
196 TUGboat, Volume 45 (2024), No. 2

Holon programming regained

Mitchell Gerrard

Abstract

One of the main inspirations for literate program-
ming was a technical report entitled Holon Pro-
gramming: A Survey, by Pierre-Arnoul de Marneffe.
It was privately circulated among computer scien-
tists in 1973. The document thereafter became a
Borgesian mythical book, existing only in citations
by Knuth. This article narrates the search-and-
rescue mission of this rare book, and highlights a
few of its innovations. The full report is available at
github.com/holon-scribe/holon-programming.

1 Ancient history

And indeed, he composed a fair great book with

figures, but it is not printed as yet that I know of.

—François Rabelais, Pantagruel (1532)

In 1973, a Belgian computer scientist named Pierre-
Arnoul de Marneffe was finishing a report describing
his ideal programming language. More on this later.

A few years prior, Edsger Dijkstra had circulated
his Notes on Structured Programming [3]. These
Notes marked a watershed in the computing com-
munity. Dijkstra urged the systematic use of now-
commonplace programming constructs such as for
loops, if/then/else statements, and subroutines. He
also gave a method to write complex programs by
starting with an abstract description and succes-
sively refining this description into smaller, more
manageable chunks. But what should one call these
chunks of related computation? Dijsktra called them
“pearls”, regarding a program as a necklace strung
from individual pearls; Donald Knuth wrote to Dijk-
stra: “We need another word for pearl, though; what
should it be?” [7]

Prof. de Marneffe knew what the word should
be. He had recently read The Ghost in the Machine
by Arthur Koestler, in which Koestler coins the term
“holon”, denoting the various “nodes on [a] hierarchic
tree which behave partly as wholes or wholly as parts,
according to the way you look at them.” [12] The
holon would be the unifying concept in de Marneffe’s
synthesis of Dijkstra and Koestler. In December of
1973, de Marneffe privately circulated copies of his
report entitled Holon Programming: A Survey.

2 Modern times

I try to reason, and I tell myself you’ll return.

—Roberta Flack, Gone Away (1970)

The year is now 2015. I had written my first few
literate programs using Norman Ramsey’s noweb

tool [17], and was immediately smitten by this pecu-
liar approach to programming. So I reread Knuth’s
article that introduced literate programming, to
seek the font of this love potion that was on my
sleeping eyelids laid. And happy day—here were
breadcrumbs: “The design of WEB was influenced
primarily by the pioneering work of Pierre-Arnoul de
Marneffe, whose research on what he called ‘Holon
Programming’ has not received the attention it de-
serves.” [8] This statement was accompanied by two
citations, one of them a 135-page report [6]. Yet
when I searched for this report online, there were no
books published under this name, there were no PDF

scans, there was almost nothing save for a few tan-
talizing passages and descriptions of this mysterious
document. Most strange.

Was Holon Programming a fictitious entry in
The Catalog of Lost Books [20]? But there were
extracts, and de Marneffe was a real author. . . surely
this influential report hadn’t been lost to posterity.

I wrote to Prof. de Marneffe. He replied that
he indeed had a copy in his files that he would scan
and send to me, but he was recovering from a long
hospital stay, so would do so after feeling better.
Some time passed and I did not want to trouble Prof.
de Marneffe further. I then wrote to Prof. Knuth.
He replied: “I think I donated my copy to Stanford’s
tech reports collection, but they don’t seem to have
it”, and directed me to the only known library copy
that was supposedly held in Germany. Knuth also
enclosed a copy of the letter that he wrote to de Mar-
neffe in 1974. This letter contained such specific
references to the report that I was almost convinced
Holon Programming was not a fabrication. Unfor-
tunately some doubts remained, as the letter was
dated April 1st.

The full letter is reproduced below (with per-
mission).

3 Knuth’s letter

April 1, 1974
Prof. Pierre-Arnoul de Marneffe
Université de Liège
Service d’Informatique
Avenue des Tilleuls 59
B-4000 Liège, Belgium

Dear Prof. de Marneffe:

Thank you very much for sending me your survey
of Holon Programming. I especially enjoyed your
references to the non-computer literature (Koestler,
Bernard-Shaw, Shanley, Mount Vernon, etc.) since
computer scientists need to avoid insularity.

doi.org/10.47397/tb/45-2/tb140gerrard-holon

Mitchell Gerrard

https://github.com/holon-scribe/holon-programming
https://doi.org/10.47397/tb/45-2/tb140gerrard-holon

TUGboat, Volume 45 (2024), No. 2 197

I believe you are making important strides to-
ward the development of a new programming lan-
guage. There still remain some unclear areas but you
are obviously addressing the correct issues; the next
thing to do (it seems to me) is to program several
hundred examples!

For related reading I would suggest that you
carefully study Ole-Johan Dahl’s papers on SIMULA

since his class concept is so close to the holon con-
cept. Also I have just heard that Brian Randell of
Newcastle has been working on a so-called PEARL

system.
I found your report could have been improved

if you had worked entirely with tree structures in-
stead of converting to binary trees. The original tree
structure is what is really relevant, and the Dewey
notation for such structure is more directly suited to
the operations you discuss. The binary tree is only a
machine-oriented representation of the basic concept,
the discussion should stay at a higher level.

Secondly, I found the report too preoccupied
with details of implementation. The people by whom
it is most important that this report be read are ei-
ther able to visualize easily how to implement this
sort of system, or else they are people who are not
likely to care how it’s implemented as long as it’s
handled sensibly. The important thing to stress is
rather the conceptual issues of how holon program-
ming differs from and improves on today’s languages.

The example didn’t come until page 100, while
I expect most readers would have preferred to see
it immediately. Since the program is almost self-
explanatory, you can let it explain the language at
the same time (integration of functions!).

Ideally there should be more examples of course.
The one example raises some interesting issues

since the individual holons don’t quite state their
assumptions. In the very first holon, for example, it
is not at all clear why you ‘find first word starting
character’ instead of going right into ‘find a word
etc.’ You must already have made a decision (a)
that you wouldn’t assume the text begins with a
nonblank, (b) that there is going to be at this level an
element of data representing the last-read character,
(c) that the ‘find a word’ routine will already have
its first character in hand, and (d) that there is no
need to test for a message that has no words (only
a full stop). As I recall when I was solving that
problem, it took me a good five minutes to reach
these decisions, during which I must have considered
lots of alternatives. Once this step was made the rest
of the program flowed naturally. My questions are:
Where should we state these assumptions? Shouldn’t
we mention the existence of data representing the

last-read character, even though we don’t want to
specify its detailed structure until later?

These issues seem to arise repeatedly and I
haven’t a first conclusion about what we ought to
do. That’s why I suggest working out hundreds of
examples, as being the best kind of eating to prove
the pudding at this stage. On the other hand creat-
ing the holon implementation itself is equivalent to
working out quite a few examples.

Thanks again for showing me your stimulating
work. I myself must get on with the writing of volume
4 of my series, so I have little energy to devote to
the development of languages, but I will do my best
to see that other people working in the area are kept
informed of what you are doing.

Sincerely,

Donald E. Knuth
Professor

P.S. Is there a place in Belgium whose postal code is
B-6700 like the Burroughs computer?

4 The survey itself

Our Perdita is found.

—Shakespeare, A Winter’s Tale (1611)

More time passed, revealing more false bottoms, but,
eventually, kind librarians on both sides of the At-
lantic arranged for that most elusive document to be
sent from Hanover to Nebraska.

And so: After more than 50 years in hiding,
Pierre-Arnoul de Marneffe’s Holon Programming: A
Survey, prefaced with Knuth’s letter, is returned.
Make its acquaintance at the address below.

☞ github.com/holon-scribe/holon-programming

I second Knuth’s suggestion to jump straight
to the ⟨Program Example ⟩ section to get a feel for
what it’s all about. And then, in the hypertext spirit
of Hopscotch [2], jump around and go to whichever
chapter titles most draw you.

In this technical report filled with out-of-the-way
observations, projected language features and imag-
ined ecosystems (a full “holon operating system”)—
where is the literate programming? Well, if you at-
tire the program example’s bare pseudocode phrases
with a ⟨ and ⟩ on either side, the holons transform
into the code sections of WEB. So let’s do just that:
we’ll take an extract of de Marneffe’s program and
translate its “holons” into corresponding sections
of a WEB program. This program solves a problem
from section 16 of Dijkstra’s Notes; its details aren’t
relevant here. Two notes on the syntax: the etc
keyword abbreviates unambiguous prefixes, and ‘#’
followed by ‘##’ brackets low-level statements.

Holon programming regained

https://github.com/holon-scribe/holon-programming

198 TUGboat, Volume 45 (2024), No. 2

5 A holon program and its WEB twin

odd inversion program
begin find first word starting character;

repeat find a word and print correctly;
until end of useful file

end

find first word etc
begin read first symbol;

while last read symbol is a space;
do read next symbol

end
...

read first symbol
begin declare lrs: character at

odd inversion program level;
lrs ← RNC ##;

end
...

And here are the equivalent extracts written in WEB.
The ⟨Global variables ⟩ section approximates how, in
de Marneffe’s language, one “declares a variable and
specifies the scope by naming an outer holon.” [5]

1. This program is one possible solution to the
problem posed in section 16 of Dijkstra’s Notes.

program odd inversion;
var ⟨Global variables 4 ⟩
begin ⟨Find first word starting character 2 ⟩;

repeat ⟨Find a word and print correctly 3 ⟩;
until ⟨End of useful file 13 ⟩

end.

2. ⟨Find first word . . . 2 ⟩≡
begin ⟨Read first symbol 11 ⟩;

while ⟨Last read symbol is a space 12 ⟩;
do ⟨Read next symbol 6 ⟩

end

This code is used in section 1.

...

10. ⟨Global variables 4 ⟩+≡
lrs : char ; { last-read symbol }
This code is used in section 1.

11. ⟨Read first symbol 11 ⟩≡
begin lrs ← RNC ; { read next character }
end

This code is used in section 2.

...

RNC : procedure, §15

The resemblance is uncanny. What de Marneffe
did was show how a program can be written “in the
order of its design”, using phrases mostly in natural
language, in digestible sections of no greater than
eight lines, that can be automatically “disentangled”
(de Marneffe’s word) into a fully executable program.
Knuth describes de Marneffe’s approach as “a way
of taking a complicated program and breaking it
into small parts. Then, to understand the compli-
cated whole, what you needed is just to understand
the small parts, and to understand the relationship
between each part and its neighbors.” [10]

I won’t go on to give a book report of Holon
Programming. Instead, I’ll assign further reading
and then highlight a few more prefigurings of the
literate programming we know today.

To rough in more of the context in which de Mar-
neffe’s survey is, holon-like, embedded, I recommend
reading Chapters 2, 3 and 5 of The Ghost in the Ma-
chine through the lens of Dijkstra’s Notes. Koestler’s
arguments employ the language of computer science
(via Herbert A. Simon); the metaphors and exact
phrasings he uses to describe carrying out tasks
closely echo those Dijkstra uses to describe flesh-
ing out programs. They also share a fondness for
pugilistic asides. In a happy coincidence, the section
that de Marneffe singles out in Koestler, “How to
Build a Nest”, contains three instances of the word
“web” and four instances of “weaving”.

Now for the highlights.
We come across a few false friends in comparing

de Marneffe’s language with Knuth’s. The append
command refers to defining a new section, differing
from the +≡ append operation in WEB. There is an ap-
pearance of suggested macro use; but unlike Knuth’s
more straightforward macros, de Marneffe’s were to
parameterize holons themselves, making them more
procedure-like.

Other constructs are remarkable prototypes of
those we know: the text command defines a section
of prose to “explain the reason of some design deci-
sions”; the change command is like Knuth’s change
file mechanism, except the entire section must be
replaced; the etc abbreviation keyword has turned
into the ‘. . . ’ shorthand in a WEB source file; the out-
put command prints the holon program as intended
for human eyes to an output device, somewhat akin
to weaving; and the synthesize command outputs
the program intended for machine consumption, akin
to tangling.

Most wonderful!
But hol’ on there . . . if all these elements were

present in de Marneffe, what exactly were Knuth’s
contributions?

Mitchell Gerrard

TUGboat, Volume 45 (2024), No. 2 199

6 Woven WEBs

Nothing about WEB is really new; I have

simply combined a bunch of ideas that

have been in the air for a long time.

—Donald Knuth, Literate Programming (1984)

Let no one say that I have said nothing new; the

arrangement of the subject is new. When we play

tennis, we both play with the same

ball, but one of us places it better.

—Blaise Pascal, Pensées (1657?)

Knuth’s selection, rearrangement, and improvement
upon ideas “in the air” was decisive. He saw through
many of the irrelevant technical details in de Mar-
neffe’s report and grasped the essence. Knuth made
the subtle but crucial design decision to bring the
informal prose explanations to the forefront. (The
text command in de Marneffe never appears in exam-
ples, and seems to be regarded as a simple “comment”
mechanism, despite my hyping it just now.)

The importance of colorful language, metaphors,
and rephrasings cannot be understated when think-
ing about the unreasonable effectiveness of literate
programming. “We retain only what has been drama-
tised by language; any other judgment is fleeting.” [1]
The storytelling elements of a good literate program
act as strong fixatives in our memory. And Knuth
does not limit the prose to the “informal” portions;
it spills over into the formal (code) portions as well.
In all of Knuth’s published literate programs, he fol-
lows most macro definitions and variable declarations
with some explanatory comment.

As Knuth brings informal prose to center stage,
he also casts the prettyprinted code to be its costar.
Whereas de Marneffe banishes the lowly code state-
ments to hide within ugly ‘#’ and ‘##’ curtains and
leaves the holon names unmarred, Knuth reverses
this: he lets the (formatted) code stand on its own
and brackets the section names with (less-obtrusive)
delimiters. Knuth does not at all want to give short
shrift to the code. The typeset Pascal in WEB’s woven
output invites the reader to see how the code syncs
up with its informal explanation above.

Knuth developed the first implementation of lit-
erate programming, with the TEX and METAFONT

projects being the “proof in the pudding”. WEB in-
cludes a host of features unforeseen by de Marneffe,
such as commands to produce camera-ready pro-
grams. Alongside these projects Knuth brought the
history of literature, typography, and book design
to bear on this style of programming. Beautiful
fonts, typeset code blocks, cross-referencing included
with each section name, tables of contents, indices,
mini-indices, appendices, bibliographies, figures

But we are getting far afield. Briefly stated:
there was a whole lot that was new in WEB.

7 Old yarns

What threads were those, oh, ye Weird Ones,

that ye wove in the years foregone.

—Herman Melville, Pierre; or, The Ambiguities (1852)

I’ve focused the discussion of the genesis of holon
programming on the two authors de Marneffe cites
the most: Dijkstra and Koestler (“The author re-
ally doesn’t know to what extent the reader can
grasp the holon concept without reading Koestler’s
book.” [5]). But there was one other primary in-
fluence on de Marneffe’s language. Who? Lo and
behold: Knuth.

The program example used by de Marneffe to
illustrate his holon language is predated by two alter-
nate program solutions to the same problem, given
by Knuth in his letters to Dijkstra and Dahl [7]. We
know de Marneffe was familiar with these letters be-
cause he cites and comments upon them. In Knuth’s
first program solution, we see the program only in
its final, (mostly) executable, stage, but he does
something remarkably close to de Marneffe. That
is, Knuth composes a program out of small code
sections not exceeding eight lines, each labeled with
a natural language descriptor, constructed in “the
order in which the decisions were made” [7], and sys-
tematically expanded and interleaved into a machine-
readable form. The code sections, called “pearls” in
the letter, are identified in the left margin of the
“tangled” output. The second program solution is
largely the same, but Knuth explicitly groups the
small independent sections (here called “classes”)
in the top-down order of design. These programs
differ in many details from de Marneffe’s system,
but the influence in language design clearly ran in
both directions. And of course there are countless
other contributors who helped bring about literate
programming.

So I would like to express a desire to reprint some
of the precursors in a slim anthology entitled Pre-
literate Programming. This could include selections
from de Marneffe; the PEARL system mentioned
by Knuth in his letter to de Marneffe [18]; Dahl’s
SIMULA papers [4]; Naur’s “Programming by action
clusters” [14] and “Formalization in program devel-
opment” [15]; Knuth on Structured Programming [7];
Babbage’s “On a method of expressing by signs the
action of machinery” [13]; excerpts from Dijkstra’s
Notes [3]; selections from Chapter 2 of Wilkes et
al.’s book [22]; a rifacimento of Weinberg’s book into
a collection of aphorisms [21]; Towster’s work [19];

Holon programming regained

200 TUGboat, Volume 45 (2024), No. 2

portions of Jim Dunlap’s early compiler code with
forty-character-long identifiers; a two-page spread
exhibiting the impact typography has on program
comprehension, with a non-typeset Algol program on
one side and the same program typeset with executive
editor for ACM Myrtle Kellington’s standards on the
opposite side; Derek Oppen’s “Prettyprinting” [16];
and, as a specimen of good storytelling, something by
Shirley Jackson. (We leave out the many shoots and
buds of literate programming already gathered in
Knuth’s early papers from [9] and “Computer Drawn
Flowcharts” and pp. 229–235 in [11].)

Acknowledgments

Thanks Don Knuth for help in locating this report
and for letting the 1974 letter be reproduced. Thank
you librarians. Thanks Karl Berry, Udo Wermuth,
and Andreas Scherer for your feedback and sugges-
tions. And thank you Pierre-Arnoul Frédéric Guy
Donat de Marneffe (1946–2023) for creating and shar-
ing this groundbreaking work.

References

[1] G. Bachelard. The Dialectic of Duration.
Rowman & Littlefield, 2016.

[2] J. Cortázar. Rayuela (Hopscotch).
Sudamericana, 1963.

[3] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare.
Structured programming. Academic Press Ltd.,
1972. archive.org/details/Structured_

Programming__Dahl_Dijkstra_Hoare

[4] O.J. Dahl, K. Nygaard. SIMULA: an
ALGOL-based simulation language.
Communications of the ACM, 9(9):671–678,
1966.

[5] P. de Marneffe, D. Ribbens. Holon
programming. In International Computing
Symposium, A. Günther et al., ed.,
Amsterdam, North Holland, 1973.

[6] P.A. de Marneffe. Holon Programming:
A Survey. Univ. de Liège, December 1973.

[7] D.E. Knuth. A review of “Structured
Programming”. Technical Report
STAN-CS-73-371, Stanford Computer
Science Department, Stanford University,
Stanford, CA, 1973. i.stanford.edu/TR/

CS-TR-73-371.html

[8] D.E. Knuth. Literate programming.
The Computer Journal, 27(2):97–111, 1984.

[9] D.E. Knuth. Literate Programming. CSLI,
1992.

[10] D.E. Knuth. Digital Typography. CSLI, 1999.

[11] D.E. Knuth. Selected Papers on Computer
Languages. CSLI, 2003.

[12] A. Koestler. The Ghost in the Machine.
Macmillan, 1968.

[13] P. Morrison, E. Morrison. Charles
Babbage and his calculating engines:
Selected writings by Charles Babbage
and others. Dover, New York, 1961.
archive.org/details/philtrans09445034

[14] P. Naur. Programming by action clusters.
BIT Numerical Mathematics, 9(3):250–258,
1969.

[15] P. Naur. Formalization in program
development. BIT Numerical Mathematics,
22(4):437–453, 1982.

[16] D.C. Oppen. Prettyprinting. ACM
Transactions on Programming Languages and
Systems (TOPLAS), 2(4):465–483, 1980.

[17] N. Ramsey. Literate programming simplified.
IEEE Software, 11(5):97–105, 1994.

[18] R.A. Snowdon. PEARL: an interactive
system for the preparation and validation
of structured programs. SIGPLAN Notices,
7(3):9–26, Mar. 1972.

[19] E. Towster. A convention for explicit
declaration of environments and top-down
refinement of data. IEEE Transactions
on Software Engineering, SE-5(4):374–386,
July 1979.

[20] T. Tuleja. The Catalog of Lost Books: An
annotated and seriously addled collection of
great books that should have been written but
never were. Fawcett Columbine, 1989.

[21] G.M. Weinberg. The Psychology of Computer
Programming, vol. 29. Van Nostrand Reinhold
New York, 1971.

[22] M.V. Wilkes, D.J. Wheeler, S. Gill. The
Preparation of Programs for an Electronic
Digital Computer: With special reference
to the EDSAC and the use of a library of
subroutines. Addison-Wesley Press, 1951.

⋄ Mitchell Gerrard
mitchell dot gerrard (at) gmail

dot com

Mitchell Gerrard

https://archive.org/details/Structured_Programming__Dahl_Dijkstra_Hoare
https://archive.org/details/Structured_Programming__Dahl_Dijkstra_Hoare
http://i.stanford.edu/TR/CS-TR-73-371.html
http://i.stanford.edu/TR/CS-TR-73-371.html
https://archive.org/details/philtrans09445034

	Ancient history
	Modern times
	Knuth's letter
	The survey itself
	A holon program and its WEB twin
	Woven WEBs
	Old yarns

