
TUGboat, Volume 45 (2024), No. 2 179

Bridging scientific publication accessibility:
LATEX–markup–PDF–alignment

Changxu Duan

Abstract

This paper introduces a method to enhance the ac-
cessibility of scientific publications across multiple
formats. Prior initiatives have predominantly cen-
tered on transforming LATEX source code or PDF
documents into markup languages like XML and
Markdown. However, such methods typically over-
look preserving the visual layout inherent in PDF
pages. The approach in this paper exploits the color
properties in LATEX code to maintain consistency and
alignment between the visual presentation of docu-
ments in PDF format and the digital presentation
of markup languages and LATEX code. This strategy
not only fills in the gaps of previous approaches but
also promotes the integration and accessibility of
scientific document formats.

1 Introduction

Accessibility in PDFs ensures that documents are us-
able by everyone, including those with disabilities, by
making them navigable and readable through assis-
tive technologies. This involves structuring PDFs
with metadata tags to define reading order and
document elements, embedding text attributes for
readability, providing alternative text for visual con-
tent, and including navigational aids like bookmarks.
These measures, aligned with standards like PDF/UA,
ensure that the PDFs are not only accessible but also
comply with legal requirements for inclusivity [8].

Accessible PDFs benefit not only individuals
with disabilities but also the broader user base. Fea-
tures that make documents accessible, such as clear
navigation and structured headings, improve the
overall user experience and enhance the document’s
usability for everyone. These features make it eas-
ier to navigate through the text, find information
quickly, and convert the document into other for-
mats as needed. Additionally, the structure required
for accessibility, such as tagged PDFs, aids in the
correct reflow of text and associated graphics when
adjusting the size of a document or its viewing mode.
This adaptability is essential as digital content is
increasingly accessed on a diverse array of devices,
including smartphones and tablets.

LATEX-sourced PDFs often lack accessibility pri-
marily due to the inherent complexity and customiza-
tion capabilities of LATEX. The LATEX system allows
for a vast array of macros and packages, enabling
highly complex document structures that do not au-

tomatically support accessible features necessary for
assistive technologies, such as structured headings
and alternative text for images. Unlike modern docu-
ment creation tools that include built-in accessibility
features, traditional LATEX compilers like pdfTEX and
X ETEX do not inherently support tagging.

Moreover, even with LATEX packages designed
to facilitate tagging, such as tagpdf [5, 15, 16], inte-
grating these features requires significant technical
expertise and meticulous configuration. The numer-
ous LATEX macros can interact unpredictably, poten-
tially undermining the structural integrity needed
for accessible documents. Additionally, the TEX en-
gines that process LATEX are primarily focused on
print quality, not digital accessibility. This focus,
combined with a general lack of awareness among
LATEX users about accessibility standards, further
complicates the production of accessible PDFs. The
responsibility for ensuring accessibility often falls on
the authors, who must navigate the steep learning
curve of both LATEX and accessibility requirements.

Other studies on LATEX accessibility have con-
verted LATEX directly into a markup language, skip-
ping the generation of PDF files [2]. While converting
LATEX to markup languages directly might improve
accessibility by leveraging the inherent structural and
semantic capabilities of HTML or XML, it also means
losing out on the robust, cross-platform fidelity and
rich feature set that PDFs offer.

In this paper, I explore a method that adds
accessibility to existing PDF files without manually
altering the existing LATEX code.

2 Related work

2.1 LATEX to markup transformation

Currently, two tools capable of converting LATEX
source code to markup languages are LATEXML [13]
and Pandoc [12]. However, both tools directly con-
vert from LATEX to markup languages like HTML
or Markdown without compiling to PDF first. This
approach bypasses some of the benefits that come
from generating and utilizing PDF files, including
the precise control over layout and typography that
PDFs offer.

2.2 LATEX–PDF alignment methods

The current methods for aligning PDF and LATEX
content typically rely on kernel patching or color-
based alignment techniques. One prominent kernel-
based alignment method is SyncTEX [9], widely im-
plemented across various LATEX editors. This method
provides a dynamic link between the source LATEX
code and the generated PDF, facilitating easy naviga-
tion between them. Color-based alignment methods

doi.org/10.47397/tb/45-2/tb140duan-bridging

Bridging scientific publication accessibility: LATEX–markup–PDF–alignment

https://doi.org/10.47397/tb/45-2/tb140duan-bridging

180 TUGboat, Volume 45 (2024), No. 2

Document Structure Tree

Title

Introduction Method

Source

Code

Extract:

1. Label for each token.
2. Section ID for each token.

Annotate:

Distinct color for each token.
{\color{RGB}{253,22,173}(CNN)}

{
 ...

"#73fd16":{
 "label": "Caption",
 "latex": "(CNN)",
 "section": 1
},

"#fe52cf":{
 "label": "Equation",
 "latex": "(a)",
 "section": 2
},
...

}

Extract

Coordinates

Extract

Annotations

Aligned
by

Colors

Markdown

HTML

 PDF FileAuxiliary File

Figure 1: The overall process of accessibility annotation. The alignment of
LATEX–markup–PDF is built up with auxiliary files.

include approaches like those demonstrated by the
DocBank [11] dataset. In this dataset, different types
of page elements are assigned unique colors, which
are then used to facilitate the extraction and analysis
of document layouts.

My approach builds upon the color-based align-
ment strategy used by DocBank. By assigning dis-
tinct colors to different elements within the LATEX
code and then analyzing these in the generated PDF,
I can accurately align and categorize content, en-
hancing the effectiveness of document layout analysis.
This extension of the DocBank method allows for
more detailed and precise handling of the alignment
between the LATEX source and the PDF output.

3 Methodology

The method discussed in this paper is extended from
LATEX Rainbow [4], a tool designed for generating
Document Layout Analysis datasets. LATEX Rainbow
begins by downloading a paper’s source code from
arXiv, which it then processes using a Python-based
LATEX parser. Each element within the body of the
paper’s source code is assigned a unique RGB color
using commands from the xcolor package. The tool
maintains a dictionary to map these colors to specific
element labels including title, author, abstract, math,
table, body, caption, figure, and reference. After col-
oring, LATEX Rainbow compiles the annotated LATEX
code into a PDF using a containerized compilation
environment. This step ensures that the environ-
ment is consistent and reproducible, minimizing the

effects of system-specific variations on the compila-
tion process. The final output is a color-rich PDF file,
from which I can extract the color of each element.
By extracting the color of each element in the PDF,
I can align the label of each element in the PDF.

LATEX Rainbow provides processing from LATEX
code annotations to PDF annotations. However, at
the moment it is not directly convertible to Markup
languages, for this reason, I have extended its func-
tionality in three steps to generate accessible anno-
tations. Figure 1 shows my annotation process.

3.1 Preprocessing LATEX code

While arXiv ensures that the LATEX source code it
hosts is of high quality and guaranteed to compile,
this does not necessarily mean the source is error-free.
The LATEX compilation process is robust enough to
handle certain syntactical inaccuracies—like unclosed
curly brackets—without halting the generation of a
visually correct PDF. This tolerance can mask under-
lying issues in the source code, such as unclosed en-
vironments or improperly ordered \end{document}
commands, which may not disrupt the PDF output
but do indicate imperfect coding practices.

These minor discrepancies, though often over-
looked by the TEX engine, present challenges for the
more rigid Python-based pylatexenc parser, which
requires stricter syntactic adherence. To ensure com-
patibility and facilitate smoother processing with
such tools, it is necessary to first identify and rectify
these errors. My approach involves applying a set

Changxu Duan

TUGboat, Volume 45 (2024), No. 2 181

of rules to filter out these syntactical errors before
they reach the parser, thus enhancing the reliability
of tools that are less tolerant of the flexible parsing
inherent to LATEX compilers.

When dealing with LATEX sources, custom com-
mands often present significant parsing challenges,
especially for pylatexenc that requires more straight-
forward syntactic structures. In academic papers, it
is not uncommon for authors to simplify their LATEX
coding by defining macros that encapsulate common
LATEX environments. For instance,

\newcommand{\beq}{\begin{equation}}
\newcommand{\eeq}{\end{equation}}

replace standard LATEX environment tags to stream-
line the writing process. While these macros are fully
compatible with the TEX engine, they can compli-
cate the parsing process for software that does not
inherently interpret these user-defined shortcuts.

To address this, I use de-macro [7], which ex-
pands these custom commands back into their stan-
dard LATEX forms. This tool not only handles the
expansion of simple custom commands but also aids
in consolidating LATEX content spread across multiple
files brought together with the \input command.

This preprocessing step ensures that the LATEX
code is transformed into a format that pylatexenc
can accurately interpret, thereby maintaining the
integrity of the document structure and content in
environments that are less tolerant of such LATEX
customization.

3.2 Compiling LATEX and extracting
annotations

LATEX Rainbow assigns a specific color to each ele-
ment within the abstract code tree, compiles these el-
ements into a new LATEX source file, and then creates
a color-coded PDF from this file. I have enhanced
the method for extracting these annotations by em-
ploying two Python-based PDF parsers: pdfplumber
[17] and PyMuPDF.1

The reason for using two different parsers is to
take advantage of their unique strengths. pdfplumber
is effective at extracting the original colors from
the PDF, which is crucial for maintaining accurate
placement and alignment in the annotations. In
contrast, PyMuPDF converts all colors to sRGB, a
format that sometimes blends similar colors, which
can lead to slight inaccuracies in recognizing distinct
colors.

However, PyMuPDF excels at extracting detailed
font information more precisely than pdfplumber. To
combine the strengths of both parsers, they are used

1 github.com/pymupdf/PyMuPDF

sequentially: pdfplumber first identifies and extracts
colors and their positions, and then PyMuPDF uses
this positional information to accurately extract font
styles, sizes, and attributes such as italic, bold, su-
perscript, and subscript. This sequential use of both
parsers ensures that we capture comprehensive de-
tails about both the colors and the textual elements
of the PDF.

The annotations and output files generated by
the LATEX Rainbow framework can be merged to
create what are accessibility annotations. They can
be seamlessly converted into various markup lan-
guages, such as HTML or Markdown, to facilitate
wider accessibility and ease of use.

Accessibility annotation aligns with PDF, LATEX,
and Markup languages through element positions.
This alignment ensures that the annotations are ac-
curately reflected across different formats, enhancing
the document’s accessibility and maintaining consis-
tency across various platforms.

3.3 Standardization of annotations

After I got the Markdown or HTML form of the
PDF accessibility markup, I encountered an issue
with some math formulas not being correctly dis-
played by browser-based math rendering libraries
like MathJax [3]. This was primarily due to the per-
sistence of custom math symbols defined using \def
commands that were not adequately transformed
into their corresponding Markdown forms, despite
the earlier cleanup of the LATEX code mentioned in
Section 3.1.

To address this challenge, I utilized LATEXML
[13], a powerful tool designed to parse and convert
LATEX code into a markup language. It ensures that
the LATEX formula code is not only transformed into
a format compatible with web standards but also
that it unifies the styles of mathematical symbols
sourced from various LATEX packages.

I reassembled the annotations extracted from
the PDF file into a .tex file.

\documentclass{article}
\input{preamble} % read from main.tex
\begin{document}
\section{C1B5E0}

$y = x + 1$ % the first math formula
\section{1B3810}

$y = x + 2$ % the second math formula
...
\end{document}

This file loads the preamble of the paper’s source,
and then puts all the mathematical formulas of a
paper into separate sections, with the section’s title

Bridging scientific publication accessibility: LATEX–markup–PDF–alignment

https://github.com/pymupdf/PyMuPDF

182 TUGboat, Volume 45 (2024), No. 2

being its hexadecimal RGB color code in the accessi-
bility annotation.

By using LATEXML to convert the assembled
LATEX code into HTML, I parsed the generated HTML
document using Beautiful Soup, a robust HTML
parser. This allowed me to navigate through the
HTML structure efficiently and identify the sections
containing mathematical formulas. The final step in
my process involved replacing the original mathemat-
ical formula code within the accessibility annotations
with the standardized code generated by LATEXML.

After the above three steps, we obtain a PDF file,
an auxiliary file to record the label of each element on
the PDF file, and its reading order, and an auxiliary
file to record the tree structure of the document.

These auxiliary files help me to transform a PDF
file, or any page, or any one of the chapters, into a
markup language such as HTML or Markdown.

4 Serving as a dataset-making pipeline

According to arXiv, 90% of their submissions include
LATEX source code [2], and each submission is accom-
panied by a PDF. The remaining 10% are available
only as PDFs and might lack accessibility tags due
to the absence of LATEX sources. Given the necessity
for all scientific publications to be accessible, there’s
a need to derive accessibility tags directly from the
PDF files. While some existing API2 services offer
this capability, they often produce significant misla-
beling and noise.

To address these limitations, recent advance-
ments in machine learning, particularly vision lan-
guage models, have introduced document-specific
solutions. An example of such innovation is the
optical character recognition (OCR) model named
Nougat [1], which utilizes a transformer architecture.
Nougat processes screenshots of academic papers
and converts them into Markdown. Importantly, it
integrates mathematical formulas and tables within
the page by converting them into LATEX code in the
Markdown output, showcasing a significant step for-
ward in document processing technology. Converted
Markdown also provide accessibility to PDF.

One challenge with machine learning models,
including Nougat, is their lack of precision. Nougat’s
accuracy issues may stem from inadequately detailed
training data. Its training process aligns entire PDF
pages to Markdown, which is less precise than align-
ing based on specific page element positions. This
page-based alignment and Nougat’s method of pro-

2 developer.adobe.com/document-services/apis/
pdf-accessibility-auto-tag/

cessing one word at a time can lead to errors in
recognizing the location and reading order of subse-
quent words as the OCR task progresses.

The effectiveness of machine learning depends
heavily on the quality of the training data; the model
needs detailed and high-quality data to extract suf-
ficient features that enhance its performance. My
method, which generates auxiliary files to record pre-
cise element positions and accessibility markers in
PDFs, could serve as an invaluable resource for cre-
ating enhanced training datasets. This could signifi-
cantly improve the performance of machine learning
models like Nougat by providing them with more ac-
curate and fine-grained data on text positioning and
structure. My approach could help bridge the gap
between current OCR capabilities and the demands
for higher accessibility and accuracy in document
processing.

5 Comparison to tagpdf and SyncTEX

tagpdf [5, 15, 16] is a LATEX package designed to fa-
cilitate the creation of PDF/UA-compliant accessible
PDFs by providing core commands for tagging within
LATEX. This approach allows updates directly to the
LATEX kernel, avoiding the complexities associated
with external patches. Highlighted at various TEX
conferences, tagpdf addresses a gap in tools for ex-
perimenting with PDF tagging and accessibility. It
introduces several enhancements to the LATEX kernel,
including new PDF management features, automatic
markup of paragraphs, and refined handling of page
elements. tagpdf can be accessed through the “test-
phase” key in the latex-lab package, allowing users to
implement these features during the developmental
stages of their documents.

SyncTEX [9] is a utility integrated into a TEX
engine. It enhances the workflow between text edi-
tors and output viewers by providing synchronization
capabilities, allowing seamless navigation between
source code and the output PDF. SyncTEX generates
an auxiliary file, which applications use to synchro-
nize the text within the editor with the corresponding
location in the PDF file.

My method, similar to SyncTEX, generates sev-
eral auxiliary files that record coordinates correspond-
ing to the positions of elements within a PDF. It
also captures accessibility markers, including tags for
elements, the reading order, and the expression of
formulas. These elements are not embedded directly
into the PDF, setting my approach apart from tagpdf.
This strategy serves as a practical temporary solu-
tion, providing some of the functionality of tagpdf
while it is still in the experimental stage.

Changxu Duan

https://developer.adobe.com/document-services/apis/pdf-accessibility-auto-tag/
https://developer.adobe.com/document-services/apis/pdf-accessibility-auto-tag/

TUGboat, Volume 45 (2024), No. 2 183

Figure 2: Example of coloring not working. The
Figure has the caption label “Figure 4”, the reference
number in Table “1”, and the citation “[1]”. They are
all kept black because these elements are not colorable
in the annotated LATEX code.

6 Future work

6.1 Alignment without coloring

This work bridges PDF and LATEX and Markup using
color: the unique colors of each element. However,
utilizing color also implies that it occupies a channel
within the PDF output, leading to specific challenges.

First, there are instances where elements ini-
tially assigned a specific color by the author are
overwritten in my process, resulting in the loss of
original color information. Second, some elements,
such as hyperlinks or caption labels in figures and
tables (as depicted in Figure 2), derive their colors
from package-level definitions rather than directly
from the user’s LATEX source code. For example, the
\url command standardizes hyperlink colors across
the document, which precludes assigning unique col-
ors to individual links. Similarly, captions of figures
and tables typically do not allow for unique coloring.

To address these issues, my forthcoming work
will explore alternative methods beyond using color
as a markup channel. Specifically, I plan to employ
other embeddable features within the PDF, such as
the tagging capabilities offered by the tagpdf pack-
age, as discussed in Section 5. By manually writing
these tags, I aim to preserve the distinctiveness of
document elements without overriding the original
color assignments.

6.2 Parsing LATEX code with TEX engines

Despite meticulous efforts to parse user intent in their
writing, a significant portion of papers from the arXiv
remains under-annotated. My assumption was that
every well-structured paper would include essential
elements such as a title, author information, address,
section titles, and body text. However, in practice,
approximately 40% of papers lack annotations for at

least one of these components. The most commonly
missing annotations are those for authors, titles, and
abstracts, often due to the use of customized style
files that obfuscate or alter standard formatting.

In Section 3.1, I discuss how user-defined mac-
ros have been partially managed using the de-macro
package. However, numerous style files from jour-
nals and conference proceedings introduce additional
commands, complicating the parsing process for the
Python-based parser pylatexenc. The flexibility of
LATEX, attributed to its Turing-completeness [6], par-
ticularly challenges pylatexenc due to the prevalent
use of the \def commands and \if conditions in
style files, rendering the parser ineffective.

A TEX engine, which must parse the source
file during compilation, provides tracing options like
\tracingmacros=1 that help humans understand
how the TEX engine expands custom commands.
This tracing is detailed through logs that elucidate
the functioning of various packages. There are LATEX
packages available to assist users in simplifying the
log to make understanding the expansion of mac-
ros easier [10, 14]. Building on this, my planned
approach involves enhancing the Python parser to
interpret these logs. By leveraging the TEX engine’s
capabilities through log analysis, the parser is then
expected to construct and interpret abstract syntax
trees more accurately.

6.3 expl3 in LATEXML

Section 3.3 discusses how I utilized LATEXML to stan-
dardize mathematical formulas and tables within the
paper code. This standardization process can be
notably time-consuming. If expl3 is not included
in the preamble, this conversion only takes a few
seconds. However, if expl3 is loaded in a paper’s pre-
amble, converting the LATEX source code into HTML
using LATEXML can take over 20 minutes with TEX
Live 2024, or 10 minutes with TEX Live 2021. The
increased processing time can be attributed to the
necessity for LATEXML to load the entire expl3 pack-
age during each conversion, a package that has seen
significant expansion in recent years due to active
development. The LATEXML development team has
acknowledged this issue and is considering solutions
such as caching expl3.sty or rewriting LATEXML in
Rust to improve efficiency.3

In future work, I plan to evaluate the potential
impact of disabling the expl3 package loading on the
standardization process. I anticipate minimal impact,
as the standardization primarily depends on packages

3 github.com/brucemiller/LaTeXML/issues/2268

Bridging scientific publication accessibility: LATEX–markup–PDF–alignment

https://github.com/brucemiller/LaTeXML/issues/2268

184 TUGboat, Volume 45 (2024), No. 2

related to mathematics and table formatting rather
than the expl3 package.

7 Conclusion

In this paper, I introduce a method for enhancing
the accessibility of PDF files that are compiled from
LATEX sources. This approach leverages coloring
techniques to generate accessibility annotations and
to align content across LATEX, PDF, and various
markup languages. Currently, my method applies
exclusively to scientific papers available on arXiv
that include LATEX source code. However, it also
serves a broader purpose by facilitating the creation
of datasets. These datasets can be utilized to train
machine learning models, which can improve the
generation of accessibility annotations for scientific
papers where only the PDF versions are available.
This development holds the potential for increasing
the accessibility of scientific literature.

Acknowledgement

This work was conducted within the research project
InsightsNet (insightsnet.org) which is funded by
the Federal Ministry of Education and Research
(BMBF) under grant no. 01UG2130A.

References

[1] L. Blecher, G. Cucurull, et al. Nougat:
Neural optical understanding for academic
documents, 2023. arxiv.org/abs/2308.
13418.

[2] S. Brinn, C. Cameron, et al. A framework for
improving the accessibility of research papers
on arxiv.org, 2024. arxiv.org/abs/2212.
07286.

[3] D. Cervone. MathJax: a platform for
mathematics on the web. Notices of the AMS,
59(2):312–316, 2012.

[4] C. Duan, Z. Tan, S. Bartsch. LaTeX
rainbow: Universal LaTeX to PDF document
semantic & layout annotation framework.
In Proceedings of the Second Workshop
on Information Extraction from Scientific
Publications, T. Ghosal, F. Grezes, et al.,
eds., pp. 56–67, Bali, Indonesia, Nov. 2023.
Association for Computational Linguistics.
doi.org/10.18653/v1/2023.wiesp-1.8

[5] U. Fischer. On the road to Tagged PDF:
About StructElem, marked content, PDF/A
and squeezed Bärs. TUGboat 42(2):170–173,
2021. doi.org/10.47397/tb/42-2/
tb131fischer-tagpdf

[6] A.M. Greene. BASIX: An interpreter written
in TEX. TUGboat 11(3):381–392, Sept. 1990.
tug.org/TUGboat/tb11-3/tb29greene.pdf

[7] P. Gács. de-macro—Expand private macros
in a document, Dec. 2020.
ctan.org/pkg/de-macro

[8] ISO Central Secretary. Document management
applications — electronic document file
format enhancement for accessibility. Standard
ISO 14289-2:2024, International Organization
for Standardization, Geneva, CH, 2024.
www.iso.org/standard/82278.html

[9] J. Laurens. Direct and reverse synchronization
with SyncTEX. TUGboat 29(3):365–371, 2008.
tug.org/TUGboat/tb29-3/tb93laurens.pdf

[10] B. Le Floch. unravel: Watching TEX digest
tokens, Jan. 2024. ctan.org/pkg/unravel

[11] M. Li, Y. Xu, et al. DocBank: A benchmark
dataset for document layout analysis.
In Proceedings of the 28th International
Conference on Computational Linguistics,
D. Scott, N. Bel, C. Zong, eds., pp. 949–960,
Barcelona, Spain (Online), Dec. 2020.
International Committee on Computational
Linguistics. doi.org/10.18653/v1/2020.
coling-main.82

[12] J. MacFarlane, A. Krewinkel, J. Rosenthal.
Pandoc. github.com/jgm/pandoc

[13] B. Miller. LATEXML: A LATEX to
XML/HTML/MathML Converter, Feb.
2024. math.nist.gov/~BMiller/LaTeXML/

[14] F. Mittelbach. The trace package. TUGboat
22(1/2):93–99, Mar. 2001. tug.org/TUGboat/
tb22-1-2/tb70mitt.pdf

[15] F. Mittelbach, C. Rowley. LATEX Tagged
PDF—a blueprint for a large project.
TUGboat 41(3):292–298, 2020. doi.org/10.
47397/tb/41-3/tb129mitt-tagpdf

[16] C. Rowley, U. Fischer, F. Mittelbach.
Accessibility in the LATEX kernel—
experiments in Tagged PDF. TUGboat
40(2):157–158, 2019. tug.org/TUGboat/
tb40-2/tb125rowley-tagpdf.pdf

[17] J. Singer-Vine, The pdfplumber contributors.
pdfplumber, July 2024.
github.com/jsvine/pdfplumber

⋄ Changxu Duan
Technische Universität Darmstadt
Residenzschloss 1
64283 Darmstadt
Germany
changxu.duan (at) tu-darmstadt dot de
ORCID 0000-0003-0547-0901

Changxu Duan

https://insightsnet.org
https://arxiv.org/abs/2308.13418
https://arxiv.org/abs/2308.13418
https://arxiv.org/abs/2212.07286
https://arxiv.org/abs/2212.07286
https://doi.org/10.18653/v1/2023.wiesp-1.8
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://tug.org/TUGboat/tb11-3/tb29greene.pdf
https://ctan.org/pkg/de-macro
https://www.iso.org/standard/82278.html
https://tug.org/TUGboat/tb29-3/tb93laurens.pdf
https://ctan.org/pkg/unravel
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://github.com/jgm/pandoc
https://math.nist.gov/~BMiller/LaTeXML/
https://tug.org/TUGboat/tb22-1-2/tb70mitt.pdf
https://tug.org/TUGboat/tb22-1-2/tb70mitt.pdf
https://doi.org/10.47397/tb/41-3/tb129mitt-tagpdf
https://doi.org/10.47397/tb/41-3/tb129mitt-tagpdf
https://tug.org/TUGboat/tb40-2/tb125rowley-tagpdf.pdf
https://tug.org/TUGboat/tb40-2/tb125rowley-tagpdf.pdf
https://github.com/jsvine/pdfplumber

	Introduction
	Related work
	LaTeX to markup transformation
	LaTeX–PDF alignment methods

	Methodology
	Preprocessing LaTeX code
	Compiling LaTeX and extracting annotations
	Standardization of annotations

	Serving as a dataset-making pipeline
	Comparison to tagpdf and SyncTeX
	Future work
	Alignment without coloring
	Parsing LaTeX code with TeX engines
	expl3 in LaTeXML

	Conclusion

