
TUGboat, Volume 45 (2024), No. 2 227

Creation of LATEX documents using a
cloud-based pipeline

Marei Peischl, Marcel Krüger, Oliver Kopp

Abstract
Using web-based platforms for collaborative editing
of LATEX documents is common these days. These
tools focus on writing documents and not on cre-
ation of templates or packages. Using build servers
with automated pipelines is common within software
development but can easily be adapted for TEX &
friends.

This article will show how to get started us-
ing automated workflows on platforms like GitHub,
Forgejo, or GitLab for document authors as well as
TEX developers.

1 Introduction
Everything has become available in or is moving
towards the cloud. LATEX is already there for about
10 years and today it’s quite common to use a web
editor for collaboration and local compilation became
the “nerdy” way. But there also is a third variant
to compile documents which can be used also to
improve package development and in general the
stability of LATEX: adapting DevOps methods, like
continuous integration and delivery (CI/CD) using
automated workflows.

As a very rough working definition, let us con-
sider a CI/CD workflow as a number of steps to
compile a TEX document to PDF on some kind of
online service that has access to the source files.

2 Why continuous integration?
Having an established workflow usually makes people
avoid thinking about changing anything. So there
have to be reasons why it might be worth reading
this article, let alone integrating the mechanisms into
projects.

Early adopters of continuous integration tech-
niques in the TEX ecosystems tried to follow the
current state of open source development and open
doors for contributors in the development process.
For example, the LATEX Project is currently wel-
coming a lot of user interaction via their GitHub
projects [16] and also takes contributions from which
the whole (LA)TEX community will profit.

But the advantages of these methods extend
beyond that. We will focus on some cherry-picked
aspects as the remainder could probably be an article
by itself.

2.1 Works for me?!
Sometimes, I can successfully compile my document
on my machine, but my supervisor can’t on theirs.
There are many reasons why a TEX compilation may
succeed on one system and fail on another. Running
some external continuous integration pipeline will
not only illustrate the necessary steps to go from
source to the full PDF, it will also help understand
if problems are machine-specific or general.

2.2 Compatibility and regression testing
With CI/CD, it is possible to run workflows on multi-
ple TEX distributions or versions. This can be used to
test if there are issues with some package update be-
fore updating a machine to, e. g., the latest MiKTEX
updates where downgrading may be complicated.1

Additionally, one can also use it to check back-
wards compatibility, e. g., if one collaborator is using
a Debian stable version which has only some out-
dated version. As mentioned, the LATEX Project
Team is already using these techniques and even pro-
vides functionality for regression testing within their
build system, l3build [17, 19].

Using CI/CD as a package developer enables a
general interface to be used for regression testing.
This allows for avoiding some of the bugs which
otherwise would be published and found by a user.
Furthermore, it can be used to avoid inconsistent
structures, e. g., one of the authors recently found
that numerous packages and files within TEX Live
do not have a proper version number set within the
code.

3 Structure of this tutorial
The idea is to introduce readers to the basics of
setting up automated workflows on GitHub, Forgejo,
and GitLab. This tutorial mainly addresses two
groups of users:

1. authors focusing on typesetting actual content,
including those collaborating on a document,
and

2. package or template developers who provide
their work to be used by the first group.
The second group obviously can also use work-

flows of the first, e. g., for typesetting documentation.
So developers usually use an extended version of the
setup provided for authors.

As all platforms covered by this article are re-
lated to the git version control system, we expect
the project to be some kind of git repository. In case
the reader does not yet use git, there is a little bit of
information attached to this tutorial. Using that, it

1 That’s another issue to address . . . but a different story.

doi.org/10.47397/tb/45-2/tb140peischl-pipeline

Creation of LATEX documents using a cloud-based pipeline

https://doi.org/10.47397/tb/45-2/tb140peischl-pipeline

228 TUGboat, Volume 45 (2024), No. 2

would be possible to use git without even noticing as
it is attached to the autosave function of an editor.

Because the LATEX project is using GitHub, we
are going to start with a detailed explanation of
GitHub Actions and create a matching setup on the
other platforms afterwards. All workflows are avail-
able for customization in the template repositories
listed in Table 1 near the end of the article. Within
this article the listings are marked by icons to not
confuse readers as the platform is switched multiple
times to show the differences. Github is used to indicate
the listing belongs to GitHub Actions, whereas Gitlab
marks the GitLab CI variant.

4 Compiling a document in a CI pipeline
4.1 First steps with GitHub Actions
To get started, we need a git repository somehow
hosted on GitHub. It does not have to be public.

Thinking of the tasks needed to compile a LATEX
document in any “blank slate” environment, we have
to do the following:

1. Prepare the environment and install a LATEX
distribution.

2. Run LATEX on the document.
GitHub provides pre-configured actions which are
able to combine multiple steps, e. g., the “latex-
action” action [20]; this starts another container
inside the action container to run latexmk. However,
these and other actions typically limit the configura-
tion options to simplify the interface. We are going
to elaborate on two variants: Using a container im-
age with a full TEX Live (this section) and a minimal
installation (see Section 6).

The configuration for an action is done by cre-
ating a yaml file within the repositories’ subdirec-
tory .github/workflows/hello-world.yml. The
filename may be chosen at will. The following code
snippet shows a minimal configuration:

1 name: Hello World Action
2 on: [push]
3 jobs:
4 action-test:
5 runs-on: ubuntu-latest
6 steps:
7 - run: echo "Hello world " Github

name: of the workflow. This is important if a
project contains multiple workflows.

on: This directive indicates conditions under which
the workflow will be started. In this configura-
tion, the jobs will be started on any push, i. e.,
whenever the repository on the server receives
an update.

Besides attaching the trigger to some user
action it is possible to use time-based settings.
For all options it is worth having a look at the
configuration manual [5]. The default settings
differ for all platforms, and may be specific for
a single instance.

jobs: contains a list of jobs to be run one after an-
other. For example, it is quite common to have
one job for compiling a document and another
one to make the PDF available. In this example,
there is only one job called “action-test”.

runs-on: This value corresponds to a runner setup.
Runners are the systems that actually execute
the jobs defined in a workflow. It does not have
to be the same server as the one where the
repository is hosted. In this example, “ubuntu-
latest” indicates running on one of the provided
runners by GitHub which is based on Ubuntu.
It includes NodeJS and some tooling to simplify
the work using predefined actions. A full list
of the readily available runners and detailed
description of the images can be found at [4].

steps: This is what the workflow should actually
do. As one can see it is possible to directly
enter (ba)sh code in there, and use UTF-8. This
example merely echoes a string to stdout and
therefore should run without any issues.
On GitHub, actions are automatically enabled

for new repositories. When combined with an avail-
able runner as we do here, it is enough to add a yaml
configuration file to the repository to see the effect.
After pushing that configuration, the pipeline will
start running on all subsequent pushes.

The current status of an action, i.e., what step it
is currently running or if it has already finished, can
always be checked by having a look at 〈repository
url〉/actions; e. g., for the first of our demo reposito-
ries, this can be found at github.com/islandoftex/
tug2024-workflow-github/actions. It looks like
this:

The pipeline ran successfully but did not do
anything except create some shell output. Hence,
we can move on to the next step: building a LATEX
document.

4.1.1 GitHub Actions using LATEX
Actions are fundamentally based on isolated contain-
ers of software, which are run using Docker. Luckily,

Marei Peischl, Marcel Krüger, Oliver Kopp

https://github.com/islandoftex/tug2024-workflow-github/actions
https://github.com/islandoftex/tug2024-workflow-github/actions

TUGboat, Volume 45 (2024), No. 2 229

some of us live on the Island of TEX (IoT) and main-
tain images we can make use of here.2 The setup of
the images was described within [12].

The first part of the workflow will stay the same
for the moment. Changes apply only after runs-on:

5 runs-on: ubuntu-latest
6 container:
7 image: texlive/texlive:latest
8 steps:
9 - name: Checkout repository

10 uses: actions/checkout@v4
11 - name: Run latexmk
12 run: "latexmk --lualatex" Github

container: Choose the IoT “texlive-latest” image
which provides a full TEX Live and some tools
[11].

steps: The first step looks different from the one we
had before. It’s given a name, “Checkout repos-
itory”, which is helpful to simplify debugging as
GitHub will tell us which step failed.

uses: is a reference to another action and GitHub’s
way to reference pre-configured pipelines encap-
sulating more complex tasks. In the example,
checkout@v4 refers to a separate repository [6].
This action takes care of the authentication and
some internals, so we do not have to deal with
those details.

A crucial point is that only after this action
are the following steps begun to be executed,
within the root directory of our repository.

second step: The second step is also given a name
(“Run latexmk”), and then uses the same run:
directive as our first example, but this time we
run latexmk [2] with the option --lualatex (to
use the LuaLATEX engine, as you might guess).
By default, latexmk will operate on all *.tex
files within the root directory. So we do not
even have to depend on the file name, as long
as we store any files to be included within sub-
directories.

4.1.2 Where is the PDF?
If the pipeline succeeds, there will be a green check-
mark, but we will fail to find the PDF somewhere.
This is because GitHub cannot know which (output)
files the user actually wants to see or download. Such
files are called “artifacts”, so now we will add another
step to the action to keep the PDF and upload it to
GitHub as a so-called “artifact”:

2 Special thanks to the other islanders at that point!

13 - name: Archive documentation
14 uses: actions/upload-artifact@v4
15 with:
16 name: Documentation
17 path: "./*.pdf" Github

After another (successful) run of the pipeline,
it is possible to access the PDF wrapped within a
*.zip at the run’s status page. Clicking on the run
on the actions overview page leads there:

Sadly, GitHub currently does not provide an
option for individual files without a zip. Also it is
not possible to have a static link pointing to the
latest artifacts. (Other platforms such as GitLab
do provide that feature by default.) To resolve this
and make the PDF easier to access on GitHub, it is
required to use additional actions. The most common
way to do it is publishing the PDF to an orphan
branch. Usually this mechanism is used to create
web pages and is called “github-pages”.

To be able to write in the repository, it is neces-
sary to adjust the permissions. GitHub provides an
interface within the yaml configuration:

8 permissions:
9 contents: write Github

This has to be added to the job which should up-
load the PDF. Additionally, most actions which can
be used for uploading artifacts to separate branches
request a directory instead of a file. Consequently,
all files have to be moved to a separate directory to
be used with these actions.

15 - name: move pdf
16 run: mkdir -p build && mv *.pdf build/.
17 - uses: crazy-max/ghaction-github-pages@v4
18 with:
19 target_branch: pdf-output
20 build_dir: build
21 env:
22 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN

}}↪→ Github

The GitHub token on the last line is required
for authentication. Otherwise, the run might be
successful, but no PDF will appear on the branch.

Creation of LATEX documents using a cloud-based pipeline

230 TUGboat, Volume 45 (2024), No. 2

4.2 Differences with Forgejo Actions
Forgejo [3] is another code platform which has the
aim to be more open than GitHub. It can be self-
hosted and provides mechanisms similar to GitHub
Actions. They will never act in exactly the same way
as GitHub’s mechanisms, but are almost compatible.

By default, Forgejo first searches .forgejo/
workflows/ for configuration files. If none are found
it will fall back to look inside the .github/ directory.
The only issue you would probably face from simply
reusing a GitHub setup is that there are no hosted
runners on most instances. Even if there are run-
ners available, they will probably be different from
GitHub’s.

However, if you can configure a runner yourself
and use the same labels as the GitHub runner uses
(described in [1]), it is possible to use the same work-
flow configurations on both. The provided demo
repositories on codeberg.org, which is a Forgejo
instance, also explain how the runners used there are
configured.

4.3 Compiling a document using GitLab CI

GitLab CI is not too different from the previous Ac-
tions setup. It is even a bit easier to set up continuous
integration here as some steps are run automatically.
For example, it is not necessary to check out the
repository, because this is done by default.

The configuration file has to be placed within
the repository’s root directory and given the name
.gitlab-ci.yml. Here’s our same example:

1 runlatex:
2 image: registry.gitlab.com/islandoftex/

images/texlive:latest↪→

3 script:
4 - 'latexmk --lualatex'
5 artifacts:
6 paths:
7 - "./*.pdf" Gitlab

Here the steps are simply a list of commands
run after each other. Our list just contains one call
to latexmk.

In contrast to GitHub, GitLab provides an API
which allows creating static links to the artifacts.
Thus, the README.md of the demo repositories there
include a link of the following structure:
〈repository url〉/-/jobs/artifacts/〈branch〉
/browse?job=〈name of job〉

This will list all artifacts attached to the job.
For instance, using the example configuration on one
of the demo projects results in this sample url:

gitlab.com/islandoftex/texmf/tug2024-
workflow-document-gitlab/-/jobs/artifacts/
main/browse?job=check:[latest,lualatex]

5 Testing with multiple versions
or compilers

We promised that one can extend these setups to
test using multiple TEX versions or engines. Different
engines are straightforward to include by running
additional steps with different commands. Alter-
natively, it is possible to use different engines in
separate actions or even workflow files. There is no
general way to structure those, as the choice always
depends on whether to always run everything or save
resources via conditional or sequential execution.

To use different versions of TEX Live, the Island
of TEX provides historic images of all but the latest
TEX Live release (which is not yet historic).

1 test-on-IoT-texlive:
2 runs-on: ubuntu-22.04
3 strategy:
4 matrix:
5 image: ["TL2022-historic",

"TL2023-historic", "latest"]↪→

6 name: "Test on ${{ matrix.image }}"
7 container:
8 image: texlive/texlive:${{ matrix.image

}}↪→

9 steps: Github

strategy: this is used to create a loop over elements.
In this case, a variable called matrix containing
a list of images is used and the content can then
be accessed within other parts of the file using
${{ matrix.image }}. Thus, the first run will
use TL 2022, continue on 2023 and finally run
on the latest release. A full list of the provided
images can be found at [9].
Similarly, GitLab also has a matrix feature. The

following example illustrates how to run multiple
engines, each on multiple TEX Live releases:

1 check:
2 image: registry.gitlab.com/islandoftex/

images/texlive:$TEXLIVE_VERSION↪→

[. . . contains script + artifacts . . .]
6 parallel:
7 matrix:
8 - TEXLIVE_VERSION: ['TL2022-historic',

'TL2023-historic', 'latest']↪→

9 TEX_ENGINE: ['pdflatex', 'xelatex',
'lualatex']↪→ Gitlab

Here the variable is more like a shell variable
but can be used the same way.

Marei Peischl, Marcel Krüger, Oliver Kopp

https://codeberg.org
https:///browse?job=
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab/-/jobs/artifacts/main/browse?job=check: [latest, lualatex]
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab/-/jobs/artifacts/main/browse?job=check: [latest, lualatex]
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab/-/jobs/artifacts/main/browse?job=check: [latest, lualatex]

TUGboat, Volume 45 (2024), No. 2 231

6 Minimize the build container
The previous examples used a full TEX Live instal-
lation to have the most convenient setup.3 The IoT
images even ship all dependencies of additional tools
such as arara or minted, which enables that all tools
in TEX Live will work out of the box.

Still, sometimes you will not need all the bells
and whistles and there are advantages to smaller
build containers. For instance, downloading more
than one gigabyte can take quite some time. Or you
may only have limited disk space available on the
runner server.

Side remark: If you are looking to reduce not
the images themselves but the compile time because
you are building many documents, have a look at
last year’s IoT article [11].

Back to minimizing the build environment: the
most annoying part here might be discovering which
packages are actually needed to compile . . .

So the Island of TEX proudly presents: DEPP –
The DEPendency Printer for TEX Live [7].4

As this article focuses on pipelines we won’t go
into detail on the tool itself but instead show how
DEPP produces a file listing all TEX Live packages
necessary for the build. For the example projects
these look like:

Proudly generated by the Island of TeX's...
blindtext
cm
...

6.1 GitHub
On GitHub there are multiple actions available to
install TEX Live as a part of the workflow [13, 18].
Using those, it is possible to minimize the container,
which will also reduce the build time.

9 - name: Install TeX Live
10 uses: zauguin/install-texlive@v3
11 with:
12 package_file: .github/tl_packages Github

This snippet can be used within steps: and
makes the container: directive obsolete, so it should
be removed. The package_file: is the path to the
DEPP output or a manually created list of packages.

3 Not exactly full: the images we used include neither the
documentation nor the source trees of TEX Live.

4 If you are German, do not be surprised if this tool is
more clever than its name suggests.

6.2 GitLab
On GitLab the simplified syntax makes running a
minimized TEX Live a bit more complex. The DEPP
repository [7] luckily provides a shell script to install
a TEX Live based on the package file. This can be
used in the pipelines to modify the container.

5 image: registry.gitlab.com/islandoftex...
6 before_script:
7 - minimal_tl_setup.sh "tl_packages" Gitlab

Another option would be to provide a container
image which already contains the necessary packages.
If a self-hosted runner is used, this is usually the best
option as caching can be configured to control when
the container is rebuilt or updated.

7 Pipelines for package developers
As promised, the advantages of using automated
pipelines are even more significant when used within
the development process of packages or templates.
In this case, we expect the repository to contain a
package and some kind of l3build configuration.5

7.1 GitHub
The latex step (calling latexmk in the examples) is
replaced by

9 - name: Run l3build
10 run: l3build check --show-log-on-error -q

-H↪→ Github

This will automatically run all test files accord-
ing to the l3build setup. As this is within the
context of running a package’s test suite, the arti-
facts are totally different. Now, we are not interested
in a PDF but rather the test output. One of the
present authors has created another action to take
care of this [14]:

11 - name: Archive failed test output
12 if: ${{ always() }}
13 uses: zauguin/l3build-failure-artifacts@v1
14 with:
15 name: testfiles
16 retention-days: 3 Github

Apart from uploading the artifacts, this config-
uration illustrates another important point: In con-
trast to the PDF of a document, where we are only
interested in the successful output, for test suites we
are less interested in success than the failure output.
To let GitHub know that we are in fact interested in

5 The setup itself also works for other tools, but that is
out of scope for this article.

Creation of LATEX documents using a cloud-based pipeline

232 TUGboat, Volume 45 (2024), No. 2

these artifacts, if: ${{ always() }} has been added.
This will also force the step to run even if the previous
step failed.

7.2 GitLab
Again, GitLab directly supports the artifact upload
without loading external extensions.

4 - l3build check --show-log-on-error -q -H
5 artifacts:
6 when: on_failure
7 paths:
8 - ./build/test/*.diff Gitlab

This simplifies the standard setup but is less
flexible. For example if you want to use different
artifacts for success and failure, it is required to do
that within two separate jobs within GitLab.

8 Running locally
During the tutorial at the TUG’24 conference there
was a short demonstration of running the pipelines
locally. This might be helpful for debugging as one
can control the steps manually or to ensure the local
setup matches the one on the server.

These setups usually use Docker. For the plat-
forms which use actions there is a tool called “act”
to simplify that process using the Docker API.

GitLab extends this with the option to simply
have a GitLab runner installed locally. This provides
the option of running

gitlab-runner exec

within a local repository containing some Gitlab CI
configuration.

9 This is Continuous Development
Of course every configuration shown here is only
an example and can be extended depending on the
project’s requirements. It is possible to run arbitrary
commands, which might be necessary especially for
complex setups.

For example, when creating magazines, it is
possible to continuously create a print and an on-
line version, excerpts of single articles as well as
HTML/EPUB output, while the editors only have
to wait for the compilation of the article they are
actively working on.

The same goes for study material, where we can
have rendered versions including solutions or not, or
documents which share links between each other and
therefore require many runs.

Integrating these structures into more advanced
git usage like a useful branching concept can also help

improve collaboration or simplify the contribution
process within open source projects. It will reduce
frustration for maintainers as some issues do not
have to be checked manually.

10 Conclusion and call for action & feedback
We’ve explained the use of GitHub, Forgejo, and
GitLab for compiling LATEX documents and pack-
ages. We showed how different releases of TEX Live
and even different compilers can be used to simplify
testing across platforms. Also we took care of be-
ing able to access the PDF or the testing results in
some way. To increase the stability of all parts of
TEX development we hope this will help with more
testing of packages and even less waste of time while
compiling complex setups.

If you maintain any packages, it would be great
if you could try setting up a test to check it against
the latest release of TEX Live or even current TL
development. This can also be a preparation for
next years TEX Live pretest, as the Island of TEX
is creating a Docker image for the pretests. If you
are planning or attempting to do that and face any
issues, we will try to help.

We would love to maintain this as a tutorial to
simplify the use of automation for users of TEX &
friends. So if we’ve left open questions, we would
love to hear about it and will try to improve this
tutorial as well as the examples. Table 1 summarizes
the related repositories.

Contributions to this project are very welcome!

References
[1] Codeberg doc contributors.

docs.codeberg.org/ci/actions/
[2] J. Collins. latexmk — fully automated LATEX

document generation. ctan.org/pkg/latexmk
[3] Forgejo. Forgejo repository. codeberg.org/

forgejo/forgejo
[4] GitHub. Choosing GitHub-hosted runners.

docs.github.com/en/actions/using-
workflows/workflow-syntax-for-github-
actions#choosing-github-hosted-runners

[5] GitHub. Workflow syntax for github actions.
docs.github.com/en/actions/using-
workflows/workflow-syntax-for-github-
actions

[6] GitHub and contributors. Checkout action.
github.com/actions/checkout/

[7] Island of TEX. DEPP — dependency printer
for TEX Live.
gitlab.com/islandoftex/texmf/depp

Marei Peischl, Marcel Krüger, Oliver Kopp

https://docs.codeberg.org/ci/actions/
https://ctan.org/pkg/latexmk
https://codeberg.org/forgejo/forgejo
https://codeberg.org/forgejo/forgejo
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://github.com/actions/checkout/
https://gitlab.com/islandoftex/texmf/depp

TUGboat, Volume 45 (2024), No. 2 233

Table 1: Template repositories published with this article. The naming scheme is
structured as 〈ci-type〉_〈task〉, adding “_minimal” if the example is not using a
pre-packaged Docker image but includes methods to install packages based on a
dependency file as described in section 6.

All variants listed here have been prepared for at least the three platforms mentioned
here (GitHub, GitLab, ForgeJo).

As the urls are quite long, we have published the list including links within the
paper’s repository tug.org/l/peischl-cicd2024.

Name Platforms Document l3build Testing IoT image

latex Github Gitlab Check Check

latex_minimal Github Gitlab Check

latex_testing Github Gitlab Check Check Check

latex_testing_minimal Github Gitlab Check Check

l3build Github Gitlab Check Check Check

l3build_minimal Github Gitlab Check Check

[8] Island of TEX. GitHub workflow template for
LATEX packages. github.com/islandoftex/
tug2024-workflow-github

[9] Island of TEX. GitLab repository: TEX Live
Docker image.
gitlab.com/islandoftex/images/texlive

[10] Island of TEX. GitLab workflow template for
LATEX documents. gitlab.com/islandoftex/
texmf/tug2024-workflow-document-gitlab

[11] Island of TEX. Living in containers — on
TEX Live (and ConTEXt) in a Docker
setting. TUGboat 44(2):249–252, 2023.
doi.org/10.47397/tb/44-2/tb137island-
docker

[12] Island of TEX. Providing Docker images
for TEX Live and ConTEXt. TUGboat
40(3):231, 2019. tug.org/TUGboat/tb40-
3/tb126island-docker.pdf

[13] M. Krüger. zauguin/install-texlive repository.
github.com/zauguin/install-texlive

[14] M. Krüger. zauguin/l3build-failure-artifacts
repository. github.com/zauguin/l3build-
failure-artifacts

[15] M. Peischl, M. Krüger, O. Kopp. Source to
this paper, and links to additional resources.
tug.org/l/peischl-cicd2024

[16] LATEX Project. GitHub organization.
github.com/latex3/

[17] LATEX Project. l3build — a testing and building
system for (LA)TEX. ctan.org/pkg/l3build

[18] teatimeguest/setup-texlive-action repository.
github.com/teatimeguest/setup-texlive-
action

[19] J. Wright. l3build: The beginner’s
guide. TUGboat 43(1):40–43, 2022.
doi.org/10.47397/tb/43-1/tb133wright-
l3build

[20] C. Xu. latex-action. GitHub action to compile
LATEX documents.
github.com/xu-cheng/latex-action/

� Marei Peischl
Gneisenaustr. 18
20253 Hamburg
Germany
marei (at) peitex dot de
https://peitex.de

� Marcel Krüger
Hamburg, Germany

� Oliver Kopp
Sindelfingen, Germany
ORCID 0000-0001-6962-4290

Creation of LATEX documents using a cloud-based pipeline

https://tug.org/l/peischl-cicd2024
https://github.com/islandoftex/tug2024-workflow-github
https://github.com/islandoftex/tug2024-workflow-github
https://gitlab.com/islandoftex/images/texlive
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab
https://doi.org/10.47397/tb/44-2/tb137island-docker
https://doi.org/10.47397/tb/44-2/tb137island-docker
https://tug.org/TUGboat/tb40-3/tb126island-docker.pdf
https://tug.org/TUGboat/tb40-3/tb126island-docker.pdf
https://github.com/zauguin/install-texlive
https://github.com/zauguin/l3build-failure-artifacts
https://github.com/zauguin/l3build-failure-artifacts
https://tug.org/l/peischl-cicd2024
https://github.com/latex3/
https://ctan.org/pkg/l3build
https://github.com/teatimeguest/setup-texlive-action
https://github.com/teatimeguest/setup-texlive-action
https://doi.org/10.47397/tb/43-1/tb133wright-l3build
https://doi.org/10.47397/tb/43-1/tb133wright-l3build
https://github.com/xu-cheng/latex-action/

	Introduction
	Why continuous integration?
	Works for me?!
	Compatibility and regression testing

	Structure of this tutorial
	Compiling a document in a CI pipeline
	First steps with GitHub Actions
	GitHub Actions using LaTeX
	Where is the PDF?

	Differences with Forgejo Actions
	Compiling a document using GitLab CI

	Testing with multiple versions or compilers
	Minimize the build container
	GitHub
	GitLab

	Pipelines for package developers
	GitHub
	GitLab

	Running locally
	This is Continuous Development
	Conclusion and call for action & feedback

