this accounts for
some of the differences, but even if the creation
of the PDF output is disabled (1602ms), there re-
mains a considerable time difference. Just running

Profiling TEX input files

208 TUGboat, Volume 45 (2024), No. 2

file line percent absolute count average file

9 156 20.29% 522.50 ms 225137 2.32 µs cwebacromac.tex
9 157 12.86% 331.08 ms 140088 2.36 µs cwebacromac.tex
9 158 9.13% 235.03 ms 140938 1.67 µs cwebacromac.tex
9 159 5.88% 151.27 ms 115319 1.31 µs cwebacromac.tex
9 172 3.68% 94.64 ms 15759 6.00 µs cwebacromac.tex
9 173 3.18% 81.95 ms 36954 2.22 µs cwebacromac.tex

system shipout 3.16% 81.27 ms 775 104.87 µs system
system linebrk 3.14% 80.93 ms 27370 2.96 µs system

9 152 2.16% 55.61 ms 67026 829.00 ns cwebacromac.tex
9 166 1.86% 47.95 ms 13042 3.68 µs cwebacromac.tex

Figure 4: Running tprof -T texprof

156 \def\addtokens#1#2{\edef\addtoks{\noexpand#1={\the#1#2}}\addtoks}

157 \def\poptoks#1#2|ENDTOKS|{\let\first=#1\toksD={#1}%

158 \ifcat\noexpand\first0\countB=`#1\else\countB=0\fi\toksA={#2}}

159 \def\maketoks{\expandafter\poptoks\the\toksA|ENDTOKS|%

160 \ifnum\countB>`9 \countB=0 \fi

161 \ifnum\countB<`0

162 \ifnum0=\countC\else\makenote\fi

163 \ifx\first.\let\next=\maketoksdone\else

164 \let\next=\maketoks

165 \addtokens\toksB{\the\toksD}

166 \ifx\first,\addtokens\toksB{\space}\fi

167 \fi

168 \else \addtokens\toksC{\the\toksD}\global\countC=1\let\next=\maketoks

169 \fi

170 \next

171 }
Figure 5: Lines 156 to 171 of cwebacromac.tex

texprof -prof texprof will not suffice to find the
source of the slowdown because texprof produces
a DVI file and runs, when considering the profiling
overhead, at approximately the same speed (443ms)
as tex. The difference in speed is obviously caused
by macros that are used only when producing PDF

output. So we have to make texprof pretend to be
pdftex. This can be achieved by processing a few
macro definitions as shown in Fig. 7 before process-
ing texprof.tex.

Using the file fakepdf.tex with these defini-
tions, running texprof -prof -jobname=texprof

\input fakepdf.tex \input texprof.tex will take
1771ms as expected. The top ten lines are shown
in Fig. 4; they reveal that almost half of the run-
time is caused by only four lines, 156–159, in file
cwebacromac.tex. These lines, shown in Fig. 5, de-
fine macros \addtoks, \poptoks, and \maketoks.
For information on the purpose of these lines, we
can consult the call graph. Fig. 6 shows the three
macros that take the largest percentage of the run-
time. Let’s consider them one by one.

3.5 Recursive macros

On top is the macro \pdfnote followed by the file
number 4 and line number 152 in square brackets.
This extra information is produced when using the
-i option of texprofile and is needed to distin-
guish two macros that happen to have the same
name, as we will see below. The macro \pdfnote

creates links to the different sections of the docu-
mentation. \pdfnote is called 8473 times and each
call makes a call to \maketoks which is responsible
for almost all time needed for \pdfnote.

Each call to \maketoks in turn delegates most
of its work to \next. If we look at the file and line
information of \maketoks and \next, we discover
that both macros are defined in the same file and
on the same line 159. In Fig. 5, we see in line 159
the definition of \maketoks and in line 164 a \let

command that makes \next an alias for \maketoks.
The call to \next in line 170 ends the definition of
\maketoks. So in fact \maketoks calls itself recur-
sively. A recursive macro like this where the recur-
sive call is at the very end of the macro is called “tail

Martin Ruckert

TUGboat, Volume 45 (2024), No. 2 209

time loop percent count/total macro

\pdfnote [7,152]
1.30 s 61.17% * \pdfnote [7,152]

26.54ms 2.04% 8473 \pdfnote [7,152]
1.21 s 93.24% 8473/9271 \maketoks [7,159]

46.59ms 3.58% 24230/28824 \pdflink [7,24]
14.67ms 1.13% 4507/4507 \[[5,334]
99.89µs 0.01% 80/80 \ETs [5,177]
54.34µs 0.00% 57/57 \ET [5,176]
404.00 ns 0.00% 1/3 \glob [4,166]

\maketoks [7,159]
1.24 s 58.35% * \maketoks [7,159]
4.67ms 0.38% 9271 \maketoks [7,159]
1.21 s 97.76% 9271/130811 \next [7,159]

14.59ms 1.17% 9271/140082 \poptoks [7,157]
8.51ms 0.69% 9271/225136 \addtokens [7,156]

\next [7,159]
1.21 s 57.05% * \next [7,159]

53.94ms 4.44% 130811 \next [7,159]
501.23ms 41.29% 142326/225136 \addtokens [7,156]
462.00ms 38.06% 130811/140082 \poptoks [7,157]
182.12ms 15.00% 28737/28737 \makenote [7,172]
12.19ms 1.00% 9271/9271 \next [7,174]
2.53ms 0.21% 1456/2254 \makenote [7,154]
0.00 ns 1.19 s 0.00% 121540/130811 \next [7,159]

Figure 6: Running tprof -G -i texprof

recursive” and is optimized by TEX to run without
growing the input stack as explained before.

The \next macro distributes the work among
\addtokens and \poptokens and some calls to the
\makenote macro. The 9271 calls of \next in the
\maketoks macro eventually end in 9271 calls of
\next as defined in line 174 where \next is rede-
fined when the final “.” is found. Because \next

calls itself, it is its own child macro and its own par-
ent macro at the same time. This has consequences
for the attribution of the cumulative times as shown
in the call graph.

The first line in the table for the \next macro
shows the total time spent in the next macro as
1.21 seconds; the following lines give a breakdown of
these 1.21 seconds; the times given in their first col-
umn should add up to 1.21 seconds and the percent-
ages given should add up to 100%. If texprofile
only determined for each child macro the start and
the end time and added up the time differences, the
values for \next as a child macro of itself would
come to 1.19 seconds, as shown in the column la-
beled “loop”. But when the \next child macro re-
turns, all of that time is already included in the time
shown in the previous lines. Therefore texprofile

maintains for each child two accumulators for the
elapsed time: For the time shown in the column
labeled “loop”, texprofile adds up the time dif-
ferences observed at the return of a child macro.
For the time shown in the column labeled “time”,
it subtracts from the time differences observed at
the return of a child macro all those time differences
that were added to the macro itself or one of the
other child macros since the start of the macro be-
cause these differences are already accounted for in
the time breakdown. In a simple loop like the one we
have here, all the time in \next as a child macro are
already taken care of in \next as the parent macro.
So the time column shows 0.00 nanoseconds. For
more complex recursive loops this is not always the
case.

4 Command line options and primitives

The command line options of texprof match those
of other TEX engines. The only addition is the -prof
option to switch profiling on right from the start. To
profile only selected parts of a file, you can use the
primitives \profileon and \profileoff.

Profiling TEX input files

210 TUGboat, Volume 45 (2024), No. 2

The command line options of texprofile fol-
low the general rule that options that select data ta-
bles use upper case letters and options that change
the presentation of the data use lower case letters.
We have seen already the -T option for the “Top
Ten” table, the -G option for the call graph table,
and the -i option to annotate (ambiguous) macro
names with file and line numbers. texprofile can
also display the cumulative times by input files with
the -F option, by input lines with the -L option, or
by TEX command with the -C option. Further the
-R option displays the raw times for each and every
command that was profiled. This table can get very
large. It is useful if profiling was switched on for
only a short time or if the data is sent to a file for
further processing.

If the table data is intended for further process-
ing, the -m option favors machine readability over
human readability. Whereas by default times are
displayed using an appropriate unit, either seconds
s, milliseconds ms, microseconds us, or nanoseconds
ns, the option -m will display all times in nanosec-
onds without specifying a unit.

The option -pn will suppress lines in the tables
that fall below n percent. The option -tn with 1 ≤
n ≤ 100 modifies the -T option to show the “Top
n” lines. The option -s modifies the -R option to
include in the table information about the changes
in the macro stack.

5 Improvements, workarounds, and
future work

Current versions of texprof and texprofile are
available from github.com/ruckertm/HINT. Since
the first presentation of the TEX profiler at the TUG

2024 conference in Prague, a few improvements have

\def\pdftexversion{140}

\def\pdfoutput{1}

\def\pdfdest#1fith{}

\def\pdfendlink{}

\def\pdfannotlink#1goto num#2%

\Blue#3\Black\pdfendlink{#3}

\def\pdfoutline goto#1 #2 #3{}

\def\pdfcatalog#1{}

Figure 7: The file fakepdf.tex implementing stubs
for pdfTEX primitives

been made. Most notably, the format files now con-
tain file and line information for all source files used
in generating the format. Therefore the attribution
of runtime to an unknown file should now be a rare
exception.

The method shown above to make texprof ex-
pand macros as pdftex would do is a workaround.
As can be seen in Fig. 7, the stubs for the pdfTEX
primitives merely match the specific uses of these
primitives in the given files. Some primitives, e.g.
\pdfannotlink, have a complicated syntax that is
easy to implement for engine primitives but quite
complicated to achieve with TEX macros. Here some
future work is necessary, either to make the imple-
mentation of macros with the desired syntax simple
or to add a command line switch to texprof to make
the necessary stubs available as engine primitives.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
martin.ruckert (at) hm dot edu

Martin Ruckert

https://github.com/ruckertm/HINT

	Who needs a profiler?
	How does the TeX profiler work?
	Mapping commands to files and lines
	Mapping execution times to commands
	The problem of measuring time
	Mapping computing times to macros

	Analyzing profiling data
	The top ten lines
	Optimizing a macro
	The call graph
	Emulating pdfTeX
	Recursive macros

	Command line options and primitives
	Improvements, workarounds, and future work

