
246 TUGboat, Volume 45 (2024), No. 2

Web page to PDF conversion with
Rmodepdf: Leveraging LuaLATEX for
e-book reader-friendly documents

Michal Hoftich

Abstract
This article presents the use of responsive design
methods and advanced features of LuaLATEX for au-
tomatic document typesetting intended for various
target outputs, both printed and electronic, such as
mobile phones, tablets, or e-readers.

Specifically, it focuses on the use of LuaLATEX for
automated typesetting with the help of the Respon-
sive package [7] for setting font size and line spacing
according to page size, the Luavlna package [5] to
prevent single-character prepositions at the ends of
lines, the Lua-widow-control package [2] to minimize
widows and orphans at the ends and beginnings of
pages, and the Linebreaker package [4] to prevent
line overflow.

1 Introduction
Some time ago, I acquired an e-book reader, but I still
read most texts on my PC screen because they come
from web sources. It occurred to me that I could save
longer articles for later reading on my e-reader. There
are, of course, several applications for this purpose,
but I decided to create my own, tailored exactly to
my needs and preferences. Another motivation is the
opportunity to learn something new and create pack-
ages that could be useful for other TEX users as well.

My goal is to make the solution as automated
as possible, so I don’t have to deal with overfull lines
or other errors that would require manual interven-
tion. Thanks to the capabilities of LuaLATEX, such a
solution is possible today, as we will demonstrate in
the following text.

Because LuaTEX provides the Lua programming
language in TEX distributions, I used it to create
my project Rmodepdf [8]. It uses the LuaXML pack-
age [6] to transform HTML into TEX and a few ex-
ternal commands — Curl for downloading of the web
pages, and Rdrview [3], which removes navigation el-
ements, advertisements, and other distractions from
the page. Rdrview is based on the JavaScript library
used by the Firefox browser for its Reader Mode.
However, it has been translated from JavaScript to
C, making it significantly faster and eliminating the
need for any additional dependencies.

During the development of the program, I also
created or significantly expanded three LATEX pack-
ages that may be useful on their own. For the Lua-
XML package, I created an HTML parser that allows

web pages to be processed directly from the Lua
language. The Responsive package enables the cre-
ation of templates that adjust font size, page margins,
and other parameters according to the current page
size. Finally, the Linebreaker package prevents line
overflow, which is crucial in automated document
typesetting where we neither want nor can manually
correct such errors.

In addition to saving articles for reading on an e-
reader, there are other ways to utilize the Rmodepdf
program. One such use is archiving web content
on paper. By removing all navigation elements, we
obtain a document that can be easily printed, bound,
and archived as a book.

2 Basic usage of Rmodepdf
The rmodepdf command accepts one or more urls as
arguments. It is also possible to use the addresses of
local HTML files.
$ rmodepdf 〈url1〉 〈url2〉

The output file is named based on the title of
the first document. If the title cannot be found, a
name based on the current date and time is chosen.
The generated name is displayed in the terminal
output. You can specify a custom file name using
the -o option.

If you prefer not to compile the document di-
rectly but only to display the text generated by the
LATEX document, you can use the -p option.
$ rmodepdf -p 〈url〉 > foo.tex

You can choose a different page size using the
-P option. By default, the page size and margins
are set for e-book readers, but you can also select
other sizes, such as A4 paper size. The page style is
currently set to empty (blank), but you can change
it using the -s option.
$ rmodepdf -P a4paper -s plain 〈url〉

For speed, images are stored in a local directory.
By default, this is the img/ subdirectory within the
current directory, but you can specify a different
directory using the -i option.
save the document as foo.pdf and
save images in the temp dir
$ rmodepdf -o foo.pdf -i /tmp/img 〈url〉

You can disable image downloading entirely with
the -n option. Rmodepdf also detects and displays
LATEX mathematical commands embedded in web
pages that use MathJax or KaTeX for rendering.
This default behavior can be disabled using the -N
option. Additionally, the removal of page elements
using Rdrview can be disabled with the -R option.

doi.org/10.47397/tb/45-2/tb140hoftich-rmodepdf

Michal Hoftich

https://doi.org/10.47397/tb/45-2/tb140hoftich-rmodepdf

TUGboat, Volume 45 (2024), No. 2 247

3 Configuration
3.1 Settings
It often happens that during conversion you en-
counter errors or wish to change how certain elements
on the page are converted into LATEX. Therefore,
Rmodepdf provides the option to use a Lua con-
figuration script. This script allows you to modify
the code of translated pages, define conversion rules,
set variables, or change templates as needed. The
configuration file is loaded using the option -c.
$ rmodepdf -c script.lua 〈url〉

The script might look like this, for example:
add_to_config {

document = {
preamble_extras = [[
\setmainfont{Linux Libertine O}
]],

},
img_convert = {

-- modify the command used for
-- conversion of SVG images to PDF
svg = "cairosvg -o ${dest} -",

},
}

Above, the command add_to_config is used,
which safely copies new configuration values into the
original configuration. If you only want to set a
single configuration value, you can also directly write
to the config table:
config.document.geometry = "a6paper"

The config table contains several subtables
that you can configure. The document subtable in-
cludes properties of the output document, such as
preamble_extras for adding additional code to the
document preamble, or geometry, which allows you
to directly specify the dimensions of the page or
margins of the output document.

The subtable img_convert defines commands
for converting image formats used on the converted
web pages that are not supported in LuaLATEX to
one of the supported formats. For example, in the
sample, we define a command to convert from SVG
format to PDF. This command must support reading
from standard input, and you can specify the output
file name using the template ${dest}.

The subtable html_latex contains settings for
translating LATEX code embedded in web pages. The
ignored item contains a list of HTML elements where
embedded LATEX code should not be searched for.
Typically, this includes elements like <pre>, which
contain source code that should not be processed in
our document.

The subtable pages contains converted files and
their metadata. Its content is populated after the
configuration script runs, so it is not available before-
hand but is utilized in templates. It includes items
such as language for the document language, title
for the document title, and content which contains
the LATEX code of the document for transformation.

3.2 Callbacks
The configuration script is executed before the ac-
tual conversion, so it cannot directly influence the
conversion process. However, we can define several
callback functions that allow us to affect the conver-
sion. These functions are as follows:
preprocess_content modify string with the

raw HTML before readability and DOM
parsing.

preprocess_dom modify the DOM object before
fetching of images or handling of MathJax.

postprocess_dom modify the DOM after all
processing by Rmodepdf.

postprocess late post-processing of the config
table.
The most useful are the first three. The

preprocess_content function takes a string param-
eter with the HTML code of the page as it was
downloaded from the original website, before any
modifications by Rdrview. Here, you can use Lua
string functions to fix certain elements that may
cause issues during processing with Rdrview. This
method is quite limited and, especially when using
regular expressions, it can cause more harm than
good. Therefore, use it with caution.

The difference between the next two callbacks is
that with the first one, you can still influence image
downloading or the processing of LATEX commands.
For modifications to the final version of the document,
it is best to use postprocess_dom.

Both functions receive a LuaXML DOM object as
a parameter. This allows you to safely traverse and
transform the entire document. LuaXML includes
many functions for working with the DOM; here, we
will introduce just a few basics. For example, the
following example prints the resulting DOM object
as HTML code:
function postprocess_dom(dom)

print(dom:serialize())
return dom

end
The dom:serialize() method obtains the

HTML code from the DOM object, which we then
print using the print command. It is important
to return the DOM at the end of the function; this

Web page to PDF conversion with Rmodepdf: Leveraging LuaLATEX for e-book reader-friendly documents

248 TUGboat, Volume 45 (2024), No. 2

ensures that any modifications made to the DOM are
preserved and applied to the final document.

Here’s a slightly more complex example. Let’s
assume we want to remove a menu that might look
like this, since Rdrview did not do the removal:
<div class="menu">
... menu contents ...
</div>

We can use the postprocess_dom function to
remove this menu:
function postprocess_dom(dom)

-- Find the menu using a CSS selector
local menu = dom:query_selector(".menu")

-- Iterate over the menu elements
-- and remove each one
for _, el in ipairs(menu) do

el:remove_node()
end

-- Return the modified DOM
return dom

end
In this example:

1. We use the query_selector method to find
all elements with the class menu.

2. Iterate over each element retrieved in the
previous step using a for loop.

3. Remove each menu element using the
remove_node method.

4. Return the modified DOM at the end of the
function.
This ensures that any remaining menus are re-

moved from the final document.

3.3 Transformation from HTML to LATEX
We perform the conversion of HTML elements to
LATEX using the luaxml-transform library. This
library allows us to declare simple rules for trans-
forming XML or HTML elements into text. Elements
can be selected using CSS selectors, which is im-
portant because elements with the same name but
different classes may need to be converted differently.
For example, or <div> elements are often
used as universal tags, but their intended display can
vary greatly, depending on their class.

In the configuration file, the htmlprocess vari-
able contains an object with rules for converting
HTML elements. It provides two main functions:
htmlprocess.reset_actions, which clears all rules
for a given selector, and htmlprocess.add_action,
which adds new rules. The following code displays
some basic usage of the transformation library:

htmlprocess.reset_actions("br")
htmlprocess.reset_actions("figure")
htmlprocess.add_action("br", "\n\n")
htmlprocess.add_action("img",

[[\includegraphics[max width=\textwidth]
{@{src}}]])

htmlprocess.add_action("figure",
"\n\n\\medskip\n\n\\noindent %s")

In this example, we reset the default rules for the

 and <figure> elements and introduce custom
rules with specific syntax. The rules adhere to the
following conventions:

• The %s string inserts the transformed content of
the element. It is crucial to include %s in most
rules to ensure the content is correctly processed;
omitting it would hide the entire element’s con-
tent. However, since the
 element does not
contain any text, it is unnecessary to use %s
with it.

• In the rule for the element, @{src} inserts
the value of the src attribute, which contains the
image’s address. We use Lua’s double-bracket
syntax for string constants to avoid C-like inter-
pretation of the backslashes.
The following example demonstrates the use of

CSS selectors for classes and attribute value compar-
isons to handle different types of links differently:
htmlprocess.reset_actions("a")
htmlprocess.add_action(

"a.easy-footnote-to-top", "")
htmlprocess.add_action(

'a[href|="#easy-footnote"]', "%s")
Links with the class a.easy-footnote-to-top

are hidden because the replacement text string is
empty. However, for links whose href attribute
starts with '#easy-footnote', only their text con-
tent is displayed.

This was just a brief introduction to the transfor-
mation possibilities using luaxml-transform. You
can find many more examples in the LuaXML man-
ual.

4 Template
After converting from HTML to LATEX, we need to
combine the resulting code into a single document
that can be compiled. Therefore, Rmodepdf includes
a simple templating system that allows us to merge
individual pages and their metadata together.

A basic template might look like this:
\documentclass{article}
\usepackage{linebreaker,responsive}
\usepackage[_{document.languages}%s/{,}]
{babel}

Michal Hoftich

TUGboat, Volume 45 (2024), No. 2 249

\usepackage[@{document.geometry}]{geometry}
\pagestyle{@{document.pagestyle}}
@{document.preamble_extras}
\begin{document}
_{pages}
\selectlanguage{@{language}}
?{title}{Title: @{title}}\par}{}
?{author}{Author: @{author}\par}{}
\href{@{url}}{@{url}}\par
@{content}
/{\clearpage}
\end{document}

Templates contain three syntactic constructs.
The basic one is printing a variable using
@{variablename}. Variables are contained in
the config table, and using a dot, we can
also print properties of subtables. For example,
@{document.preamble_extras} prints the config.
document.preamble_extras variable.

The next construct is loops. They have the
syntax _{variablename}loop code/{separator}.
The variables used have to be arrays. For exam-
ple, document.languages contains the languages of
all translated documents in a format suitable for
the Babel package, or pages, which contains all con-
verted documents. In the loop code, variables of the
currently processed array are available. If the array
contains only strings, we can use the placeholder %s.
This is used for document.languages. If the cur-
rent object is a table, we can access its fields directly
using @{variablename}.

The last construct is conditions. Their syntax is
?{variablename}{true}{false}. In the example,
we use them to insert the title and author, because
not all pages have these items.

Custom templates can be read using the -t
option.

$ rmodepdf -t mytemplate.tex <url>

5 Automatic typesetting
This brings us to the next part. Since Rmodepdf
compiles web pages directly into PDF, we cannot
easily intervene in the conversion process. Therefore,
the conversion needs to be as automated and error-
free as possible. The output PDF can also have
various page sizes. The default size is adapted for
e-book readers, but we might also want to create
a PDF suitable for smartphones or, conversely, a
standard A4 size. For all these sizes, we need to
choose different font sizes or page margins. This can
be achieved using two new packages, which we will
demonstrate in this section.

5.1 Responsive design
One of the issues that needs to be addressed is setting
the correct font size for readability. The default font
size in LATEX is 10 points, regardless of the page
size. This is a suitable font size for an A5 page. For
A4 format, the font size should be larger, and for
smaller screens of e-readers and mobile phones, it can
be smaller. Similarly, we can change the line spacing,
which also affects text readability depending on the
font size and page size.

Web browsers face a similar problem, as they
need to display text on large PC monitors as well as
on the smaller screens of laptops, tablets, and mobile
phones. The solution they use is called responsive
design.

Responsive design is a way of designing web
pages that allows flexible and dynamic adaptation
of the appearance and layout of the page content to
different display devices. One of the key elements of
responsive design is a flexible structure that allows
elements on the page to be resized to fit the display
device.

Another important element is media queries.
These allow defining rules that apply based on the
properties of the display device, such as screen width
and height or the type of output (paper, display).
Thanks to these rules, the same page code can be
displayed well on both large monitors and mobile
devices or when printed.

The Responsive package [7] is inspired by
these principles. Its main function is to set the
font size according to the page size and the
approximate number of characters that should fit
on a line. It also sets the typographic scale [9]
(affecting font sizes for headings or footnotes),
the font baseline, and supports a simple version
of media queries.

5.1.1 Setting up the Responsive package
Responsive automatically sets the font size, line spac-
ing, and typographic scale at the beginning of the
document. Default values can be changed using
package options:
\usepackage[〈options〉]{responsive}
or the \ResponsiveSetup{〈options〉} command.
The \ResponsiveSetup command can also be used
directly in the document text, for example, for local
font settings changes.

The Responsive package offers the following op-
tions:
noautomatic prevents automatic setting of font

size and line spacing at the beginning of the
document.

Web page to PDF conversion with Rmodepdf: Leveraging LuaLATEX for e-book reader-friendly documents

250 TUGboat, Volume 45 (2024), No. 2

characters number of characters for automatic font
size setting.

scale typographic scale used for font sizes.
lineratio ratio used in line spacing calculation.

5.1.2 Basic font size
The font size can be set using the \setsizes com-
mand. Responsive tries to set the font size so that
the desired number of characters fits on a line on
average. The actual number of characters depends
on the text used, as each letter has a different width
when using proportional fonts. In practice, the num-
ber of characters displayed on a line may be slightly
higher.

If the number of characters is not specified in the
\setsizes command, the value of the characters
option is used. The following example uses this
option setting. Figure 1 shows how the same text
can be displayed differently within the same frame,
depending on the settings.
\begin{minipage}{5cm}
\ResponsiveSetup{characters=55}
\setsizes{}
\lipsum[1]
\end{minipage}

5.1.3 Line spacing
By default, LATEX sets the line spacing to the font
size multiplied by 1.2. For different fonts and page
sizes, different line spacing is appropriate. Similarly,
different values may be suitable for the printed and
electronic versions of the document.

I was inspired by Edoardo Cavazza’s article [1]
on readability and added support for setting line
spacing based on the ratio of lowercase letter height
and the lineratio variable. This ratio is obtained
by the following calculation:

line spacing =
1ex

lineratio/100
You can observe the impact of changing the
lineratio value in Figure 2. The choice of its op-
timal value depends on the font used and the page
size. To achieve maximum output readability, it’s
advisable to compare the output using different val-
ues.

5.1.4 Media queries
Media queries are a technique that allows web de-
velopers to dynamically adapt the appearance and
behavior of web pages based on various device prop-
erties, such as screen width and height, device orien-
tation, color support, and many others. With these
conditions, it is possible to create responsive and

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabi-
tur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus
sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis
in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean
faucibus. Morbi dolor nulla, malesuada eu,
pulvinar at, mollis ac, nulla. Curabitur auc-
tor semper nulla. Donec varius orci eget risus.
Duis nibh mi, congue eu, accumsan eleifend,
sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

(a) characters=55

Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. Ut purus elit, vestibu-
lum ut, placerat ac, adipisc-
ing vitae, felis. Curabitur dic-
tum gravida mauris. Nam
arcu libero, nonummy eget,
consectetuer id, vulputate a,
magna. Donec vehicula au-
gue eu neque.
(b) characters=25, lineratio=38

Figure 1: Difference in font size depending on the
number of characters per line

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac, adi-
piscing vitae, felis. Curabitur dictum gravida mau-
ris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Mauris ut
leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus
sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius
orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

(a) lineratio=38

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac, adi-
piscing vitae, felis. Curabitur dictum gravida mau-
ris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Mauris ut
leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus
sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius
orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

(b) lineratio=34

Figure 2: Change in line spacing by changing the
lineratio value

Michal Hoftich

TUGboat, Volume 45 (2024), No. 2 251

Lorem ipsum dolor sit amet, consectetuer adipisc-
ing elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy eget, con-
sectetuer id, vulputate a, magna. Donec vehicula
augue eu neque.

(a) Text width 5cm

Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adip-
iscing vitae, felis. Curabitur dictum
gravida mauris. Nam arcu libero, non-
ummy eget, consectetuer id, vulpu-
tate a, magna. Donec vehicula augue
eu neque.

(b) Text width 3.9cm
Figure 3: Media query example

flexible web pages that can automatically adjust to
different types and sizes of devices on which they are
displayed.

How can this technique be useful for LATEX pack-
age authors? They could, for example, set the font
size, line spacing, and other elements for specific page
dimensions. After the user chooses the page size ac-
cording to the device for which they want to compile
the document, these elements are set automatically.
The package author can define, for instance, that
if the width of the text line is less than a certain
size, fewer characters will be displayed on it than on
longer lines. The result is shown in Figure 3.

This example will display fewer characters per
line if the text width is less than 4 cm.
\mediaquery{max-textwidth=4cm}

{\ResponsiveSetup{characters=45}}
{\ResponsiveSetup{characters=60}}

A media query can be declared using the
\mediaquery command, which expects three param-
eters: the first is a list of tests, the next parameter
expects the code to be executed if the tests evaluate
to true, and the last one contains the code to be
executed if the condition is not met. The code can
include the \ResponsiveSetup command, as well
as any other commands. For example, setting the
size of the text block, header, and footer using the
geometry package.

We can test the following page properties:
paperwidth and paperheight for page dimensions,
textwidth and textheight for text dimensions,
orientation for text orientation, and twocolumn
for detecting the use of two-column text in the docu-
ment.

Tests for text and page dimensions also support
the prefixes max- and min-. Using these, we can test
whether a given dimension is smaller or larger than
a specified value.

For example, the following command changes
the text color to blue if the document has landscape

The example document
given below creates two pages
by using Lua code alone. You
will learn how to access TEX’s
boxes and counters from the Lua
side, shipout a page into the PDF
file, create horizontal and
vertical boxes (hbox and vbox),
create new nodes and ma-
nipulate the nodes links struc-
ture.

(a) Without the Linebreaker package

The example document
given below creates two
pages by using Lua code
alone. You will learn how
to access TEX’s boxes and
counters from the Lua side,
shipout a page into the PDF
file, create horizontal and
vertical boxes (hbox and
vbox), create new nodes and
manipulate the nodes links
structure.

(b) With the Linebreaker package

Figure 4: Example of using the Linebreaker package

orientation, the text width is less than 20 cm, and
two columns are used.
\mediaquery{orientation=landscape,

max-textwidth=20cm,
twocolumn=true}

{\color{blue}}
{}

5.2 The Linebreaker package
The Linebreaker package [4] prevents text from over-
flowing in boxes and paragraphs. An example of its
output is in Figure 4, where it prevents several lines
from overflowing when typeset in a narrow column.

Linebreaker utilizes LuaTEX’s callback which
controls line breaking. It replaces the default
line breaking function with a modified version
that detects overflow or underflow in the broken
text. Upon detecting this problem, it retypesets
the text with increased values of \tolerance and
\emergencystretch until the overflow is suppressed
or the maximum \tolerance limit is reached. These
changes to \tolerance and \emergencystretch are
local to the currently broken paragraph and do not
affect the rest of the text.

Web page to PDF conversion with Rmodepdf: Leveraging LuaLATEX for e-book reader-friendly documents

252 TUGboat, Volume 45 (2024), No. 2

5.2.1 Linebreaker configuration
The Linebreaker package can be configured by speci-
fying package options using
\usepackage[〈options〉]{linebreaker}
or later in the document body with the command
\linebreakersetup{〈options〉}. The options are:
maxcycles the number of attempts to re-typeset a

paragraph.
maxemergencystretch the maximum value of

\emergencystretch.
maxtolerance the maximum value of

\tolerance.
For example:

\linebreakersetup{
maxtolerance = 90, % default 8189
maxemergencystretch = 1em, % default 3em
maxcycles = 4, % default 30

}

5.3 Other packages useful for automatic
typesetting

We have demonstrated the use of the Responsive
and Linebreaker packages for automatic typesetting.
These are not the only useful packages that lever-
age the power of LuaTEX for automatic typesetting.
Noteworthy examples include Lua-widow-control for
suppressing widows and orphans, and Luavlna, which
addresses certain typographical issues for Czech and
Slovak, while also preventing line breaks in SI units
or academic titles.

6 Summary
I hope the demonstration of the Rmodepdf program
caught your interest. Even if it didn’t, I believe that
the side products developed alongside it can be useful
on their own.

This includes the capability to process HTML
files using the LuaXML package and convert them to
LATEX using its luaxml-transform library. The Re-
sponsive package allows you to declaratively set the
document design depending on the currently chosen
page size. Lastly, the Linebreaker package prevents
line overflow, which is a common issue especially in
documents with fewer characters per line.

References
[1] E. Cavazza. Modern CSS techniques to

improve legibility. Smashing Magazine,
2020. www.smashingmagazine.com/2020/07/
css-techniques-legibility/

[2] M. Chernoff. The Lua-widow-control package.
Automatically remove widows and orphans from
any document.
ctan.org/pkg/lua-widow-control

[3] E. Fernández. Rdrview.
github.com/eafer/rdrview

[4] M. Hoftich. The Linebreaker package.
Prevent overflow boxes with LuaLATEX.
ctan.org/pkg/linebreaker

[5] M. Hoftich. The Luavlna package. Prevent
line breaks after single letter words, units, or
academic titles. ctan.org/pkg/luavlna

[6] M. Hoftich. The LuaXML package. Lua library
for reading and serialising XML files.
ctan.org/pkg/luaxml

[7] M. Hoftich. The Responsive package.
Responsive design methods for LATEX.
ctan.org/pkg/responsive

[8] M. Hoftich. Rmodepdf. Convert web pages in
reader mode to PDF.
github.com/michal-h21/rmodepdf

[9] S. Mortensen. The typographic scale,
2011. spencermortensen.com/articles/
typographic-scale/

� Michal Hoftich
Magdalény Rettigové 4
Praha, 116 39
Czechia
michal.h21 (at) gmail dot com
https://www.kodymirus.cz/

Michal Hoftich

https://www.smashingmagazine.com/2020/07/css-techniques-legibility/
https://www.smashingmagazine.com/2020/07/css-techniques-legibility/
https://ctan.org/pkg/lua-widow-control
https://github.com/eafer/rdrview
https://ctan.org/pkg/linebreaker
https://ctan.org/pkg/luavlna
https://ctan.org/pkg/luaxml
https://ctan.org/pkg/responsive
https://github.com/michal-h21/rmodepdf
https://spencermortensen.com/articles/typographic-scale/
https://spencermortensen.com/articles/typographic-scale/

