TUG 2024

Accessibility

Multilingual
Document Processing

Literate Programming
Software & Tools

Humanities

IATEX

Publishing
Hyphenation
Fonts

Abstracts

TUG Business
Advertisements

Cartoon

News

166
168
172

174

179

185
189

193

196

201
203
211
221
227

234

237

240
246

253

257
264

268

271
274

283

285
286
287

288
173

289
291

290
292

TUGBoAT

Volume 45, Number 2 / 2024
TUG 2024 Conference Proceedings

Conference information and program

Mitchell Gerrard / TUG 2024 in Prague

Klaus Hoppner / TUG 2024 Annual General Meeting notes
Simon Pfahler / Easy colorblind-safe typesetting:

General guidelines and a helpful IATEX package
Changxu Duan / Bridging scientific publication accessibility:

IATEX-markup—PDF-alignment
Norbert Preining / TEX (Live) and accessibility at arXiv
Jeffrey Kuan / Legal and cultural landscape of mathematics accessibility

in the United States: 2024
Boris Veytsman / Extending Peter Flynn’s bookshelf package

for multilanguage libraries
Mitchell Gerrard / Holon programming regained
Jérémy Just / On-demand production of TEX DVDs: first feedback
Martin Ruckert / Profiling TEX input files
Vit Stary Novotny / Markdown themes in practice
Didier Verna / A large-scale format compliance checker for TEX Font Metrics
Marei Peischl, Marcel Kriiger, Oliver Kopp / Creation of IATEX documents

using a cloud-based pipeline
Antoine Bossard / A short note on typesetting Latin verse scansion

with IATEX and LualATEX
Frank Mittelbach, Ulrike Fischer / IATEX Tagged PDF project progress report

for summer 2024
IATEX Project Team / IATEX news, issue 39, June 2024
Michal Hoftich / Web page to PDF conversion with Rmodepdf:

Leveraging LualATEX for e-book reader-friendly documents
Rishikesan T, Apu V, Rajagopal CV, Radhakrishnan CV /

Navigating common challenges in manuscript submission:

Insights for authors and publishers using Elsarticle and CAS packages
Jean-Michel Hufflen / Making BachoTEX proceedings — extended version
Andrew G. Watters / Full spectrum litigator:

A TEX-themed workflow for a small litigation law firm
Ondrej Sojka / Expanding hyphenation patterns across Slavic languages
Boris Veytsman / Packaging Arsenal fonts for (X /Lua)ATEX
Abdelouahad Bayar / dynMath: Underlying principles of the design
TUG 2024 abstracts (Fowler, Goulet, Han Thé Thanh, Lang, Mittelbach,

Obbels, Ruckert, samcarter, Snapp, Tiessen, Vanék, Verna, Wright)

Die TgXnische Komédie: Contents of issue 2/2024
La Lettre GUTenberg: Contents of issue 52 (2024)
MAPS: Contents of issues 53-54 (2023-2024)

Jim Hefferon / TUG bursary committee report for 2024
TUG institutional members

TEX consulting and production services
TUG 2024 sponsors

John Atkinson / Comics: Disaster area; Fontains

Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2024 dues for individual members are as follows:

» Trial rate for new members: $35.

= Regular members: $115.

m Special rate: $85.
The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2024 is $125.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

About the cover

The cover graphic was created by Jennifer Claudio
for the TUG’24 conference in Prague, in consulta-
tion with Tom Hejda, the principal organizer. The
musical fragments are from Dvordk’s Humoresque;
the font, Zag Regular, is similar to that used by the
venue, Hotel Grandior; the hotel facade and other
Prague landmarks fill the image.

Trademarks

Many trademarked names appear in the pages of
TUGDboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: August 2024]
Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TgX-arcana®
Arthur Rosendahl, President™
Boris Veytsman®*, Vice President
Karl Berry*, Treasurer
Jim Hefferon*, Secretary
Barbara Beeton*
Johannes Braams
Max Chernoff
Kaja Christiansen
Ulrike Fischer
Klaus Hoppner
Tom Hejda
Jérémy Just
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937-2019),
Founding Fxecutive Director
Hermann Zapf (1918-2015), Wizard of Fonts
*member of executive committee
fhonorary
See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses Electronic mail
TEX Users Group General correspondence,
P.O. Box 2311 membership, subscriptions:
Portland, OR 97208-2311 office@tug.org
U.S.A.

Submissions to TUGboat,
Telephone letters to the Editor:

+1 503 223-9994 TUGboat@tug.org

Fax Volunteer TEXnical support,
+1 815 301-3568 public mailing list:
Web support@tug.org

tug.org
tug.org/TUGboat

Contact the
Board of Directors:
board@tug.org

Copyright (© 2024 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included. An information notice to the TUGboat editors
regarding such redistribution is appreciated.

2024 Conference Proceedings

TEX Users Group

Forty-fifth annual TUG conference
Prague, Czechia

July 19-21, 2024

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON
PROCEEDINGS EDITOR KARL BERRY

VOLUME 45, NUMBER 2, 2024
PortLAND, OREGON, U.S.A.

166

TUGboat, Volume 45 (2024), No. 2

TUG 2024 — Prague, Czechia— July 19-21, 2024

The forty-fifth annual conference of the TEX Users Group
https://tug.org/tug2024 = tug20240tug.org

Conference committee
Tom Hejda, principal organizer
Michal Hoftich

Sophia Laakso

Ondfej Sojka

Petr Sojka

Karl Berry

Conference artwork: Jennifer Claudio

Thanks to all!

TeX

Participants

Giedrius Andreikénas, VTEX

Nelson Beebe, University of Utah
Doris Behrendt, DANTE e.V.

Antoine Bossard, Kanagawa University
Johannes Braams, TEXniek

Erik Braun, CTAN

Ben Davies, Overleaf

Changxu Duan, TU Darmstadt

Gert Fischer, Bar Backup Crew

Ulrike Fischer, INTEX Project

Stephen Fulling, Texas A&M University
Mitchell Gerrard

Vincent Goulet, Université Laval
Enrico Gregorio, Universita di Verona, IATEX Project
Max Griinther

Tom Hejda, Overleaf

Ahmed Hindawi

Klaus Héppner, DANTE e.V., TUG
Michal Hoftich

Jean-Michel Hufflen, FEMTO-ST
Oliver Kopp, JabRef e.V.

Marcel Kriiger, INTEX Project

Jeffrey Kuan, Tailor Swift Bot
Jaromir Kuben, University of Defence
Sarah Lang, University of Graz

Carla Maggi

Frank Mittelbach, INTEX Project

Erik Nijenhuis

Sponsors

TgEX Users Group

CSTUG

DANTE e.V.

Google

Overleaf

Pearson Addison-Wesley

STM Document Engineering Pvt Ltd
with generous assistance from many
individual contributors.

g CSpe dante.. Google Bverleaf s TiX

Norbert Preining, arXiv

Wim Obbels, KU Leuven

Marei Peischl, peiTEX, Island of TEX

Simon Pfahler, University of Regensburg

Rajagopal C V, STM Document Engineering Pvt Ltd

Aravind Rajendran

Daniel Renschler

Rishikesan Nair T, STM Document Engineering Pvt Ltd

Martin Ruckert, Munich University of Applied Sciences

Volker RW Schaa, DANTE e.V.

Shanmugam Pillai A M, STM Document Engineering
Pvt Ltd

Petr Sojka, Masaryk University

Ondjiej Sojka, Masaryk University

Vit Stary Novotny

Han Thé Thanh, Trivic s.r.o.

Tyge Tiessen

Julija Tres¢enko, VTEX

Christof Ullwer

Jan Vanék, Trivic s.r.o.

Didier Verna, EPITA Research Lab

Boris Veytsman, Chan Zuckerberg Initiative,
George Mason University, TUG

Ulrik Vieth

Andrew G. Watters, Andrew G. Watters, Esq.

Alan Wetmore

Joseph Wright, INTEX Project

Jiri Zlatuska, Masaryk University

Anonymous x2

Thursday,
July 18

Friday,
July 19

Saturday,
July 20

Sunday,
July 21

TUG 2024 program

14:00 IAMTEX developers’ workshop: Tagging PDF documents, Faculty of Mathematics and Physics, Sokolovska 49/8
18:30 Reception at Hotel Grandior (until 19:50)
08:30 Boris Veytsman, TEX Users Group Welcome
09:00 Norbert Preining TEX (Live) at arXiv
09:30 Mitchell Gerrard Holon programming regained
10:00 Vincent Goulet, U. Laval You (S)wove? Well, (S)tangle now!
10:30 Break
11:00 Martin Ruckert, Munich Univ. of Appl. Sci. Profiling to TEX input files
11:30 Tyge Tiessen Rewriting TEX today
12:00 Didier Verna, EPITA Research Lab A large scale format compliance checker for TEX font metric files
12:30 Lunch
13:15 Participant group photo
13:30 Boris Veytsman, Chan Zuckerberg Initiative, Packaging Arsenal fonts for XqIATEX and LualATEX
George Mason Univ., TUG
14:00 Vit Stary Novotny Markdown themes in practice
14:30 Wim Obbels, Bart Snapp, Jim Fowler; Ximera interactive math educational resources for all: From IATEX
KU Leuven, Ohio State Univ. source code to PDF, HTML and beyond
15:00 Sarah Lang, Univ. of Graz IATEX in the Digital Humanities
15:30 Break
16:00 Oliver Kopp, Marcel Kriiger, Marei Peischl; Tutorial: Creation of INTEX documents using a cloud-based pipeline
JabRef e.V., IATEX Project,
peiTEX & Island of TEX
08:30 Michal Hoftich Web page to PDF conversion with Rmodepdf: Leveraging LualATEX
for e-book reader-friendly documents
09:00 Simon Pfahler, Univ. of Regensburg Easy colorblind-safe typesetting: General guidelines and a helpful
IMTEX package
09:30 Changxu Duan, TU Darmstadt Bridging scientific publication accessibility: INTpX—markup—PDF
alignment
10:00 Joseph Wright, IATEX Project Templates: Prototype document elements
10:30 Break
11:00 Norbert Preining arXiv’s role in making research accessible
11:30 Ulrike Fischer, I#TEX Project Progress in the INTEX tagging project: 2024
12:00 Frank Mittelbach, IATEX Project Hooks, sockets and plugs
12:30 Lunch
13:30 Jeffrey Kuan, Tailor Swift Bot End-user usage of accessibility packages and templates
14:00 Vincent Goulet A journey through the design of (yet another) journal class
14:30 Jean-Michel Hufflen, FEMTO-ST Making BachoTgX proceedings
15:00 Rishi T, Apu V, Rajagopal CV, Navigating common challenges in manuscript submission:
Radhakrishnan CV, STM Document Insights for authors using Elsarticle and CAS packages
Engineering Pvt Ltd
15:30 Break
16:00 Andrew G. Watters Full spectrum litigator
16:30 samcarter The moloch beamer theme
17:00 Rishi T, Rajagopal CV Tutorial: TEXFolio — Manuscript preparation system using TEX
19:00 Banquet, Restaurace Tiskdrna, Jindrisskd 22
09:00 Ondfej Sojka, Masaryk Univ. Expanding hyphenation patterns across Slavic languages
09:30 Antoine Bossard, Kanagawa Univ. On typesetting Latin verse scansion with IATEX and LualATEX
10:00 Jan Vanck, Han Thé Thanh, Trivic s.r.o. Exploring Primo: A developer’s perspective
10:30 Break
11:00 Boris Veytsman Extending Peter Flynn’s bookshelf package for multilanguage
libraries
11:30 Joseph Wright siunitx development continues: 2024
12:00 TUG Annual General Meeting
12:30 Lunch
13:30 Didier Verna A couple of extensions to the Knuth-Plass algorithm
14:00 Martin Ruckert The color concept of HiITEX
14:30 Closing & final break
16:00 Organ concert, St. Salvator church, Salvdtorskd 1

168

TUG 2024 in Prague
Mitchell Gerrard

The entire conference was streamed at no charge on
YouTube. Each day’s complete stream, and eventu-
ally each talk as an individual video, can be accessed
via youtube.com/@TeXUsersGroup.

Thursday, July 18

TUG 2024 was in Prague, Czechia, home of beautiful
architecture, beloved authors, and many brilliant
TEXnicians. The conference began with a reception
at the event’s venue, the Hotel Grandior.

Friday, July 19

Boris Veytsman opened the conference, welcoming
the expectant attendees; then: we were on our way.

Norbert Preining gave a prerecorded video talk
about TEX on arXiv. Operating since 1991 from Cor-
nell, arXiv is the oldest and largest server hosting
preprints of largely scientific publications, with no
paywall. Norbert talked about supporting old soft-
ware, including multiple versions of TEX, and gave
an overview of the new submission software, which
is being rewritten in a combination of Python and
Docker containers, the goal being easy and painless
submission to arXiv.

Next, I rooted around through the historical
precursors of literate programming. An early WEB-
like paradigm called “Holon Programming” was de-
scribed in a hard-to-find technical report by Pierre-
Arnoul de Marneffe, but it is now typeset and freely
available online.

Vincent Goulet presented on a literate program-
ming workflow he developed for the R ecosystem,
in the context of teaching courses related to actuar-
ial science. A literate setup allows Vincent to keep
teaching materials for himself, students and TAs in
one file, which includes: lecture notes, questions and
solutions, and unit tests. He described a circular
dependency issue he ran into in this setup, and pro-
vided a clever way out. (During the talk a tiny spider
appeared in front of me, suspended from the high
conference ceiling, in search of weaving some web.)

Martin Ruckert described a profiler he wrote for
TEX. A profiler is a tool to tell you where software
spends the majority of its time when running on
some input, so a developer can know where to apply
optimizations. Martin said we should never optimize
for speed without a profiler. His TEX profiler is
aimed for use by macro TEXnicians whose macros
will be used frequently by many people; the document
author doesn’t need a profiler, unless curiosity counts
as a necessity. We looked at how to optimize an input

Mitchell Gerrard

doi.org/10.47397/tb/45-2/tb140gerrard-tug24

TUGDboat, Volume 45 (2024), No. 2

example from the Book of Numbers, and Martin
encouraged us to only apply optimizations if they
can be done within a day or so.

Tyge Tiessen rewrote the entirety of TEX82 in
Rust (yes, it even passed the TRIP test) and he lived
to tell the tale. Tyge’s initial goal of learning Rust
through a medium-sized project expanded a bit when
he settled on reimplementing TEX. He began with
a straightforward translation of each module, using
Rust’s unsafe keyword to access globals, and creat-
ing a nice approximation of Pascal’s goto statements.
Eventually this was refactored to remove all explicit
global accesses. Like Knuth’s code, Tyge’s version
includes no external dependencies. I say: respect.

Didier Verna presented on the design of a parser
within his platform for experimenting with typeset-
ting algorithms, which is written in Common Lisp.
He spoke about the need for robustness and flex-
ibility in software design, and confessed to being
a “flexibility psychopath”: there are now around
a dozen recovery options in his parser. I learned
of a (flexible!) error handling system in Common
Lisp that improves upon traditional try/catch mech-
anisms by allowing you to restart computation at
arbitrary program locations. Didier’s parser vali-
dated nearly 80,000 font metric files, finding only
two truly unusable fonts among the 770 flagged as
non-compliant.

We took a break for lunch and the group photo,
which included many shifts up a big set of steps
as we worked to get everybody into the camera’s
viewfinder.

Boris Veytsman began by highlighting recent
work in decolonization on reclaiming cultural tradi-
tions, including typography. Specifically — Ukrain-
ian typography, which has a rich history distinct from
Russian letterforms. Boris showed a new Ukrainian
font, Arsenal, recently added to TEX Live. The spec-
imens shown came from Boris’ personal collection of
favorite Ukrainian poets and writers. Arsenal was
designed to be “business-like”; Boris wondered aloud:
is it OK to mix business and poetry?

Vit Stary Novotny brought us behind the scenes
of producing documents for the International Soft-
ware Testing Qualifications Board. This is done by
populating a YAML file with easy-to-read-and-write
Markdown, and then running this file through a small
KTEX driver to produce output. The Markdown syn-
tax (with some extensions) has covered most use
cases for ISTQB, but TEXnicians can still jump in to
this workflow and tweak away if desired.

Wim Obbels spoke about Ximera, a tool for
making interactive courses and textbooks. Using
one IATEX source file, Ximera can generate PDF and

https://youtube.com/@TeXUsersGroup
https://doi.org/10.47397/tb/45-2/tb140gerrard-tug24

TUGboat, Volume 45 (2024), No. 2

HTML documents. Links to Desmos can be em-
bedded and there’s nice integration with Sage. If
teachers want to print out PDFs, e.g., for worksheets,
a QR code can bring students to interactive expla-
nations. Thanks to TEX-in-the-browser (is it magic?
no, it’s WebAssembly!), students just need a browser
to start playing with Ximera’s creations.

Sarah Lang talked about IXTEX use and non-
use within the digital humanities. She outlined how
this field uses IMTEX: for conference submissions,
archaeology catalogues, and print versions of digital
scholarly editions (thank goodness books haven’t
died out as predicted). Unfortunately many people
in digital humanities see INTEX as exclusionary or too
computer-y, but then end up increasing complications
by, e.g., hacking arcane solutions in Word. Sarah
mused on ways to reduce this reticence by way of
approachable tutorials and blogs.

Oliver Kopp began his talk on a cloud-based
pipeline for BWTEX by asking: why in the world would
we want such a thing? It’s to avoid the shoulder-
shrug-frustrations of “dunno, it worked on my ma-
chine”. Oliver stepped through creating a basic
package in this pipeline, and on the way featured a
package dependency printer, showed how to release
to CTAN using GitHub/GitLab and how to use this
workflow locally with the help of Docker. The day
ended with an interactive tutorial in this pipeline.

Saturday, July 20

Michal Hoftich presented on a tool that can take
HTML or ePub input, remove images and ads, and
output the pared-down pages to PDF. This tool’s
responsive design helps pages display nicely on a
huge screen or on a tiny phone. The overall feel is
similar to “reader mode” in Firefox. The tool can
also pre and postprocess HTML, and Michal showed
an example of using transformation rules to remove
certain HTML elements.

Simon Pfahler opened with an effective demon-
stration of why disregarding colorblindness can be a
problem: his title slide changed color schemes and
suddenly the text disappeared! This was a simula-
tion of colorblindness, but problems like this arise
frequently, as five percent of people have some form
of color vision deficiency. Simon looked at colorblind-
safe design, including the most important rule: al-
ways provide information in more ways than just
color. He urged developers to think about color
use when designing defaults, and introduced the
colorblind package, with color definitions of vari-
ous colorblind-safe schemes.

Changxu Duan talked about the difficulties in-
volved in getting large language models (LLMs) to

169

consume scientific papers. Most LLMs made for
this purpose are tailored to IATEX input, not PDF,
which an LLM interprets as one unstructured image.
Changxu helps LLMs along with reading PDFs by
coming up with clever ways to convert its contents
into a mix of “vanilla” KTEX and Markdown, allow-
ing LLMs to offer better summaries, related paper
recommendations, etc.

Joseph Wright presented on work that’s been 24
years in the making: “templates” in IXTEX. The idea
is to give the user “instances” of a standard way to
implement something, and the user can then tweak
a few small parameters. There are a small number
of template types (or “things”). The talk was quite
interactive, with lots of calls to use some other word
than “template”. This caused Frank to put his head
in his hands; Joseph snapped a picture of this from
the podium.

Norbert Preining gave a second video talk on
how arXiv makes research accessible. Online scien-
tific work is mostly in PDF form, but if one is, e.g.,
a blind researcher, this file format is often unhelpful.
HTML is a better solution for accessibility, with re-
sponsive design, dark mode, built-in language transla-
tions, etc. Norbert described the work done at arXiv
to convert the K TEX sources submitted with most up-
loads into HTML. There are still some issues, such as
missing TikZ support, but the response from the com-
munity thus far has been overwhelmingly positive.

Ulrike Fischer presented on progress in tagging
PDF documents. But as Norbert just said, HTML is
generally more accessible, so why bother with PDFs?
Well, not every use of PDF can be replaced by HTML.
PDFs are easier to handle offline and to archive; it’s
a faithful representation: you can save and view it
on most machines without the hassle of needing to
load multiple files, cookies, session IDs, etc. Ulrike
showed the status of tagging efforts in various BTEX
packages, and it’s coming along swimmingly well.
She opened with a polar bear meme and ended with
a cute teddy bear slide.

Frank Mittelbach began with a simple obser-
vation: hooks are devices on which you can hang
multiple things. There were no hooks in early ver-
sions of TEX, then a few were added (including the
AtBeginDocument hook), and today there’s a gen-
eral hook mechanism. The new hook system reduces
the brittle patching that was/is rampant in many
packages. Frank then spoke about sockets, in which
only one thing can be plugged at a time. These are
useful for tightly controlled code which can either be
turned “on” or “off”. Didier joked about renaming
sockets and hooks to “socks” and “feet”.

TUG 2024 in Prague

170

Jeffrey Kuan brought us into the realm of U.S.
laws relating to accessible documents. How can we
support a typical U.S. mathematician to create doc-
uments that meet legal requirements? In just a few
years, all public U.S. universities and colleges will
be required to make all course material “accessible”;
this may or may not include PDFs posted to arXiv.
But many documents being used in courses today
are still not accessible, and most instructors don’t
learn about accessibility, so there needs to be a set
of solutions to these problems, and quick. These
could include standardized courses on IATEX and on
accessibility in graduate school.

Vincent Goulet was tasked by The Canadian
Journal of Statistics to create a bespoke class in
IMTEX that had a distinct look and feel from their
publisher’s (Wiley) class. So Vincent revamped
the old class (from 1994!), replacing crowded head-
ers with breathable ones; stacked English/French
headers with side-by-side ones; and Times New Ro-
man/Helvetica fonts with STIX/Fira ones. Many
other features make Vincent’s new class a pleasure
to use and, upon TEXing, to read.

Jean-Michel Hufflen presented on making the
proceedings for BachoTEX and Cahiers GUTenberg.
Issue #57 of Cahiers was published in 2012, and
after ten years, issue #58 came out. So there was
a backlog of submitted articles whose compilation
required all the varieties of TEX engines. And for
BachoTgX, certain extensions were necessary, such as
tables of contents in both English and Polish. Jean-
Michel used a TEX parser in Scheme to do certain
programmatic tasks, and generated the article files
based on a makefile. Boris interjected that “People
who don’t want to use make just reinvent it.”

Rishi T spoke on challenges in manuscript sub-
mission from a typesetter’s perspective. His company
receives thousands of articles to typeset on a monthly
basis. Well-designed class files are a huge help for
both authors and typesetters. But certain metadata
such as affiliation fields can come in varying formats
requiring a lot of manual checking by the typesetter.
To streamline the process, Rishi suggested better ed-
ucation for document authors, automated validators/
linters, and publisher participation in TEX confer-
ences.

Andrew Watters joined us in a video talk on
using IMTEX in the setting of a small law firm. He
didn’t want to be trapped by vendor lock-in of using,
for example, Microsoft’s suite of tools; so has turned
to the land of free software. We got to see inside
the workflow of his firm, and with a priest-like hand
gesture, we were all blessed with NDAs. Andrew
stepped us through his PHP scripts that generate

Mitchell Gerrard

TUGDboat, Volume 45 (2024), No. 2

ETEX documents that help him create essential legal
documents such as prebills for clients and pleadings
for the courts.

samcarter presented on a new Beamer theme
named Moloch, which is a slight variation on Metrop-
olis, one of the most-used and iconic Beamer themes.
Metropolis is lovely but now a bit rusty, being last
updated on CTAN in 2017. Moloch resolves many
of Metropolis’ incompatibilities, cleans up its code,
and uses Beamer tooling when possible. But it’s not
a 100% replacement of all the Metropolis features,
hence the name change. To try Moloch, most users
can simply replace metropolis with moloch in the
usetheme command.

Rishi T and Rajagopal CV gave an interactive
tutorial on TEXFolio; unfortunately I didn’t bring
my laptop so didn’t participate in this.

In the evening we all went to the banquet at
Restaurace Tiskarna, some in the upper level and
others of us in the comfortable cave environs. The
three-course meal was superb.

Sunday, July 21

At this point in the conference I had developed an
affection for the cappuccino machine in the lobby,
and felt anticipatory regret that I would soon be
leaving it.

Ondrej Sojka talked about expanding his previ-
ous work on hyphenation patterns in Czech to other
Slavic languages. There was a brief overview of Frank
Liang’s hyphenation method and the current trend
toward hyphenation based on phonetics rather than
on etymology. Ondfej’s goal was to improve upon
subpar hyphenation patterns in Slavic languages. To
do so, he used wikipedia datasets of word lists and
combined phonetic hyphenation with their IPA rep-
resentations.

Antoine Bossard presented on typesetting Latin
verse scansion. What is scansion? It’s the identifi-
cation of metrical feet within verse. “Feet”? That’s
the quantity and duration of syllable groupings. Po-
etic analysis has a standard notation (in the form
of diacritical marks) for these concepts, and An-
toine showed how to implement this notation in TEX.
He demonstrated this with a passage from Virgil’s
Aneid, which he even recited at Martin’s prompting.

Jan Vanek and Han Thé Thanh gave a demo
and explanation of their Primo tool, a WYSIWYG
structural PDF editor. How does one directly edit
a PDF? Well, the displayed document is actually
built upon XML in the background and immediately
produces PDF output in the editor. The tool is
collaborative; it’s like a Google Docs but for academic
publishing (whose large houses often use XML to

TUGboat, Volume 45 (2024), No. 2

encode their documents). Jan dove into the details
of how the collaborative updates work under the
hood, using a “TriLayers” abstraction.

Boris Veytsman extended the bookshelf pack-
age, from Peter Flynn, to handle font selection for
multilanguage libraries. Boris happily declared that
the original package and his extension have abso-
lutely no practical value, but: it’s fun. This project
included hacks in expl3 and Biber, and found ways
around limitations on the number of fonts you can
open at a time. Boris has plans to make the width
of a book’s spine vary depending on its actual size.

Joseph Wright gave a development update on
the siunitx package. His day job is a chemist, so
he works with lots of units. And he has a favorite
(joule per mole kelvin). Joseph gave an overview
of the long history of this package, whose latest
additions include complex numbers, a new model for
uncertainty, new SI prefixes, finer rounding control,
and better alignment in tables. One truism for a
package creator is that you can never anticipate all
desires from all people, and there will be some odd
requests.

Before lunch there was the TUG Annual General
Meeting, whose minutes will be given elsewhere in
this TUGboat issue.

Didier Verna spoke about extensions to the
Knuth-Plass justification algorithm. The original
algorithm uses a cost function that applies demerits
based on the context of looking at two consecutive
lines at a time. Didier introduces a new contextual
demerit: considering the beginnings and endings of
consecutive lines. The idea is to avoid consecutive
occurrences of common short words such as “and”.
He implemented the extension in his ETAP tool,
and demonstrated its effectiveness using Grimm and
Melville texts.

Martin Ruckert began by thanking samcarter
for helping him update to the Moloch Beamer theme
used for this presentation. Martin showed how his
HINT tool allows for a bigger design space for pro-
grammatic APIs than something like PDF’s fixed
format. This was demonstrated by stepping through
possible color specifications within HiITEX. Colors
can be nested within colors and you can specify
amounts of transparency for these overlays. Martin
ended festively, showing the TEX logo with slightly
overlapping harlequin-tinted boxes in the background
of each character.

Boris brought the session to a close, thanking
our team of Czech hosts: Tom Hejda, Michal Hoftich,
Ondrej Sojka, and Petr Sojka; and invited us to enjoy
the beautiful city of Prague.

171

The conference ended with an excursion to a
pipe organ concert at St. Salvator church. The or-
ganist was Luk&s Vendl (with some page-turning
help from conference organizer Tom Hejda), and he
charmed us with the following musical incantations.

Georg Muffat, Tocatta Septima
Matthias Weckmann, Magnificat Secundi Toni

Johann Gottfried Walther, Giuseppe Torelli’s Con-
certo in D minor transcribed for the organ

Dieterich Buxtehude, Toccata in D minor
Johann Pachelbel, Chaconne in F minor
Johann Sebastian Bach, Prelude & Fugue in E minor

After the concert we were invited to take a look
into the back of the organ where the pipes are housed,
and Tom — an organist himself — gave a mini lesson
on the mechanics of these marvelous machines.

Acknowledgment

I’d like to thank the TUG bursary for funding, which
supported me in attending this conference.

o Mitchell Gerrard
mitchell dot gerrard (at) gmail
dot com

TUG 2024 in Prague

172

TUG 2024 Annual General Meeting notes
Klaus Hoppner

Boris Veytsman, TUG vice president, opened the
meeting in Prague, Czechia, at approximately 12:00
CEST, Sunday, July 21, 2024.

Klaus Hoppner, TUG secretary, gave a TUG sta-
tus update and financial report. He showed a series
of slides, most of which are included in this report
(slides are omitted here if they merely duplicate in-
formation from web pages). A few numbers have
been corrected for publication here, but the results
are substantively the same.

1. The TUG board of directors. (tug.org/board)

2. “Formalities”: Klaus mentioned the TUG elec-
tion next year, and that executive director Robin
Laakso retired in September 2023; her daugh-
ter Sophia Laakso is the new office manager.
(tug.org/election)

3. “Members end of June 2024”: Klaus noted that
DANTE joint memberships were resumed this
year, thankfully.

4. “Profit & Loss 2022” showed the major income
and expense categories in 2022. Klaus noted
that there were three major donations in 2022
which are not expected to recur, so the total
contributions in 2023 will likely be substantially
less. (tug.org/tax-exempt)

5. “Assets and Liabilities” and “Committed Funds”
were next, both as of the end of 2023.

6. “International Conferences”: Klaus reported on
past and upcoming conferences, particularly not-
ing the welcome return of BachoTEX a couple
months ago. (tug.org/meetings)

7. “TEX Live/TEX Collection”: Klaus reported that
DVDs are no longer sent by default to members,
but a volunteer group will burn them on demand.
(tug.org/texcollection)

8. “Board Motions”.
(tug.org/board/motions.html)

9. “Goodbye”. Klaus ended his report and resigned
as TUG secretary due to other projects. We will
miss him in that role and are glad he’s staying
on the board.

After the slides, Boris Veytsman opened the
floor to discussion of helping TUG membership, or
any other topics. Tom Hejda commented that he
regards the TUG web site as feeling ancient, like
last century, even being difficult to find out how to
become a member.

The meeting was adjourned around 12:25 CEST.

doi.org/10.47397/tb/45-2/tb140tug24-agm

Annual General Meeting 2024 of the TeX Users Group

Klaus Hoppner (secretary) for the board

July 21, 2024

Members end of June 2024

At the end of June we had 1,039 paid members, with:
@ 999 renewals, 40 new (25 of them trial, 2 joint, 1 subscriber)
@ —41 compared to same time last year
@ 82 joint members
@ 416 with electronic-only option (& +33)

@ 343 with auto-renewal option
@ 16 of last year's 45 trial members renewed so far
o final numbers of last years:

December 2023: 1,144

December 2022: 1,162

December 2021: 1,210

December 2020: 1,189

December 2019: 1,238

December 2018: 1,214
December 2017: 1,178

Profit & Loss 2023

Income Expenses

Membership dues 75,918 Cost of goods sold
Product sales 3,655 TUGboat 29,540
Contributions 12,597 Software 3,120
Annual Conference -989 Fonts 1,495
Interest 4,144 Postage 2,480
Advertising 340 Other 639

Reimbursements -1,600 Office
Payroll 60,946
Overhead 15,783
Other 47
Sum 94,065 Sum 114,530
Net ordinary income -20,465
Assets and Liabilities (status end of 2023)
Assets Liabilities

Checkings/Savings 168,572 Committed funds 51,538
Member income 13,290
Payroll 978
Sum 168,572 Sum 65,806
Equity 102,766

https://tug.org/board
https://tug.org/election
https://tug.org/tax-exempt
https://tug.org/meetings
https://tug.org/texcollection
https://tug.org/board/motions.html
https://doi.org/10.47397/tb/45-2/tb140tug24-agm

TUGboat,

Volume 45 (2024), No. 2

Committed Funds (status end of 2023)

173

TUG Institutional Members

Fund Amount
Bursary 2,425
CTAN 10,294
GUST e-foundry 678
ATEX3 14,493
LuaTEX 2,192
LyX 400
MacTeX 4,868
PDF Accessibility 11,297
TeX Development 4,891
owed: 4,000
available: 891
Sum 51,538

International Conferences

Past

o ConTgXt meeting (Czech Rep., Sept. 10-16, 2023)
e BachoTgX 2024 (Poland, May 1-5, 2024)

o Dante 2024 (Germany, Apr. 4-6, 2024)

@ Journée GUTenberg (France, Nov. 18, 2023)

Upcoming

o ConTgXt meeting (Netherlands, Aug. 17-23, 2024)
o GulT meeting (ltaly, Oct. 12, 2024)

TEX Live/TEX Collection

o TEX Live 2024 released as planned

@ Team: Karl, Norbert, Siep Kroonenberg, Akira Kakuto et al.
@ No more physical TEX Collection DVDs produced, but ISO images
available for:
o TEX Live
o MIKTEX
o CTAN snapshot
@ Any of them requires a double layered blank DVD

@ For those who aren’t able to burn their own DVD, a group of
volunteers exists to burn DVDs on demand, see
https://tug.org/dvd/

Board Motions

2023.3
2023.4

2023.5
2023.6
2023.7
2023.8
2023.4
2024.1
2024.2

2024.3

Discontinue TEX Collection DVD (yes: 10, no response: 5)

Hire Sophia Laakso as office manager (yes: 13,
no response: 2)

Bylaws change regarding office manager (unanimously)
Bylaws change regarding executive committee (unanimously)
TUG 2024 in Prague (unanimously)

2024 fees (unanimously)

2024 budget (unanimously)

Ukrainian students at BachoTEX (unanimously)

Accepting a new institutional member (yes: 8, abstain: 5,

no response: 2)

Site access for subscribers (yes: 11, abstain: 1,
no response: 3)

TUG institutional members receive a discount

on multiple memberships, site-wide

electronic access, and other benefits:
tug.org/instmem

Thanks to all for their support!

American Mathematical Society, Providence,
Rhode Island. ams.org

Association for Computing Machinery,
New York, New York. acm.org

Aware Software, Newark, Delaware. awaresw.com
Center for Computing Sciences, Bowie, Maryland.
CSTUG, Praha, Czech Republic. cstug.cz
CTAN. ctan.org

Duke University Press, Durham,
North Carolina. dukeupress.edu

Hindawi Foundation, London, UK. hindawi.org

Institute for Defense Analyses, Center for
Communications Research, Princeton, New Jersey.

L3Harris, Melbourne, Florida. 13harris.com
IATEX Project. latex-project.org

MacTgEX. tug.org/mactex

Maluhy & Co., Sdo Paulo, Brazil. maluhy.com.br

Marquette University,
Milwaukee, Wisconsin. marquette.edu

Masaryk University, Faculty of Informatics,
Brno, Czech Republic. fi.muni.cz

Modular Font Editor K. mfek.org

Nagwa Limited, Windsor, UK. nagwa.com
NASA. nasa.gov

National Security Agency. nsa.gov

Ontario Tech University, Oshawa, Ontario,
Canada. ontariotechu.ca

Overleaf, London, UK. overleaf.com

StackExchange, New York City,
New York. tex.stackexchange.com

Tailor Swift Bot, College Station, Texas.
TEXFolio, Trivandrum, India. texfolio.org

Université Laval, Ste-Foy, Québec,
Canada. bibl.ulaval.ca

University of Oslo, Institute of Informatics,
Blindern, Oslo, Norway. uio.no

VTEX UAB, Vilnius, Lithuania. vtex.lt

174

Easy colorblind-safe typesetting: General
guidelines and a helpful BTEX package

Simon Pfahler

Abstract

Roughly 5% of people suffer from some sort of color-
vision deficiency (CVD) [13]. To create documents
that are accessible to anyone, it should therefore be
considered how affected people perceive the colors
in the documents. In colorblind-safe documents,
the contents are presented in a way such that the
same information is conveyed to readers regardless
of potential CVDs. We first discuss how color is
typically used in documents and categorize this into
three different use cases that need different color
schemes to convey the desired information. We then
present some easy to follow rules for typesetting
colorblind-safe documents. Finally, we take a look at
available colors in IXTEX and how well they are suited
for colorblind-safe documents. These considerations
have lead to the development of the colorblind
package, which we will introduce and discuss briefly.

1 Introduction

Human color perception is based on three types of
cone cells in our retinas [13], which enable us to
distinguish between different wavelengths of light.
A variation in the sensitivity of different cone cell
types can reduce or shift the color vision of affected
individuals. Such differences are called color-vision
deficiencies (CVDs), and are typically tested for using
Ishihara color test plates [1]; see an example in fig. 1.

The most common type of CVD is anomalous
trichromacy [13], where one cone type is less sensitive
than the others, leading to aberrant color perception.
The extreme case where one cone type is completely
absent or dysfunctional is known as total color blind-
ness [12].

People affected by a CVD typically have a harder
time picking up on information conveyed through
color. For example, the most common types of color
blindness, deuteranopia and protanopia, make it dif-
ficult to distinguish red and green [12].

In this paper we will first discuss how color
can be used in documents to encode information.
We will discuss general techniques and guidelines
to make documents more accessible to people with
CVDs. Additionally, we will investigate how well
(or rather how badly) the standard colors in XTEX
can be distinguished by people with CVDs. Finally,
we will give some remarks on the current state of
the colorblind package, and goals for its future
development.

Simon Pfahler

doi.org/10.47397/tb/45-2/tb140pfahler-colorblind

TUGboat, Volume 45 (2024), No. 2

Figure 1: Ishihara test plate number 9. Left side
(reads “74”) shows normal version, right side (reads
“21”) shows a simulation of protanopia, a type of
red-green color blindness.

2 Colorblind-safe design

When typesetting documents, we should pay atten-
tion to which color combinations we use within one
visual unit. A visual unit may be a graphic, a table
or a paragraph of text. The colors used in a visual
unit are called the color scheme. In this section, we
will first learn about different types of color schemes.
After that, we have the necessary tools to formu-
late some guidelines that we can follow to achieve a
colorblind-safe design.

2.1 Types of color schemes

In order to understand how to choose a suitable color
scheme, we first have to understand what types of
color schemes exist, and when each should be used.
Let us consider different cases in which we might
want to use colors to convey information. For this,
we follow five fictitious students through their 20-
week-long semester. At the end of each week they
have to take a test which is graded from “1” (good)
to “6” (bad). The average of these grades is their
overall grade at the end of the semester.

Average grades

=N W e Ot O

0 10 20 0 10 20
Week Week

Figure 2: Example graphic showing a typical use case
of a qualitative color scheme. Both graphics show the
same data, but the right one uses colors to make the
lines more distinguishable.

First, we might be interested in how the average
grade of each of our students changes during the
semester. This is plotted in fig. 2. The left graphic

https://doi.org/10.47397/tb/45-2/tb140pfahler-colorblind

TUGboat, Volume 45 (2024), No. 2

does not use color, and it is hard to distinguish
the lines, especially at crossings where it is unclear
which line goes where. In the right graphic, the
lines are colored, which makes it easier to extract
the information from the graphic. Now we can ask
ourselves: What does the color scheme need to satisfy
in order to be helpful? The only reason we introduce
color here is to help with distinguishing the lines.
Such a scheme is called a qualitative color scheme [3],
and its only goal is to provide colors that are easily
distinguishable, regardless of potential CVDs.

Next, we might be interested in the individual
grades of our students. They are given in fig. 3.

Al4]6]5]3]3]3]3]6]1]6]3]|5]4]1]4]2]1]3]5]4
Bl1]1]2)21231]1]1]|1]3]2][3]4[3]1]1]4]2
C|5]6]6]6]6]6]6]6]5]3]|6]6131613]3]5]6]4]6
D311 4313121 j2]1]J1]2]1]1]1]1]2
E[2]3]5]3]6]3]5]2]3]3]1]1]2]2]1]2)3]4]1]4

3]
[[2[R > 2|
mﬁlﬁlﬁllﬁlﬁlﬁll?lvlgllkmﬁll?lml@
ee

Figure 3: Example graphic showing a typical use case
of a diverging color scheme. Both graphics show the
same data, but the lower one uses colors to make the
graphic easier to understand.

In the uncolored graphic, it is difficult to see dif-
ferences between the students because the grade
information is provided only as text. By adding
color to this graphic, it becomes easier to interpret
since differences between students can be observed
without looking at the precise values. Again we ask
ourselves, what does a color scheme need to satisfy
in order to be suitable for this graphic? This time,
the colors should provide a continuous range between
two easily distinguishable extremes (in our case [l
for good and [l for bad grades). The middle color
of the scheme (in our case nearly white) should be a
neutral color. We call such schemes diverging color
schemes [3], and their goal is to visualize a range of
numbers [min, max] where the mid-point is consid-
ered “neutral”.

For the third type of color scheme, we consider
the weekly number of questions our students ask in
class, shown in fig. 4. We add color to this graphic for
the same reason as in the previous case of fig. 3 —it
helps us to discern patterns in the data. Even though
the graphic looks almost identical to the previous
one, our choice of color scheme should be different
due to a subtle difference in the type of information

175
AL]aB] 3] 2o 2 3] 1 1 4o 3] ool 1 2] 2]1]1
B[2]5]6]9]6]6]5]5]7]3]3]4]3]4]3]6]6]4]5]2
cle]e]i36]ol3]1]4]6]3]5]6]5]1]4]6]1]6]6]6
Dl6]s]7]4i26]5]8]7]6]6]4]8]8]4]i510[6]3]6
ELfefiof4]s]e]5]5]5] 7756l 7] 7]4]8]7]6]8
Week
AL]aBB] 2 o2 3 a1 a]o 3] ool 1 2] 2] 1]t
B[2]5]6]9l6]6]5]5]7]3]3]4]3]4]3]6]6]4]5]2
Cle]elm86]9l3]114]6]3]5l6]5]1]4]6]1]6]6]6
Dle|8]7]4[iZ6]5]8]7]6]6]4]8]8]4M8106]3]6
ERfdsoa]8l6l5l5]5]7l7]5]6]7]7]4]8]7]6]8
Week

Figure 4: Example graphic showing a typical use case
of a sequential color scheme. Both graphics show the
same data, but the lower one uses colors to make the
graphic easier to understand.

presented. Similar to before, the colors visualize
numbers in a range [min, max], but this time, the
mid-point is not considered neutral. That is why
we use a sequential color scheme [3], which helps to
visualize a range of numbers [min, max| where one
end is considered “neutral” (this is often 0), whereas
the other is considered “extreme”. Importantly, the
mid-point of such schemes is not special and often
arbitrary (in our example, it would change if the
maximum number of questions asked by any student
is higher).

2.2 Colorblind-safe color schemes

These three types of color schemes provide the ba-
sis for how we use color in documents. In order
to write colorblind-safe documents, it is important
that the schemes we use provide easily distinguish-
able colors that retain their meaning under potential
CVDs. Various such color schemes exist in the lit-
erature [2, 8, 14]. As an example, we focus on the
schemes designed by Paul Tol [14], as these make up
the most comprehensive set of such schemes that we
were able to find. As examples, fig. 5 shows the color
schemes used in the example plots from section 2.1.
These color schemes typically consist of the main
scheme, plus an additional color that can be used for
missing data.

2.3 Guidelines

CVDs appear in many different variations and grades
of severity, up to monochromacy, where different
colors can only be distinguished via their perceived
brightness. This means that while the color schemes
presented in this paper are easier to distinguish under
the most common CVDs, information encoded only
in color can never be completely colorblind safe. This
leads us to the most important rule in colorblind-safe
design [5]:

Easy colorblind-safe typesetting

176
Qualitative bright scheme
B 68 102 34 204 238 170 187
@ 119 204 136 187 102 51 187
B 170 238 51 68 119 119 187
DY (O (B0 (DY (B0 (O 0
O QY O O O g o

Diverging BuRd scheme

r ()

Sequential Y1IOrBr scheme
| s (@

Figure 5: Example color schemes by Tol [14]. For
the qualitative bright scheme, RGB values are given
above the colors, and the color name when using the
colorblind package is given below them.

Always provide information in

le 1: .
Rule more ways than just color.

But how does that rule work in practice? For this,
let us revisit the three graphics from section 2.1.
In figs. 3 and 4, the information encoded in color
is the same as the numbers inside the boxes, so
even if the color information cannot be picked up by
some individuals, the information is still present as
numbers, albeit in a more inconvenient way. These
two graphics can thus be considered colorblind-safe.
For fig. 2 however, without the color information, it is
difficult to distinguish the lines, so we need another
way to help the reader make this distinction. To
achieve this, we can for example introduce different
patterns in the lines, see fig. 6.

= N W e OO

Average grades

0 10 20 0 10 20
Week Week

Figure 6: Improved version of fig. 2, where every
second line is dashed to make lines distinguishable
even when the colors are removed.

If this rule is satisfied in a document, it is by
construction guaranteed to be colorblind-safe. How-
ever, this does not mean that it is convenient for
people with CVDs to extract the information, as in
the above examples from figs. 3 and 4. In order to

Simon Pfahler

TUGboat, Volume 45 (2024), No. 2

achieve the best possible result, a few more rules
should be considered when using color.

Stick to a color scheme.

(a) Do not mix colors within
a scheme.
(b) Do not use shades of colors.

Rule 2:

Colors within colorblind-safe color schemes are
designed to be easily distinguishable for people with
the most common CVDs, so we should use only colors
from one color scheme in any given visual unit. By
extension, even colors from the same scheme should
not be mixed, since this makes it harder to distin-
guish them. Even if the result of the mixing is easily
distinguishable for people with normal color vision,
the same might not be true under certain CVDs.
For the same reason, shades of colors (i.e., mixings
with black or white) should be avoided, because the
brightness of colors is also used to make sure the
colors are distinguishable.

Do not use color for information

Rule 3: and aesthetics simultaneously.

Color is often also used for aesthetic reasons, e.g.,
on a scientific poster. This is usually unproblematic,
as the color does not convey information in this case.
However, if color is used to convey information in a
visual unit, avoid using additional color for aesthetic
purposes, as this makes it more difficult to extract
the information encoded in the color.

Rule 4: | Do not use rainbow color schemes. |

Due to the many different colors in a rainbow
color scheme, they are inevitably difficult to distin-
guish under CVDs. Therefore, it is best to avoid
them. If a rainbow color scheme has to be used at
all cost, Paul Tol (and thus also the colorblind
package) provides both a discrete as well as a con-
tinuous version [14], which are optimized to be as
distinguishable as possible.

By following these four simple rules, we can
ensure that the information encoded in a document
is presented in a colorblind-safe way, and that it is
reasonably convenient for people affected by CVDs
to extract the information. As a side node, following
these rules also leads to documents that do not suffer
from information loss when printed in black and
white, which is usually also desirable.

3 Colors in BTEX

In this section, we take a look at how we use colors in
ITEX. For this purpose, we first consider the built-in
colors of the standard color package xcolor [9], and
test how well they can be distinguished under CVDs.
After that, we propose the use of the new package

TUGboat, Volume 45 (2024), No. 2

colorblind, which provides many colorblind-safe
schemes of all types mentioned in section 2.1.

3.1 The standard BTEX colors

When using colors in I#TEX, the most convenient
way is to use the built-in named colors, like gl or
[BT€&n. This is also what IXTREX packages like TikZ
do [7]. Figure 7 shows the 19 built-in named colors.

Figure 7: The 19 built-in colors from the xcolor
package.

These colors are certainly not all easily distin-
guishable even under normal vision, but we can easily
find over ten colors that look like they might work
well together.

Now let us consider in fig. 8 how these colors
look to a person affected by deuteranopia, a type of
red-green blindness. The colors get collapsed into
three categories, and the differences within each cat-
egory are mostly down to different brightness levels.
From these colors, there are maybe six distinguish-
able colors left that we could reasonably use in our
graphics, already including black and white. Also we
should keep in mind that we have considered only
deuteranopia so far; considering other common types
of color blindness as well would reduce the number
of distinguishable colors even further.

Figure 8: The 19 built-in colors from the xcolor
package as perceived under deuteranopia, in the same
order as seen in fig. 7.

Essentially, we see that the built-in colors by
xcolor are unsuitable for use in colorblind-safe docu-

177

ments. We therefore need an alternative for choosing
our colors.

3.2 The colorblind package

There are many ways of obtaining color schemes that
are better suited for colorblind-safe documents than
the standard IATEX colors. The most influential of
these tools is probably ColorBrewer [2]|. Such tools
make it easy to create color schemes, but to use
them in I4TEX, we usually have to define the colors
by hand. This is cumbersome, and is probably the
main reason why people stick to the standard colors
instead of better alternatives.

Thus, we have introduced the IXTEX package
colorblind [11], which defines color schemes that
can be used in colorblind-safe documents. Figure 5
shows examples of the schemes provided by this pack-
age. The color names all start with the scheme name,
e.g., T-Q-B for Tol’s Qualitative Bright scheme. The
scheme name is then followed by the number of the
color, e.g., T-Q-BO to T-Q-B6. In each scheme, color
number 0 is associated with bad/missing data and
should be used accordingly.

It might seem inconvenient at first that the
colors do not have natural names like red or green,
but there is a simple reason for this. Certain colors
(green, red) are often used by people with full color
vision to convey certain meanings (good, bad). This
meaning is difficult for people with CVDs to pick up.
By not using natural color names, it is easier to write
colorblind-safe documents that do not make use of
said connotations. Additionally, natural color names
can be cumbersome, e.g., when slight variations of a
color are used. It is annoying having to look up if a
color is called blue or cyan.

In addition to these simple color definitions, the
colorblind package also provides continuous pgf
colormaps for color schemes that allow interpola-
tion of their colors. These can be activated using
the abbreviated form of their color scheme name,
e.g., /pgfplots/colormap name=T-D-BR for Tol’s
Diverging Blue-Red color scheme.

4 Future plans for the colorblind package

As a last point in this paper, I would like to explain
my idea behind the colorblind package and discuss
how to realize this goal.

The vision I had in mind when starting work
on the colorblind package was to create a TEX
package that makes it possible to view elements of
a document as they are seen by people with CVDs.
This would make it easy to check if a document is
colorblind-safe directly during the writing process,
as opposed to current CVD simulators [4, 15], which

Easy colorblind-safe typesetting

178

are available only as a post-processing step. By hav-
ing a CVD visualization enabled during the writing
process, common mistakes such as the use of color
connotations mentioned above can easily be avoided,
leading to documents where colorblind-safeness is
not an afterthought, but is achieved naturally.

Such a functionality would be similar to how the
xcolor command \selectcolormodel{gray} con-
verts all colors to grayscale [9]. In fact, the most
promising way to implement this feature appears
to be the implementation of a new color model for
each type of CVD that should be supported. As the
xcolor package is slowly being replaced by the new
13color package within the new IATEX kernel [10],
an implementation of these new color models that
builds on 13color is advisable, as it is more future-
proof. A different approach was used for creating
the CVD versions of figs. 1 and 8, where the \color
command was redefined to convert the colors to a rep-
resentation of a CVD. Unfortunately, this approach
suffers from various limitations and is therefore not
viable for regular use.

In addition to this idea of providing CVD simu-
lation directly within I¥TEX, future additions to the
colorblind package will include options to change
the default colors of commonly used IATEX packages
to colorblind-safe alternatives, e.g., for pgfplots [6].

5 Conclusion

In this paper, we discussed how color-vision deficien-
cies affect the accessibility of documents. Through
some examples, we learned how color can be used in
documents to convey information. Then, we provided
some rules that help with achieving colorblind-safe
documents. Finally, we discussed which colors are
typically used in ITEX and how we can hopefully
improve the status quo by providing an easy way to
use colorblind-safe colors. The current and planned
features of the colorblind package can probably be
extended by other useful features for colorblind-safe
typesetting. If you have any suggestions for this, feel
free to contact me.

References

[1] J. Birch. Efficiency of the Ishihara test
for identifying red-green colour deficiency.
Ophthalmic and Physiological Optics,
17(5):403-408, Sept. 1997.

[2] C. Brewer. ColorBrewer, 2021.
github.com/axismaps/colorbrewer

[3] C.A. Brewer, G.W. Hatchard, M.A. Harrower.
ColorBrewer in Print: A Catalog of Color
Schemes for Maps. Cartography and
Geographic Information Science, 30(1):5-32,

Simon Pfahler

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

TUGboat, Volume 45 (2024), No. 2

Jan. 2003.
doi.org/10.1559/152304003100010929

N. Burrus. DaltonLens, 2021.
daltonlens.org/colorblindness-simulator

A. Campbell, C. Adams, et al. Web content
accessibility guidelines (WCAG) 2.2, 2023.
www.w3.org/TR/WCAG22/

C. Feuersanger. The pgfplots package. Create
normal/logarithmic plots in two and three
dimensions. pgfplots.sourceforge.net/

C. Feuersianger, H. Menke, et al. The pgf
package. Create PostScript and PDF graphics
in TEX. ctan.org/pkg/pgt

Y.G. Ichihara, M. Okabe, et al.

Color universal design: the selection of

four easily distinguishable colors for all

color vision types. In Color Imaging XIII:
Processing, Hardcopy, and Applications,

R. Eschbach, G.G. Marcu, S. Tominaga,

eds., vol. 6807, p. 680700. International
Society for Optics and Photonics, SPIE, 2008.
doi.org/10.1117/12.765420

U. Kern, XTEX Project Team. The zcolor
package. Driver-independent color
extensions for INTEX and pdfIATEX.
github.com/latex3/xcolor

ITEX Project Team. The [3kernel
package. IATEX3 programming conventions.
ctan.org/pkg/13kernel

S. Pfahler. The colorblind package. Easy
colorblind-safe typesetting.
github.com/simon-pfahler/colorblind

L.T. Sharpe, A. Stockman, et al. Opsin genes,
cone photopigments, color vision, and color
blindness. Color vision: From genes to
perception, 351:3-52, 1999. www.allpsych.
uni-giessen.de/karl/colbook/sharpe.pdf

M.P. Simunovic. Colour vision deficiency.
Eye 24(5):747-755, May 2010.
doi.org/10.1038/eye.2009.251

P. Tol. Paul Tol’s Notes: Colour schemes and
templates, 2021. personal.sron.nl/"pault/

M. Wickline. Coblis— color blindness
simulator, 2001. www.color-blindness.com/
coblis-color-blindness-simulator/

¢ Simon Pfahler
simon.pfahler (at) ur dot de
https://simon-pfahler.github.io
ORCID 0009-0001-7364-4005

https://github.com/axismaps/colorbrewer
https://doi.org/10.1559/152304003100010929
https://daltonlens.org/colorblindness-simulator
https://www.w3.org/TR/WCAG22/
https://pgfplots.sourceforge.net/
https://ctan.org/pkg/pgf
https://doi.org/10.1117/12.765420
https://github.com/latex3/xcolor
https://ctan.org/pkg/l3kernel
https://github.com/simon-pfahler/colorblind
https://www.allpsych.uni-giessen.de/karl/colbook/sharpe.pdf
https://www.allpsych.uni-giessen.de/karl/colbook/sharpe.pdf
https://doi.org/10.1038/eye.2009.251
https://personal.sron.nl/withtilde%20pault/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/

TUGDboat, Volume 45 (2024), No. 2

Bridging scientific publication accessibility:
ETEX-markup—PDF-alignment

Changxu Duan

Abstract

This paper introduces a method to enhance the ac-
cessibility of scientific publications across multiple
formats. Prior initiatives have predominantly cen-
tered on transforming IXTEX source code or PDF
documents into markup languages like XML and
Markdown. However, such methods typically over-
look preserving the visual layout inherent in PDF
pages. The approach in this paper exploits the color
properties in A TEX code to maintain consistency and
alignment between the visual presentation of docu-
ments in PDF format and the digital presentation
of markup languages and IXTEX code. This strategy
not only fills in the gaps of previous approaches but
also promotes the integration and accessibility of
scientific document formats.

1 Introduction

Accessibility in PDFs ensures that documents are us-
able by everyone, including those with disabilities, by
making them navigable and readable through assis-
tive technologies. This involves structuring PDFs
with metadata tags to define reading order and
document elements, embedding text attributes for
readability, providing alternative text for visual con-
tent, and including navigational aids like bookmarks.
These measures, aligned with standards like PDF/UA,
ensure that the PDFs are not only accessible but also
comply with legal requirements for inclusivity [8].

Accessible PDFs benefit not only individuals
with disabilities but also the broader user base. Fea-
tures that make documents accessible, such as clear
navigation and structured headings, improve the
overall user experience and enhance the document’s
usability for everyone. These features make it eas-
ier to navigate through the text, find information
quickly, and convert the document into other for-
mats as needed. Additionally, the structure required
for accessibility, such as tagged PDFs, aids in the
correct reflow of text and associated graphics when
adjusting the size of a document or its viewing mode.
This adaptability is essential as digital content is
increasingly accessed on a diverse array of devices,
including smartphones and tablets.

M TEX-sourced PDFs often lack accessibility pri-
marily due to the inherent complexity and customiza-
tion capabilities of KTEX. The IXTEX system allows
for a vast array of macros and packages, enabling
highly complex document structures that do not au-

179

tomatically support accessible features necessary for
assistive technologies, such as structured headings
and alternative text for images. Unlike modern docu-
ment creation tools that include built-in accessibility
features, traditional XTEX compilers like pdfTEX and
XATEX do not inherently support tagging.

Moreover, even with IXTEX packages designed
to facilitate tagging, such as tagpdf [5, 15, 16], inte-
grating these features requires significant technical
expertise and meticulous configuration. The numer-
ous IATEX macros can interact unpredictably, poten-
tially undermining the structural integrity needed
for accessible documents. Additionally, the TEX en-
gines that process WIEX are primarily focused on
print quality, not digital accessibility. This focus,
combined with a general lack of awareness among
IATEX users about accessibility standards, further
complicates the production of accessible PDFs. The
responsibility for ensuring accessibility often falls on
the authors, who must navigate the steep learning
curve of both ITEX and accessibility requirements.

Other studies on IATEX accessibility have con-
verted IATEX directly into a markup language, skip-
ping the generation of PDF files [2]. While converting
ITEX to markup languages directly might improve
accessibility by leveraging the inherent structural and
semantic capabilities of HTML or XML, it also means
losing out on the robust, cross-platform fidelity and
rich feature set that PDFs offer.

In this paper, I explore a method that adds
accessibility to existing PDF files without manually
altering the existing IATEX code.

2 Related work
2.1 HKETgX to markup transformation

Currently, two tools capable of converting ITEX
source code to markup languages are WTEXML [13]
and Pandoc [12]. However, both tools directly con-
vert from ITEX to markup languages like HTML
or Markdown without compiling to PDF first. This
approach bypasses some of the benefits that come
from generating and utilizing PDF files, including
the precise control over layout and typography that
PDFs offer.

2.2 HKETEX-PDF alignment methods

The current methods for aligning PDF and IXTEX
content typically rely on kernel patching or color-
based alignment techniques. One prominent kernel-
based alignment method is SyncTEX [9], widely im-
plemented across various ITEX editors. This method
provides a dynamic link between the source KTEX
code and the generated PDF, facilitating easy naviga-
tion between them. Color-based alignment methods

Bridging scientific publication accessibility: KTEX-markup-PDF-alignment

doi.org/10.47397/tb/45-2/tb140duan-bridging

https://doi.org/10.47397/tb/45-2/tb140duan-bridging

180

Auxiliary File

"#73£d16": {

Extract: "label":

: 1. Label for each token.

2. Section ID for each token. "section":

{\color{RGB}{253,22,173} (CNN) } "section":

"latex": " (CNN)",

"Equation",

Extract

TUGboat, Volume 45 (2024), No. 2

PDF File
Figure 2:
"Caption", .
Aligned
by We combine the convolutional layers with fully
Colors connected layers in a specific configration that has

achieved good performance on crater dete
2. Layer (a) is a 15x15 input image. Each candidate
example is scaled to this size. Laye

ETEX },
Source "#fe52cf": {
Code Annotate: "label":
Distinct color for each token. "latex": "(a)",

Extract

) . Annotations Coordinates
Document Structure Tree Fighe B Crater Convolutional Neural Network (CNN)
architecture computation graph. Each layer is identified
l: Titl with & letter and lines show processing from left to right.
itle
We combing the convolutional layers with fully
Markdown connected layers in a specific configration that has
HTML achieved 5\:_!_Jd pc"[T(ll;J‘\L.'lji_'e {n crater df:c"i:'HUI'I in Figure
B Layer @) is & 15x15 input image. Each candidate
: example is scaled to this size. Layers (B and &) are
Introduction Method ot = S Size, Layets W) and I
convolutional lavers with 20 filters each of size 4x4.
Each filter is passed over the filter in a sliding window

Figure 1: The overall process of accessibility annotation. The alignment of
ITEX—markup—PDF is built up with auxiliary files.

include approaches like those demonstrated by the
DocBank [11] dataset. In this dataset, different types
of page elements are assigned unique colors, which
are then used to facilitate the extraction and analysis
of document layouts.

My approach builds upon the color-based align-
ment strategy used by DocBank. By assigning dis-
tinct colors to different elements within the KTEX
code and then analyzing these in the generated PDF,
I can accurately align and categorize content, en-
hancing the effectiveness of document layout analysis.
This extension of the DocBank method allows for
more detailed and precise handling of the alignment
between the TEX source and the PDF output.

3 Methodology

The method discussed in this paper is extended from
KTEX Rainbow [4], a tool designed for generating
Document Layout Analysis datasets. INTEX Rainbow
begins by downloading a paper’s source code from
arXiv, which it then processes using a Python-based
IMTEX parser. Each element within the body of the
paper’s source code is assigned a unique RGB color
using commands from the xcolor package. The tool
maintains a dictionary to map these colors to specific
element labels including title, author, abstract, math,
table, body, caption, figure, and reference. After col-
oring, IATEX Rainbow compiles the annotated IXTEX
code into a PDF using a containerized compilation
environment. This step ensures that the environ-
ment is consistent and reproducible, minimizing the

Changxu Duan

effects of system-specific variations on the compila-
tion process. The final output is a color-rich PDF file,
from which I can extract the color of each element.
By extracting the color of each element in the PDF,
I can align the label of each element in the PDF.
TEX Rainbow provides processing from KTEX
code annotations to PDF annotations. However, at
the moment it is not directly convertible to Markup
languages, for this reason, I have extended its func-
tionality in three steps to generate accessible anno-
tations. Figure 1 shows my annotation process.

3.1 Preprocessing BTEX code

While arXiv ensures that the IATEX source code it
hosts is of high quality and guaranteed to compile,
this does not necessarily mean the source is error-free.
The BTEX compilation process is robust enough to
handle certain syntactical inaccuracies—like unclosed
curly brackets—without halting the generation of a
visually correct PDF. This tolerance can mask under-
lying issues in the source code, such as unclosed en-
vironments or improperly ordered \end{document}
commands, which may not disrupt the PDF output
but do indicate imperfect coding practices.

These minor discrepancies, though often over-
looked by the TEX engine, present challenges for the
more rigid Python-based pylatexenc parser, which
requires stricter syntactic adherence. To ensure com-
patibility and facilitate smoother processing with
such tools, it is necessary to first identify and rectify
these errors. My approach involves applying a set

TUGDboat, Volume 45 (2024), No. 2

of rules to filter out these syntactical errors before
they reach the parser, thus enhancing the reliability
of tools that are less tolerant of the flexible parsing
inherent to ITEX compilers.

When dealing with IXTEX sources, custom com-
mands often present significant parsing challenges,
especially for pylatexenc that requires more straight-
forward syntactic structures. In academic papers, it
is not uncommon for authors to simplify their BTEX
coding by defining macros that encapsulate common
IMTEX environments. For instance,

\newcommand{\beq}{\begin{equation}}
\newcommand{\eeq}{\end{equation}}

replace standard IMTEX environment tags to stream-
line the writing process. While these macros are fully
compatible with the TEX engine, they can compli-
cate the parsing process for software that does not
inherently interpret these user-defined shortcuts.

To address this, I use de-macro [7], which ex-
pands these custom commands back into their stan-
dard I¥TEX forms. This tool not only handles the
expansion of simple custom commands but also aids
in consolidating IXTEX content spread across multiple
files brought together with the \input command.

This preprocessing step ensures that the ITEX
code is transformed into a format that pylatexenc
can accurately interpret, thereby maintaining the
integrity of the document structure and content in
environments that are less tolerant of such KTEX
customization.

3.2 Compiling BTEX and extracting
annotations

IXMTEX Rainbow assigns a specific color to each ele-
ment within the abstract code tree, compiles these el-
ements into a new KTEX source file, and then creates
a color-coded PDF from this file. T have enhanced
the method for extracting these annotations by em-
ploying two Python-based PDF parsers: pdfplumber
[17] and PyMuPDF.!

The reason for using two different parsers is to
take advantage of their unique strengths. pdfplumber
is effective at extracting the original colors from
the PDF, which is crucial for maintaining accurate
placement and alignment in the annotations. In
contrast, PyMuPDF converts all colors to sRGB, a
format that sometimes blends similar colors, which
can lead to slight inaccuracies in recognizing distinct
colors.

However, PyMuPDF excels at extracting detailed
font information more precisely than pdfplumber. To
combine the strengths of both parsers, they are used

1 github.com/pymupdf /PyMuPDF

181

sequentially: pdfplumber first identifies and extracts
colors and their positions, and then PyMuPDF uses
this positional information to accurately extract font
styles, sizes, and attributes such as italic, bold, su-
perscript, and subscript. This sequential use of both
parsers ensures that we capture comprehensive de-
tails about both the colors and the textual elements
of the PDF.

The annotations and output files generated by
the I¥TEX Rainbow framework can be merged to
create what are accessibility annotations. They can
be seamlessly converted into various markup lan-
guages, such as HTML or Markdown, to facilitate
wider accessibility and ease of use.

Accessibility annotation aligns with PDF, IATEX,
and Markup languages through element positions.
This alignment ensures that the annotations are ac-
curately reflected across different formats, enhancing
the document’s accessibility and maintaining consis-
tency across various platforms.

3.3 Standardization of annotations

After I got the Markdown or HTML form of the
PDF accessibility markup, I encountered an issue
with some math formulas not being correctly dis-
played by browser-based math rendering libraries
like MathJax [3]. This was primarily due to the per-
sistence of custom math symbols defined using \def
commands that were not adequately transformed
into their corresponding Markdown forms, despite
the earlier cleanup of the I’ TEX code mentioned in
Section 3.1.

To address this challenge, I utilized IXTEXML
[13], a powerful tool designed to parse and convert
KTEX code into a markup language. It ensures that
the KTEX formula code is not only transformed into
a format compatible with web standards but also
that it unifies the styles of mathematical symbols
sourced from various KTEX packages.

I reassembled the annotations extracted from
the PDF file into a .tex file.

\documentclass{article}
\input{preamble} ¥ read from main.tex
\begin{document}
\section{C1B5EQO}
$y = x + 13
\section{1B3810}
$y = x + 2%

% the first math formula
% the second math formula

\end{document}

This file loads the preamble of the paper’s source,
and then puts all the mathematical formulas of a
paper into separate sections, with the section’s title

Bridging scientific publication accessibility: KTEX-markup-PDF-alignment

https://github.com/pymupdf/PyMuPDF

182

being its hexadecimal RGB color code in the accessi-
bility annotation.

By using BTEXML to convert the assembled
KTEX code into HTML, I parsed the generated HTML
document using Beautiful Soup, a robust HTML
parser. This allowed me to navigate through the
HTML structure efficiently and identify the sections
containing mathematical formulas. The final step in
my process involved replacing the original mathemat-
ical formula code within the accessibility annotations
with the standardized code generated by KTEXML.

After the above three steps, we obtain a PDF file,
an auxiliary file to record the label of each element on
the PDF file, and its reading order, and an auxiliary
file to record the tree structure of the document.

These auxiliary files help me to transform a PDF
file, or any page, or any one of the chapters, into a
markup language such as HTML or Markdown.

4 Serving as a dataset-making pipeline

According to arXiv, 90% of their submissions include
BTEX source code [2], and each submission is accom-
panied by a PDF. The remaining 10% are available
only as PDFs and might lack accessibility tags due
to the absence of I TEX sources. Given the necessity
for all scientific publications to be accessible, there’s
a need to derive accessibility tags directly from the
PDF files. While some existing API? services offer
this capability, they often produce significant misla-
beling and noise.

To address these limitations, recent advance-
ments in machine learning, particularly vision lan-
guage models, have introduced document-specific
solutions. An example of such innovation is the
optical character recognition (OCR) model named
Nougat [1], which utilizes a transformer architecture.
Nougat processes screenshots of academic papers
and converts them into Markdown. Importantly, it
integrates mathematical formulas and tables within
the page by converting them into I#TEX code in the
Markdown output, showcasing a significant step for-
ward in document processing technology. Converted
Markdown also provide accessibility to PDF.

One challenge with machine learning models,
including Nougat, is their lack of precision. Nougat’s
accuracy issues may stem from inadequately detailed
training data. Its training process aligns entire PDF
pages to Markdown, which is less precise than align-
ing based on specific page element positions. This
page-based alignment and Nougat’s method of pro-

2 developer.adobe.com/document-services/apis/
pdf-accessibility-auto-tag/

Changxu Duan

TUGboat, Volume 45 (2024), No. 2

cessing one word at a time can lead to errors in
recognizing the location and reading order of subse-
quent words as the OCR task progresses.

The effectiveness of machine learning depends
heavily on the quality of the training data; the model
needs detailed and high-quality data to extract suf-
ficient features that enhance its performance. My
method, which generates auxiliary files to record pre-
cise element positions and accessibility markers in
PDFs, could serve as an invaluable resource for cre-
ating enhanced training datasets. This could signifi-
cantly improve the performance of machine learning
models like Nougat by providing them with more ac-
curate and fine-grained data on text positioning and
structure. My approach could help bridge the gap
between current OCR capabilities and the demands
for higher accessibility and accuracy in document
processing.

5 Comparison to tagpdf and SyncTEX

tagpdf [5, 15, 16] is a IWTEX package designed to fa-
cilitate the creation of PDF/UA-compliant accessible
PDF's by providing core commands for tagging within
ETEX. This approach allows updates directly to the
IXTEX kernel, avoiding the complexities associated
with external patches. Highlighted at various TEX
conferences, tagpdf addresses a gap in tools for ex-
perimenting with PDF tagging and accessibility. It
introduces several enhancements to the KTEX kernel,
including new PDF management features, automatic
markup of paragraphs, and refined handling of page
elements. tagpdf can be accessed through the “test-
phase” key in the latex-lab package, allowing users to
implement these features during the developmental
stages of their documents.

SyncTEX [9] is a utility integrated into a TEX
engine. It enhances the workflow between text edi-
tors and output viewers by providing synchronization
capabilities, allowing seamless navigation between
source code and the output PDF. SyncTEX generates
an auxiliary file, which applications use to synchro-
nize the text within the editor with the corresponding
location in the PDF file.

My method, similar to SyncTEX, generates sev-
eral auxiliary files that record coordinates correspond-
ing to the positions of elements within a PDF. It
also captures accessibility markers, including tags for
elements, the reading order, and the expression of
formulas. These elements are not embedded directly
into the PDF, setting my approach apart from tagpdf.
This strategy serves as a practical temporary solu-
tion, providing some of the functionality of tagpdf
while it is still in the experimental stage.

https://developer.adobe.com/document-services/apis/pdf-accessibility-auto-tag/
https://developer.adobe.com/document-services/apis/pdf-accessibility-auto-tag/

TUGboat, Volume 45 (2024), No. 2

Figure 4:

1 rainng

set with the resulting F1-Score averaged together.
Qur results are shown in Table 1. The scores were
obtained from the respective papers with the exception
of “Urbach *09” which was obtained from [1] where it

is used as a

Figure 2: Example of coloring not working. The
Figure has the caption label “Figure 47, the reference
number in Table “1”, and the citation “[1]”. They are
all kept black because these elements are not colorable
in the annotated TEX code.

6 Future work
6.1 Alignment without coloring

This work bridges PDF and IATEX and Markup using
color: the unique colors of each element. However,
utilizing color also implies that it occupies a channel
within the PDF output, leading to specific challenges.

First, there are instances where elements ini-
tially assigned a specific color by the author are
overwritten in my process, resulting in the loss of
original color information. Second, some elements,
such as hyperlinks or caption labels in figures and
tables (as depicted in Figure 2), derive their colors
from package-level definitions rather than directly
from the user’s ITEX source code. For example, the
\url command standardizes hyperlink colors across
the document, which precludes assigning unique col-
ors to individual links. Similarly, captions of figures
and tables typically do not allow for unique coloring.

To address these issues, my forthcoming work
will explore alternative methods beyond using color
as a markup channel. Specifically, I plan to employ
other embeddable features within the PDF, such as
the tagging capabilities offered by the tagpdf pack-
age, as discussed in Section 5. By manually writing
these tags, I aim to preserve the distinctiveness of
document elements without overriding the original
color assignments.

6.2 Parsing BTEX code with TEX engines

Despite meticulous efforts to parse user intent in their
writing, a significant portion of papers from the arXiv
remains under-annotated. My assumption was that
every well-structured paper would include essential
elements such as a title, author information, address,
section titles, and body text. However, in practice,
approximately 40% of papers lack annotations for at

183

least one of these components. The most commonly
missing annotations are those for authors, titles, and
abstracts, often due to the use of customized style
files that obfuscate or alter standard formatting.

In Section 3.1, I discuss how user-defined mac-
ros have been partially managed using the de-macro
package. However, numerous style files from jour-
nals and conference proceedings introduce additional
commands, complicating the parsing process for the
Python-based parser pylatexenc. The flexibility of
BTEX, attributed to its Turing-completeness [6], par-
ticularly challenges pylatexenc due to the prevalent
use of the \def commands and \if conditions in
style files, rendering the parser ineffective.

A TgX engine, which must parse the source
file during compilation, provides tracing options like
\tracingmacros=1 that help humans understand
how the TEX engine expands custom commands.
This tracing is detailed through logs that elucidate
the functioning of various packages. There are ITEX
packages available to assist users in simplifying the
log to make understanding the expansion of mac-
ros easier [10, 14]. Building on this, my planned
approach involves enhancing the Python parser to
interpret these logs. By leveraging the TEX engine’s
capabilities through log analysis, the parser is then
expected to construct and interpret abstract syntax
trees more accurately.

6.3 expl3 in BTEXML

Section 3.3 discusses how I utilized KTEXML to stan-
dardize mathematical formulas and tables within the
paper code. This standardization process can be
notably time-consuming. If expl3 is not included
in the preamble, this conversion only takes a few
seconds. However, if expl3 is loaded in a paper’s pre-
amble, converting the IMTEX source code into HTML
using BTEXML can take over 20 minutes with TEX
Live 2024, or 10 minutes with TEX Live 2021. The
increased processing time can be attributed to the
necessity for BKTEXML to load the entire expl3 pack-
age during each conversion, a package that has seen
significant expansion in recent years due to active
development. The BTEXML development team has
acknowledged this issue and is considering solutions
such as caching expl3.sty or rewriting BTEXML in
Rust to improve efficiency.?

In future work, I plan to evaluate the potential
impact of disabling the expl3 package loading on the
standardization process. I anticipate minimal impact,
as the standardization primarily depends on packages

3 github.com/brucemiller/LaTeXML/issues/2268

Bridging scientific publication accessibility: KTEX-markup—-PDF-alignment

https://github.com/brucemiller/LaTeXML/issues/2268

184

related to mathematics and table formatting rather
than the expl3 package.

7 Conclusion

In this paper, I introduce a method for enhancing
the accessibility of PDF files that are compiled from
IXTEX sources. This approach leverages coloring
techniques to generate accessibility annotations and
to align content across I#TEX, PDF, and various
markup languages. Currently, my method applies
exclusively to scientific papers available on arXiv
that include ATEX source code. However, it also
serves a broader purpose by facilitating the creation
of datasets. These datasets can be utilized to train
machine learning models, which can improve the
generation of accessibility annotations for scientific

papers where only the PDF versions are available.

This development holds the potential for increasing
the accessibility of scientific literature.

Acknowledgement

This work was conducted within the research project
InsightsNet (insightsnet.org) which is funded by
the Federal Ministry of Education and Research
(BMBF) under grant no. 01UG2130A.

References

[1] L. Blecher, G. Cucurull, et al. Nougat:
Neural optical understanding for academic
documents, 2023. arxiv.org/abs/2308.
13418.

[2] S. Brinn, C. Cameron, et al. A framework for
improving the accessibility of research papers
on arxiv.org, 2024. arxiv.org/abs/2212.
07286.

[3] D. Cervone. MathJax: a platform for
mathematics on the web. Notices of the AMS,
59(2):312-316, 2012.

[4] C. Duan, Z. Tan, S. Bartsch. LaTeX
rainbow: Universal LaTeX to PDF document
semantic & layout annotation framework.

In Proceedings of the Second Workshop

on Information Extraction from Scientific
Publications, T. Ghosal, F. Grezes, et al.,
eds., pp. 56-67, Bali, Indonesia, Nov. 2023.
Association for Computational Linguistics.
doi.org/10.18653/v1/2023.wiesp-1.8

[5] U. Fischer. On the road to Tagged PDF:
About StructElem, marked content, PDF/A
and squeezed Bérs. TUGboat 42(2):170-173,
2021. doi.org/10.47397/tb/42-2/
tbl31fischer-tagpdf

Changxu Duan

TUGboat, Volume 45 (2024), No. 2

[6] A.M. Greene. BASIX: An interpreter written
in TEX. TUGboat 11(3):381-392, Sept. 1990.
tug.org/TUGboat/tb11-3/tb29greene . pdf

[7] P. Gacs. de-macro— Expand private macros
in a document, Dec. 2020.
ctan.org/pkg/de-macro

[8] ISO Central Secretary. Document management
applications — electronic document file
format enhancement for accessibility. Standard
ISO 14289-2:2024, International Organization
for Standardization, Geneva, CH, 2024.
www.iso.org/standard/82278 . html

[9] J. Laurens. Direct and reverse synchronization
with SyncTEX. TUGboat 29(3):365-371, 2008.
tug.org/TUGboat/tb29-3/tb931laurens.pdf

[10] B. Le Floch. unravel: Watching TEX digest
tokens, Jan. 2024. ctan.org/pkg/unravel

[11] M. Li, Y. Xu, et al. DocBank: A benchmark
dataset for document layout analysis.
In Proceedings of the 28th International
Conference on Computational Linguistics,
D. Scott, N. Bel, C. Zong, eds., pp. 949-960,
Barcelona, Spain (Online), Dec. 2020.
International Committee on Computational
Linguistics. doi.org/10.18653/v1/2020.
coling-main.82

[12] J. MacFarlane, A. Krewinkel, J. Rosenthal.
Pandoc. github.com/jgm/pandoc

[13] B. Miller. KETEXML: A ITEX to
XML/HTML/MathML Converter, Feb.
2024. math.nist.gov/"BMiller/LaTeXML/

[14] F. Mittelbach. The trace package. TUGboat
22(1/2):93-99, Mar. 2001. tug.org/TUGboat/
tb22-1-2/tb70mitt . pdf

[15] F. Mittelbach, C. Rowley. IWTEX Tagged
PDF — a blueprint for a large project.
TUGboat 41(3):292-298, 2020. doi.org/10.
47397/tb/41-3/tb129mitt-tagpdf

[16] C. Rowley, U. Fischer, F. Mittelbach.
Accessibility in the KTEX kernel —
experiments in Tagged PDF. TUGboat
40(2):157-158, 2019. tug.org/TUGboat/
tb40-2/tb125rowley-tagpdf . pdf

[17] J. Singer-Vine, The pdfplumber contributors.
pdfplumber, July 2024.
github.com/jsvine/pdfplumber

¢ Changxu Duan
Technische Universitdt Darmstadt
Residenzschloss 1
64283 Darmstadt
Germany
changxu.duan (at) tu-darmstadt dot de
ORCID 0000-0003-0547-0901

https://insightsnet.org
https://arxiv.org/abs/2308.13418
https://arxiv.org/abs/2308.13418
https://arxiv.org/abs/2212.07286
https://arxiv.org/abs/2212.07286
https://doi.org/10.18653/v1/2023.wiesp-1.8
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://tug.org/TUGboat/tb11-3/tb29greene.pdf
https://ctan.org/pkg/de-macro
https://www.iso.org/standard/82278.html
https://tug.org/TUGboat/tb29-3/tb93laurens.pdf
https://ctan.org/pkg/unravel
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://github.com/jgm/pandoc
https://math.nist.gov/~BMiller/LaTeXML/
https://tug.org/TUGboat/tb22-1-2/tb70mitt.pdf
https://tug.org/TUGboat/tb22-1-2/tb70mitt.pdf
https://doi.org/10.47397/tb/41-3/tb129mitt-tagpdf
https://doi.org/10.47397/tb/41-3/tb129mitt-tagpdf
https://tug.org/TUGboat/tb40-2/tb125rowley-tagpdf.pdf
https://tug.org/TUGboat/tb40-2/tb125rowley-tagpdf.pdf
https://github.com/jsvine/pdfplumber

TUGboat, Volume 45 (2024), No. 2

TEX (Live) and accessibility at arXiv
Norbert Preining

Abstract

This article combines two talks at the TUG 2024
conference, one about TEX (Live) at arXiv, and one
about accessibility and HTML papers. We will give
a short introduction of what arXiv is and its im-
portance for open science. After this introduction,
the first part deals with how we use TEX at arXiv,
followed by a second part on improving accessibility
at arXiv.

1 Introduction

arXiv is the world’s largest and oldest scientific pre-
print server, and a champion of open science. Started
in 1991, arXiv presently holds more than 2.4 million
articles and is growing at an ever-increasing rate.

In many areas of physics, math, and computer
science, cutting edge research is first made available
on arXiv. Examples are

e LLM research (OpenAl, Deepmind, etc.)

e LIGO (Gravity wave research; 2017 Nobel Prize
in physics)

e Proofs of famous theorems (Grigori Perelman)

And while most papers posted to arXiv are eventu-
ally published in journals, in some fields research is
often made available only on arXiv. Even for work
subsequently published in journals, early posting to
arXiv enables scientists to more rapidly incorporate
shared results, and assert prior authorship.

What sets arXiv apart from many other services
is openness: All articles are freely available without
any paywall, and in addition, for more than 90%
of the articles, sources are available— big thanks to
Paul Ginsparg et al. for insisting from the start in
1991 that scientists submit the source code for their
papers!

Total number of submissions as of April 6, 2024 = 2,455,228,

20,000

16,000
14,000

12000
8000
6000

4000

2000

Figure 1: arXiv monthly submissions, 1991-present

doi.org/10.47397/tb/45-2/tb140preining-arxiv

185

arXiv also profits from and contributes to open
source software: Our fundamental tools include TEX,
nowadays TEX Live, and I TEXML for the conversion
to HTML. Both are open source projects, and we are
in very close contact with both maintainer teams.

2 TgEX at arXiv

About 90% of submissions are in (IA)TEX, going back
more than 30 years. For the submissions where we
have TEX source, we consider the PDF artifacts as
generated and it is sometimes necessary to recreate
them. Consequences of this approach is that we have
to keep One consequence of this approach is that we
have to keep old versions of TEX available to ensure
compilability even of documents from the start of
arXiv. This means that, as of now we are having
available (and regularly use for PDF rebuilds) the
following TEX installations:

o teTEX 2 and 3
o TEX Live: 2009, 2010, 2011, 2016, 2020, 2023

In particular teTEX 2 has put me in front of a few
challenges, since the first teTEX I (ab)used heav-
ily when I started maintaining TEX in Debian was
teTEX 3, which has a very different configuration
approach than teTEX 2.

2.1 AutoTeX

Up to now, the system that accepts a submission, and
converts it to a PDF, is a Perl program called Auto-
TeX [6], written at arXiv. It has been maintained
since the beginning of arXiv, but hasn’t changed a
lot since then. Its main jobs are detecting the format
of the submission (plain TEX or IWTEX) by running
respective engines and accepting the first one that
succeeds in compiling the submission. This already
can lead to strange cases where a file that is not the
intended top level document is nevertheless consid-
ered as such and compiled using plain TEX, despite
being a INTEX document.

AutoTeX supports only two formats: ITEX with
dvips/ps2pdf or with pdflatex, and plain TEX
with dvips/ps2pdf route. For KTEX calls, Auto-
TeX reruns several times until references are stable.
For plain TEX files only one run is executed.

In the end, all generated and additional PDF
files are combined into a final PDF using pdfpages.

There are several shortcomings with this ap-
proach:

e No support for LuaTEX or XHTEX or any other
engine

e No support for BIBTEX or biber/BIBIXTEX; bbl
files must be uploaded

e No support for makeindex

TEX (Live) and accessibility at arXiv

https://doi.org/10.47397/tb/45-2/tb140preining-arxiv

186

e Merging with pdfpages breaks hyperlinks in doc-
uments

e Detection of main document is often incorrect
(conference templates are often uploaded to-
gether with actual paper)

e arXiv watermarking is fragile

e ... (probably so many other problems I'm not
remembering or haven’t seen yet)

2.2 The (very near) future

arXiv is currently in a complete restructuring process,
modernizing practically all parts of the system, and
moving core parts to a cloud-based system.

The new TEX backend system will be based on a
dockerized TEX to PDF conversion system, which al-
lows for a certain restricted set of parameters (usage
of additional trees, watermarking, etc.). Older sys-
tems (which we have to keep available to re-compile
older submissions) will be dockerized together with
AutoTeX. The system will contain an auto-dispatch
component to the respective TEX Live year container
depending on submission date.

Advantages we get from leaving AutoTeX be-
hind and rewriting include, first and foremost, less
magic— getting rid of the auto part of AutoTeX and
replacing it with clear indications by the submitter
which file should be compiled with which engine. The
frontend submission workflow will see considerable
changes in the very near future, too.

Another great advantage of the new system
will be the possibility to build reproducible docu-
ments [5]—that is, documents that can be bitwise
compared after changes of system components.

Further improvements include better watermark-
ing (by switching to the pymupdf library for water-
marking), and better PDF composition (using gs
which preserves hyperlinks; see [3] for a related dis-
cussion).

We also will stop providing additional class and
style files, which many users have relied on in the past.
Going forward, we expect submissions to contain
class files for journals that are not provided by TEX
Live itself. The problem is with class and style files
distributed by certain journals that have restrictions
in place making it impossible to include them in
TEX Live. At arXiv, we have provided the latest
version of these class files for many years, but the
proliferation of more and more non-TL files, and the
management of versions of those files, has created a
considerable burden at arXiv.

We have thus decided that going forward, only
files distributed by TEX Live itself will be automati-
cally available, and all other files need to be included
in the submission.

Norbert Preining

TUGDboat, Volume 45 (2024), No. 2

2.3 The (hopefully near) future

With the basic rewrite already done, we are now
aiming at including long requested features in the
(hopefully) near future. At the top of that list is
an improvement for the submission process itself,
making it easy and painless for easy submissions,
but still giving the user full freedom to submit a
complicated arrangement within a submission.

Also very high up on our list is support for
LuaTgX and XATEX, as well as for bibliographies
and indices (no need to ship pre-made .bbl files!).

Also in the pipeline is publishing our TEX to
PDF docker web API service as open source.

3 Accessibility at arXiv

This is an abridged version of an article at the DEIMS
2024 conference [4]. The authors of the DEIMS paper
and the full arXiv team are responsible for all the
achievements, I am only reporting on the current
status!

arXiv has a mandate to continuously improve ac-
cess to scientific research, and our long-term mission
is simply to serve the needs of the scientific commu-
nity through openness, collaboration and scholarship.
Everyone has the right to participate in the wealth
of scientific knowledge contributed to arXiv by re-
searchers from all over the world. Accessibility is
inherent to our mission of championing open science.
When we asked scientists with disabilities how arXiv
could help make research more accessible they told
us: add HTML as a format for papers.

Over the past few years, arXiv has made good
progress in making our website [2] more accessible
according to W3C WAI guidelines. While this allows
people with disabilities to more easily find and ac-
cess papers, they often cannot read them because
arXiv’s papers are available almost exclusively in
PDF format, which has low native accessibility.

What we heard from scientists with disabilities,
standards experts, and accessibility researchers is
that PDF will always be playing catch up with HTML
when it comes to accessibility. Adding HTML as a
format on arXiv will get us closer to fulfilling the
promise of open science.

3.1 PDF limitations wrt accessibility

PDF has been designed as a page description lan-
guage, representing the physical page to be printed.
It is an excellent format for this purpose, but the
internal representation poses a lot of problems when
it comes to accessibility.

Page and reflow paper geometry and the actual
screen dimensions are different in most of the cases,

TUGboat, Volume 45 (2024), No. 2

and zooming in often requires horizontal scrolling.
Although there are moves by Adobe to provide some
kind of responsive design, i.e. “Liquid Mode”, this is
mobile-only and proprietary.

Structural limitations When a page is described
in PDF, lots of semantic information is lost (at least
until PDF/UA2): headers, captions, all semantic
entities are reduced to purely typographic elements.
While “Tagged PDF”, introduced by Adobe, aims at
improving the situation, most documents out now are
not properly tagged, and there is very poor support
for the creation of tagged PDFs.

Recent developments on the IXTEX kernel side
show promising advances, but it cannot deliver now
a solution to the scale of the arXiv corpus, since doc-
uments still require manual work to achieve proper

tagging.
3.2 HTML is a better solution

HTML already provides now what most of the PDF
and PDF/UAZ2 is trying to deliver in the future: re-
sponsive design, dark mode, built-in language trans-
lations, add-ins for, e.g. dyslexia or visually impaired,
all backed by a rich marketplace of assistive tech-
nologies.

The HTML code also preserves the semantic
structure and intent of the document, allowing for
better representation in e.g. screen readers.

Last but not least, text harvesting, e.g. for LLM,
is easier when based on HTML, while text extraction
based on PDF can get rather tricky.

But there are stumbling blocks: online scientific
work is mostly available only in PDF format, and
conversion from PDF to HTML is challenging, in spite
of some interesting work that allen.ai has done in
this area [1], because structure, once lost, is difficult
to reconstruct.

3.3 Converting BTEX to HTML

Since more than 90% of the arXiv’s submissions are
in TEX, and lately mostly in ATEX, it is natural to
consider direct ITEX to HTML conversions. Since
TEX itself also produces typographic information
where all structure is lost, relying directly on the
TEX engine to provide HTML output is non-trivial.
Thus, all available converters basically operate in
the same way, namely providing XML/SGML/HTML
renderings for each and every command available.
With TEX4ht, TEX itself is used, while ETEXML
uses Perl. For all systems it remains an immense
project to provide XML renderings for each command
defined in each add-on package in the TEX and BTEX
landscape. Thus, all of the solutions will remain
partial for the foreseeable future.

187

The main solutions currently available are

ITEXML maintained by Bruce Miller and Deyan
Ginev at NIST (National Institute of Standards
and Technology)

TEX4ht created by Eitan M. Gurari, now main-
tained by Michal Hoftich

IXTEX support for tagged PDF: KTEX core team,
early stage

arXiv took a pragmatic approach and investi-
gated the existing tools. TEX4ht and ETEXML were
roughly tied in the quality of the HTML produced,
but ETEXML was found to have a larger library of
supported packages and better ongoing support. Be-
yond that, the predecessor project arjiv already used
IXTEXML.

The arbiv project was started by Dr. Michael
Kohlhase from KWARC and Ph.D. student Deyan
Ginev. Its intent was to offer HTML versions for
arXiv’s entire TEX corpus, using ITEXML. It had
about 20% failed conversions, as well as other visual
glitches, but saw significant improvements over the
years. Unfortunately, reconversion of old articles
is a costly endeavor; on Google Cloud with an ap-
proximate average cost of $0.015 per article, it would
amount to approximately $30,000 for the entire arXiv
corpus.

Further pain points we face with the KTEXML
conversion is the already mentioned long tail of less
common packages that are not supported, as well as
author-written macros and extensions (here TEX4ht
has the advantage of using TEX itself for macro ex-
pansion). Furthermore, there will always remain
some edge cases where M TEX constructs don’t render
correctly.

Despite all the abovementioned shortcomings,
providing HTML pages —even with glitches—has
proven a resounding success with the accessibility
community, because even in the presence of those
glitches, the papers remain generally readable, in
particular for screen readers. To put it in simple
words:

Something is better than nothing!

3.4 Rollout and user interface

An HTML version of arXiv’s corpus has been available
for several years now in the arbiv project, but it
remains less known (compared to arXiv itself). Thus,
bringing the arbiv project “in house” and providing
the HTML versions directly alongside the PDF version
made the change much more visible and profound.
In addition to the delivery of the HTML version,
we have already included the HTML generation into
the submission process, asking authors to review

TEX (Live) and accessibility at arXiv

https://allen.ai

188

arxiv > math > arXiv:2404.00468

Al fields S

Help | Advanced Search

Mathematics > Logic

(Submitted on 30 Mar 2024]

On P=NP Either False or Independent

of ZFC

S Gill Williamson
Our main result, Theorem 3.3, uses Friedman's Jump Free Theorem,
Theorem 2.7, which he has shown to be independent of ZFC, the
usual axioms of set theory. We conjecture that Theorem 3.3, a
straight forward translation of the statement of Theorem 2.7 into sets
and functions, is also independent of ZFC as is its immediate
Corollary 3.4, It is easy to show that a proof that P=NP will also prove

Access Paper:
« View PDF

* HTML (experimental)
« TeX Source

« Other Formats
T view license
Current browse context:
math.L

<prev | next>

new | recent | 2024-04
Change to browse by:
math

TUGboat, Volume 45 (2024), No. 2

This is experimental HTML
to improve accessibility. We

ariv

invite you to report rendering
errors. Learn more about this
project and help improve.
conversions.

Abstraci

1 Introduction

2 Basic definitions
and theorems

3 Subset sum
instances and the

HTML conver

Why Report

Back to Download o
HTML? Issue

Abstract PDF

1at did not ¢

r uses the following
ted by the HTML conversion tool. Feedback on these
not necessary, they are known and are being
worked on

o failed: libertine

math.CO
Corollary 3.4. If Corollary 3.4 is in fact independent of ZFC then a ZFC
proof of P=NP is impossible, perhaps because it is false. References & Citations
« NASA ADS

« Google Scholar

« Semantic Scholar

Comments: 4 pages
Subjects: Logic (math.LO); Combinatorics (math.CO)
MSC classes: 0368
Cite as: arXiv:2404.00468 [math.LO]
(or arXiv:2404.00468v1 [math.LO] for this version)
https://doi.ora/10.48550/arXiv.2404.00468 @

Export BibTeX Citation
Bookmark
Submission history

From: Stanley Williamson [view email]
[v1] Sat, 30 Mar 2024 20:23:40 UTC (56 KB)

Figure 2: Article view with HTML entry

the HTML version in addition to the PDF version.
While a failed generation of the PDF version blocks
further processing, we do not consider a failed HTML
conversion as a blocker. We do hope that authors
will review the HTML rendering and consider making
adjustments to their IXTEX source to improve the
HTML version.

The HTML versions also prominently feature a
feedback button that allows users to indicate incor-
rect renderings and other problems with the conver-
sions. With millions of users performing QA on our
HTML — we already have seen thousands of reports —
we feel we can improve the conversion process in the
future.

In the article view on arXiv (fig. 2), we have
added an additional format entry, as well as a “Beta”
label. As of now, the HTML format button will only
be shown with new submissions until we backfill the
historical corpus over time.

When visiting the HTML version of a paper
(fig. 3), and if the WTEXML conversion issued warn-
ings, these warnings are shown in a separate panel
at the top. This will often be the case for packages
used in the IXTEX code that are not supported at
present. In the screenshot we see the KTEX package
inconsolata not being supported.

The next screenshot (fig. 4) shows that formu-
las and tables are supported, included graphics are
shown as is, and that a dark mode setting in the
browser is taken into account. Mind also the promi-
nent “Report issue” button (lower right corner)!

3.5 Future work and summary

Making our corpus accessible is an open-ended proj-
ect, and we are aware of the shortcomings our current
solutions have, but we are also aware of the profound
positive impact the addition of HTML versions has
already had in the accessibility community.

Norbert Preining

Jump Free Theorem « failed: inconsolata

References Authors: achieve the best HTML

rom your LaTeX
submissions by following these L ctices

tices

License: Ct
arXiv:2404.00468v1 [math.LO]

Y 4.0

On P=NP either false or
independent of ZFC

Figure 3: HTML version view with warning panel

LUBCI
1 Introduction
2 Basic definitions
and theorems

Note that for x € EX f(x) & [min (E), min (x)) if f is regressively

3 Subset sum x
regulai r EX In general, we define of integers in Z as fol

instances and the
Jump Free Theorem

References

For yo. ¥1. ¥y in I, f€S,
= f | EX. Define

F(f) = yolimage () 0 I§) Uy, (image (F) N 1) Uy, (image (F) r

and

H(f) = yo(image (f) 0 I§) U y, (image (F) n 15).

Theorem 3.3,

(Jump Free Theorem Set Version). Let S C T(k), k = 2, be a full
and jump free family of functions. Consider sets F(f) and H(?'l of
integers of Definition . For each p = 2 there exists fﬂ eScTk)

for which F(?,JJ =H(fp).
Proof.
For each p =2 us Jump Free Theorem to cf

aressivelv reaula yme FX C domain(f) IFI

Figure 4: HTML version view with math and report
issue button

To pick a few items from the long list of future
work:

e Continue to work with the BTEXML team to
improve conversion process

e Figure out a cost-effective way to periodically
re-compile the whole corpus to pick up these
improvements

e Revisit tooling in a few years when the INTEX
team is further along — we are hopeful that the
work to produce tagged PDFs will also enable
the generation of HTML output

e Make charts and graphs more accessible

TUGDboat, Volume 45 (2024), No. 2

e Possibly provide a way for users to access the
data behind graphs

e Auto-caption images and graphs, via Al or crowd
sourcing or both.

To summarize, we want to stress that accessi-
bility of scientific documents is an important im-
provement, and the feedback from the community
and disabled scientists has been overwhelmingly pos-
itive— HTML even with glitches is better than PDF!
And while we are still far from “the last mile”, we are
making great progress thanks to a great community
and open source support.

3.6 Acknowledgments

We thank the many scientists with disabilities who
so generously shared their expertise, insights, and
feedback, and guided arXiv’s efforts towards impact.

This material is based upon work supported
by the National Science Foundation under Award
No. OAC-2311521. Any opinions, findings and conclu-
sions or recommendations expressed in this material
are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Big thanks to the whole arXiv team —1I have
only recently joined and am reporting on their
achievements!

References

[1] Allen Institute for AI. Paper to HTML.
papertohtml.org/

[2] arXiv project. arxiv.org

[3] K. Berry. Production notes. TUGboat
45(1):154-154, 2024. doi .org/10.47397/tb/
45-1/tb139prod

[4] C. Frankston, J. Godfrey, et al. HTML papers
on arXiv— why it is important, and how we
made it happen, 2024.
arxiv.org/abs/2402.08954

[5] Reproducible builds website.
reproducible-builds.org

[6] T. Schwander. AutoTeX on CPAN.
metacpan.org/pod/TeX: : AutoTeX

¢ Norbert Preining
arXiv / Cornell University
norbert (at) arxiv dot org
https://arxiv.org/

189

Legal and cultural landscape of mathematics
accessibility in the United States: 2024

Jeffrey Kuan

In April 2024, the United States Department of Jus-
tice released new guidelines, which will mandate that
all state and local institutions of higher learning com-
ply with WCAG2.1AA standards by either April 2026
or April 2027. This survey will briefly summarize
the context of these guidelines, and how they affect
mathematics accessibility in the United States.

Disclaimer: this paper should not be construed
as legal advice.

1 Introduction

In the United States, accessibility (for persons with
disabilities) has many legal requirements. For the
purposes of this paper, I will quote the National
Center on Accessible Educational Materials [1] for a
definition of accessibility:

“

. accessibility really is individualized. In
fact, according to the Office for Civil Rights,
accessibility is happening anytime a person
with a disability can acquire the same infor-
mation, engage in the same interactions, and
enjoy the same services as a person without
a disability in an equally effective, equally in-
tegrated manner, and with substantial equiv-
alent ease of use.”

From this definition, one may immediately note that
it is not possible for educational material to be “100%
accessible”, due to different individuals having dif-
ferent needs. At the same time, however, it must
be possible for educational material to be compliant
with legal requirements that protect the civil rights
of persons with disabilities. Otherwise, there would
exist a law that would be impossible to follow.

A common set of accessibility guidelines are the
Web Content Accessibility Guidelines (WCAG) pub-
lished by the World Wide Web Consortium (W3C).
These technical guidelines are often used as a bench-
mark for accessibility in a legal context. Most re-
cently, announced Department of Justice rules have
mandated WCAG2.1AA standards for all state and
local entities in the United States, including public
universities and colleges. This survey will briefly dis-
cuss the context of these rules, as well as its expected
impact on accessibility in mathematics education and
research.

2 WCAG

Shortly after the founding of the W3C in 1994, the
first web accessibility guidelines began to be devel-
oped in 1995. The WCAG have undergone several

doi.org/10.47397/tb/45-2/tb140kuan-accessibility

190

versions, with WCAG3.0 under development and ver-
sion 2 being current. Each version has three levels,
denoted A, AA and AAA, with AAA levels including
all AA levels, and AA levels including all A levels.
The highest level, AAA, is generally considered diffi-
cult to follow. For instance, success criterion 1.2.6
(“sign language interpretation is provided for all pre-
recorded audio content in synchronized media”) is
under level AAA and usually is not met, with the
movie Barbie being a notable exception.

The WCAG2.0AA standards contain 38 success
criteria, while WCAG2.1AA includes an additional 12.
Notable success criteria are 1.3.4 (orientation) and
1.4.12 (text spacing). It is beyond the scope of this
paper to delve into the specifics of all the criteria,
but I will note that the guidelines are summarized
under the acronym POUR (Perceivable, Operable,
Understandable, Robust), corresponding to the first
digit in each success criterion.

The timeline of the WCAG release dates fits
awkwardly in the history of American laws and reg-
ulations (which is unsurprising, given that W3C is
an international organization). The most influential
federal civil rights legislations, the Rehabilitation
Act of 1973 and the Americans with Disabilities Act
of 1990, were both passed before the development
of the internet. Next, I will summarize the various
laws passed prior to the Department of Justice rules.

3 Federal laws
3.1 Rehabilitation Act of 1973

The Rehabilitation Act of 1973 is a United States
federal law protecting the civil rights of people with
disabilities in the federal sector. For most American
mathematicians, the most relevant section of that
act is Section 504:

“No otherwise qualified individual with a dis-
ability in the United States ... shall, solely
by reason of her or his disability, be excluded
from the participation in, be denied the bene-
fits of, or be subjected to discrimination under
any program or activity receiving federal fi-
nancial assistance or under any program or
activity conducted by any Executive agency

2

As alarge portion of mathematical research programs
receive federal financial assistance from the National
Science Foundation, such programs are under the
jurisdiction of section 504.

In 1998, Congress passed an amendment to the
Rehabilitation Act, titled section 508. According to
the section 508 webpage [5]:

Jeffrey Kuan

TUGDboat, Volume 45 (2024), No. 2

In 1998, Congress amended the Rehabilitation
Act of 1973 to require federal agencies to make
their electronic and information technology
(EIT) accessible to people with disabilities.
The law ... applies to all federal agencies
when they develop, procure, maintain, or use
electronic and information technology. Under
Section 508, agencies must give disabled em-
ployees and members of the public access to
information comparable to the access avail-
able to others.

Beginning in January 2018, the U.S. Access Board
has required WCAG2.0 standards for Section 508.
Only a few months later, W3C released WCAG2.1
standards in June 2018.

3.2 Americans with Disabilities Act
of 1990

The Americans with Disabilities Act of 1990, or ADA,
is a civil rights law that prohibits discrimination
based on disability. For colleges and universities, the
most relevant parts are:

e Title II of the ADA requires “state and local
governments to make sure that their services,
programs, and activities are accessible to people
with disabilities.”

e Title IIT of the ADA “prohibits discrimination on
the basis of disability in the activities of places
of public accommodation.”

For students at American colleges and univer-
sities, the distinction between public and private
universities usually is irrelevant, although they are
technically governed under different titles of the ADA.
Title I of the ADA prohibits employment discrimina-
tion, but this title affects faculty and staff more than
students. Unless the reader is currently involved in
an employment dispute at their college or university,
it is less likely that Title I is relevant to them.

4 Recent developments

In more recent years, there have been several legal
developments relevant to accessibility in mathemat-
ics.

4.1 State laws

Following the 2018 rule that section 508 use WCAG2.0
standards, many states passed relevant laws.

e In the state of Texas (where the author is cur-
rently employed), Texas Administrative Code
section 206.70 requires all new and changed
websites to meet WCAG2.0 Level AA (exclud-
ing Guideline 1.2 Time Based Media), in refer-
ence to Section 508; effective April 18, 2020. A

TUGboat, Volume 45 (2024), No. 2

more educational-specific provision is in section
213.39, which states that the president or chan-
cellor of each institution of higher education
shall ensure appropriate staff receives training
necessary to meet accessibility-related rules.

e California Assembly Bill 434 requires state web-
sites (including institutes of higher education) to
comply with WCAG2.1AA by July 1, 2019, again
referencing Section 508. The law was signed in
2017. It should not be confused with California
Assembly Bill 1757, which applies to businesses
subject to California’s Unruh Civil Rights Act.

e Colorado House Bill 21-1110 requires all web con-
tent, including internal content, produced by in-
stitutions of higher education to be WCAG2.1AA
compliant. A separate house bill, HB24-1360, cre-
ated a Disability Opportunity Office to support
residents with disabilities.

Even from these three examples, one can notice the
piecemeal nature of accessibility laws for public in-
stitutes of higher education.

4.2 Captioning of videos

In 2015, the National Association of the Deaf filed
legal cases against Harvard and MIT, alleging that
their publicly posted course content violated section
504 of the Rehabilitation Act and Title IIT of the
ADA, because the captions were not sufficiently ac-
curate. In 2019-2020, the cases were settled in favor
of the National Association of the Deaf. During this
same time, the University of California, Berkeley
(a public institution, and therefore under Title II)
removed 20,000 free videos in 2017 and placed them
behind university login.

5 Department of Justice rules

In April 2024, the Department of Justice released
new rules for the interpretation of Title II of the
Americans with Disabilities Act in the context of web
accessibility. The rules were posted following a time
for open comments. Below, we highlight some of the
new rules, as it relates to local and state institutions
of higher education. Note that these rules do not
apply to private institutions (and businesses), which
are covered under Title III. All page numbers below
refer to the page numbers in the final rule on the
PDF posted on the Federal Register [4].

5.1 WCAG2.1AA compliance

According to the ADA factsheet:
Requirement: The Web Content Accessibility
Guidelines (WCAG) Version 2.1, Level AA
is the technical standard for state and local
governments’ web content and mobile apps.

191

Interestingly, this requirement includes “password—
protected course content in elementary, secondary,
and postsecondary schools” (page 31360). This is
analogous to the Colorado law, and thus “hiding”
educational content behind institutional passwords
does not exempt it from the new rules.

5.2 Timeframe

Public institutions serving populations of less than
50,000 have until April 26, 2027 to comply with
the rule. Public institutions serving populations of
50,000 or more have until April 26, 2026 to comply
with the rule. Community or city colleges in small
populations could have until 2027; every state college
or university has two years.

5.3 PDF/UA-1

Because most mathematicians produce TEX-gener-
ated PDFs, there is a unique interest in PDF ac-
cessibility standards. The Department of Justice
did consider PDF/UA-1, but ultimately found that
WCAG2.1AA would both “enhance” (page 31344)
the accessibility of PDFs, while maintaining the “bal-
ance” with administrative costs (p. 31350). In part
to address concerns that public entities would sim-
ply “remove” content, the Department of Justice
pointed out (pages 31346-31347) that many states
had already been using WCAG2.0AA, and therefore
public entities were likely familiar with the 38 guide-
lines of WCAG2.0AA, needing only an additional 12
guidelines to meet WCAG2.1AA.

5.4 Conforming alternative versions

Under WCAG, a “conforming alternative version” is
allowable. For example, a non-accessible PDF may be
posted if the reader can access the same information
and functionality via a MathML webpage. However,
the Department of Justice now states (section 35.202,
page 31382):

“... a public entity may use conforming alter-

nate versions of web content ... only where it
is not possible to make web content directly ac-
cessible due to technical or legal limitations.”

The question of legal issues related to intellectual
property law (such as textbooks) is addressed briefly
on page 31377, and offers little clarification.

5.5 Exceptions

There is a notable set of exceptions [3] to these rules.
At this time, I am unwilling to publicly comment on
these rules.

Legal and cultural landscape of mathematics accessibility in the United States: 2024

192

6 Implications for mathematics

Needless to say, mathematics provides unique chal-
lenges for accessibility. At this point, I can only
conjecture on what will come next.

6.1 Technical restrictions for PDF

Due to the clause that conforming alternative ver-
sions are allowable only under technical or legal lim-
itations, there will likely be legal disputes about the
technical limitations of PDFs. Currently, there is
a great deal of public confusion concerning acces-
sibility of TEX-generated documents. For instance,
a well-respected accessibility resource run by Penn
State University [2] falsely claims that

“A PDF file created from a .tex file is always
inaccessible.”

Perhaps as a result, an accessibility advocate at the
arXiv Accessibility Forum in 2023 suggested banning
PDFs as a file format. Likely this question will be
litigated in 2026 or 2027.

6.2 Removal of material

Some research universities may follow Berkeley’s lead
and remove all course content, while ordering grade
inflation to compensate. Ultimately, this is legally
allowable and difficult to fight without providing
additional resources for accessibility.

6.3 Federal funding

More optimistically, some funding agencies have of-
fered increased funding for accessibility. As just one
example, I received $1,860 in salary to improve the
accessibility of the Texas A&M Math REU webpage
(software was covered with my accessibility company,
Tailor Swift Bot). Furthermore, some Department
of Education funded projects, such as Ximera, have
budgeted for accessibility.

Jeffrey Kuan

TUGDboat, Volume 45 (2024), No. 2

6.4 Instructional designers

To support accessibility in mathematics, some col-
leges and universities may invest in instructional
designers to support faculty. At Texas A&M during
Spring 2024, there were no instructional designers to
support the 18 departments in the College of Arts
and Sciences, despite being the largest public univer-
sity in the country. However, this is perhaps more
specific to Texas A&M University.

6.5 AI

Some colleges and universities may believe that AT
can automatically create accessible documents. How-
ever, given that this issue was already litigated in
the National Association of the Deaf vs. Harvard
and MIT, this is very unlikely to be legally allowable,
given the current state of Al

References

[1] National Center on Accessible Educational
Materials. Defining the term accessible.
youtu.be/ojthp08tcOw

[2] Penn State. Equation format and accessibility.
accessibility.psu.edu/math/equations/

[3] US Department of Justice. Fact sheet: New rule
on the accessibility of web content and mobile
apps provided by state and local governments.
ada.gov/resources/2024-03-08-web-rule

[4] US Department of Justice. Nondiscrimination
on the basis of disability; accessibility of web
information and services of state and local
government entities. govinfo.gov/content/
pkg/FR-2024-04-24/pdf /2024-07758 . pdf

[5] US General Services Administration.

IT accessibility laws and policies.
sectionb08.gov/manage/laws-and-policies/

o Jeffrey Kuan
jkuan (at) tailorswiftbot dot com

https://youtu.be/ojthpO8tc0w
https://accessibility.psu.edu/math/equations/
https://ada.gov/resources/2024-03-08-web-rule
https://govinfo.gov/content/pkg/FR-2024-04-24/pdf/2024-07758.pdf
https://govinfo.gov/content/pkg/FR-2024-04-24/pdf/2024-07758.pdf
https://section508.gov/manage/laws-and-policies/

TUGboat, Volume 45 (2024), No. 2

Extending Peter Flynn’s bookshelf package
for multilanguage libraries

Boris Veytsman

Due to the COVID, TUG2020 was held online. Fig-
ure 1 shows the drawing for the conference by Jen-
nifer Claudio. As befits a true artist, Jennifer man-
ages to reproduce the Zeitgeist with a well-chosen
detail: the stylized bookshelves. They were created
with the bookshelf package [1], which was released
during the pandemic. It was used by many of us
to generate the backgrounds for remote meetings.
These bookshelves remind one of the time of endless
meetings, fear, loneliness, sickness and death.

Peter’s package uses a clever algorithm to create
interesting images, different for each TEX run. It
takes a BIBTEX catalog of books (many electronic
book managers, like Calibre [2], can export the book
list in this format). For each book it performs the
following steps:

1. Select a random rectangle size.

2. Select random foreground and background col-
ors. If the contrast is too low, repeat.

3. Select a random font.
4. Typeset author and title to fit in the box.

The result for my electronic library is shown on
Figure 2. (Grayscaled for print; online, you might
like to zoom in to see the variety of colors and fonts
used.)

Besides creation of backgrounds, this package
may be used also for an amusing game, which is quite
suitable for long boring remote meetings. Take a look
at some spines (Figure 3). Can you guess which fonts

TEX AND IATEX
TYPOGRAPHY
TYPESETTING

4157 ANNURL CONFERENCE OF THE TgX USERS GROUP

TUG

.20

X u

dante AADELAIDE

KEYNOTE SPEAKERS
Steve Matteson, Monotype
John MacFarlane, UC Berkeley

R I T e AN,

GVGI'\QCH

Figure 1: Jennifer Claudio’s drawing for TUG2020

193

were used to typeset them? You may add a point for
each correctly guessed font, and additional points
for correctly guessed author or style. To check your
answers you need to know that the little numbers
after the books are actually the numbers of the fonts
in the main list of fonts used by the package. For
example, looking at the font numbers on Figure 3,
we get:

589: AvenirLTStd-Heavy

9541: KyivTypeTitling-Bold2

2784: Concoursed4Italic, Stylistic Set 3

17266: XITS-BoldItalic

68: Alegreya-ExtraBoldItalic, Stylistic Set 4
13971: Nunito-ExtraLight

16390: SourceSansPro-Black, Small Caps
10119: KyivTypeTitling-Bold, Stylistic Set 4
15373: RobotoSerif-Black, Old Style Numbers
536: Arsenal-Bold, Stylistic Set 2

1490: BradleyDJR-Micro, Historical Ligatures

An astute reader might understand at this point
that Figures 2 and 3 were not produced by the orig-
inal version of Peter’s package. The reason is that
some of the books on Figure 3 have Cyrillic spines
(Ukrainian and Russian, to be precise). The fonts
used for these books (XITS, Alegreya, Nunito, Source-
SansPro, KyivTypeTitling) contain Cyrillic glyphs.
However, since the font selection is random (see
item 3 in the algorithm above), we can get fonts inca-
pable of typesetting the spines. Since the number of
books with non-Latin scripts in my library is large,
the probability of such events is close to 1.

At first I restricted the selection of fonts only
to those that had both Latin and Cyrillic glyphs.
However, there were fonts I liked to see on my shelf
which did not have Cyrillic letters. Also, I wanted
a solution suitable for libraries more versatile than
mine, with books in Arabic, Hebrew, Malayalam,
Sanskrit, etc. I wanted to be able to typeset any
catalog with any number of languages, and use any
suitable font.

One solution would be to use Language tag of
the fonts: we can add this tag to each book, cre-
ate separate pools of fonts for each script, and then
randomly select a font from the given pool. How-
ever this would require manual tagging of each book
and a rather complicated font selection algorithm,
especially for the books with several scripts in the
title. Therefore I decided to use the same logic Peter
used for color selection: for the given book select a
random font. If the book spine can be typeset with
this font, use it, otherwise repeat selection.

To check whether we can typeset the given string
with the given font we use the primitive \iffontchar.

Extending Peter Flynn’s bookshelf package for multilanguage libraries

doi.org/10.47397/tb/45-2/tb140veytsman-bookshelf

https://doi.org/10.47397/tb/45-2/tb140veytsman-bookshelf

194

TUGboat, Volume 45 (2024), No. 2

Figure 2: The author’s electronic library

- Volume 1

Michael J. Foy

Stories - Part XLIV: 2024 Annual (1889-1897)

— David Marcum
The MX Book of Mew Sherlock Holmes Stories
- Part XLIII: 2024 Annual (1874-1888)

David Marcum
IOpiu ITasaoseuu Bunnuuyx

Sherlock Holmes - A Study in

Illustrations

589 9541 2784 17266 68 13971

Mapusa NanuHa
Lyndon Perry

Lyndon Perry
R Harlan Cravnfard

Aviore

o
z
s
3
=
g
=
1
8
2
&
o
A

ABTOXTOHDI

ResAliens Issue #1 — Lyndon Perry
ResAliens Issue #2

RefAlien] Tiiue #3

Thae A7idAwu

)
)
3 16390 10119 15373 536 1490 14¢

Figure 3: Several books from the author’s library

Boris Veytsman

The logic of the algorithm is straightforward: we
map the primitive over the string, and bail out
early if we find a character that cannot be type-
set. The implementation is easier in expl3 lan-
guage; see Figure 4. This code defines a macro
\CanTypesetTF{(string)}{ (true)}{(false)}. It calls
either {(¢rue)} branch or {(false)} branch depending
on the results of the typesetting test.

Since I wanted to demonstrate the possibilities
of my fonts, I decided to change the source of them
in the package. Both X{IEX and LuaTgEX can use
system fonts (those in the locations known to all
applications on your machine), and TEX fonts (those
known to your TEX installation). Peter’s package
can use any source, but the scripts provided with it
get the list of fonts in the system directories. TEX
Live has a very large collection of interesting fonts,
to which I have added some that I've purchased or
downloaded. Thus I decided to switch to the TEX
fonts. I also wanted to demonstrate stylistic variants,
swashes, old-style figures, so I wrote a script that
lists these variants for the given font, as shown on
Figure 5.

These changes lead to another problem. The
number of fonts together with their variants turned
out to be huge (19183 on my machine). The trial-
and-error algorithm for choosing a random font may
open several fonts per book. A decent library (Fig-
ure 2 has 1584 books) probes many fonts from this
list. Thus the package may want to open thousands
of fonts for a single run. The number of fonts that a
modern engine can open is much larger than in the
old days, and can be further extended by changing
the config file (I am grateful to Frank Mittelbach

TUGboat, Volume 45 (2024), No. 2 195

\prg_new_conditional:Nnn __SIL_primitive_font_glyph_if_exists:n {TF,F}
{
\tex_iffontchar:D \1l_fontspec_font ‘#1 \scan_stop:
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
\prg_new_conditional:Nnn __SIL_can_typeset:n {TF}
{
\typeout{Trying ~ to ~ typeset ~ #1}
\bool_set_true:N \1l_tmpa_bool
\str_map_inline:nn {#1} {
__SIL_primitive_font_glyph_if_exists:nTF {##1} {}{
\bool_set_false:N \1_tmpa_bool
\typeout{Cannot ~ typeset ~ ##1}
\str_map_break:
}
}
\bool_if:nTF \1_tmpa_bool {\prg_return_true:} {\prg_return_false:}
}
\cs_generate_variant:Nn __SIL_can_typeset:nTF {x}
\NewDocumentCommand\CanTypesetTF { m m m}{
__SIL_can_typeset:xTF{#1}{#2}{#3}

}
Figure 4: Checking whether a given string can be typeset with a given font
A:;:;Lmo—Bold_ttf use the general list, but randomly select the font
Arimo-BoldItalic.ttf from the stack.
Arimo-Italic.ttf With these changes the package was able to typeset

Arimo-Regular.ttf
Arsenal-Bold.otf
Arsenal-Bold.otf hist

Figure 2.

The code is now available at the Github repos-
Arsenal-Bold.otf smcp itory. github. com/borisveytsman/booksl}elf. Pe-
Arsenal-Bold.otf ssOi ter kindly allowed me to take over the maintenance
Arsenal-Bold.otf ss02 of the package on CTAN, so the new version with
Arsenal-Bold.otf swsh all these changes will be released after some code
cleaning. There are some features I'd like to add,
including colorblind palettes, streamlining the type-
setting, making the package aware of the size of the
actual book (so large books have larger spines).

It is difficult to find a “practical” application
for this package. Still, it brought much fun to me. I
am grateful to Peter for inventing it, and hope my
extensions are welcomed by other users.

Figure 5: Fragment of the font list

for this remark). Still, I found out that the engines
choke when the number of fonts in the document ex-
ceeds 5500. I did not want to recompile the engines,
so I employed several mitigation strategies:

1. The package does not load different sizes of a
font to fit a spine. Instead, it changes the sizes
of the rectangle that represents the spine, and [1] P. Flynn. The bookshelf package, 2020.

References

then uses \resizebox. Generally, such resizing ctan.org/pkg/bookshelf
of fonts is a bad typographic practice; this is one [2] K. Goyal. calibre User Manual, 2024.
of the rare cases when it seems to be appropriate. manual.calibre-ebook. com
2. The actual algorithm for choosing a random font
has two stages. On the first stage we randomly ¢ Boris Veytsman
select a font from the general list and save its TEX Users Group

borisv (at) 1k dot net

number in the stack of opened fonts. When the :
https://borisv.lk.net

size of this stack exceeds the limit, we no longer

Extending Peter Flynn’s bookshelf package for multilanguage libraries

https://github.com/borisveytsman/bookshelf
https://ctan.org/pkg/bookshelf
https://manual.calibre-ebook.com

196

Holon programming regained
Mitchell Gerrard

Abstract

One of the main inspirations for literate program-
ming was a technical report entitled Holon Pro-
gramming: A Survey, by Pierre-Arnoul de Marneffe.
It was privately circulated among computer scien-
tists in 1973. The document thereafter became a
Borgesian mythical book, existing only in citations
by Knuth. This article narrates the search-and-
rescue mission of this rare book, and highlights a
few of its innovations. The full report is available at
github.com/holon-scribe/holon-programming.

1 Ancient history

And indeed, he composed a fair great book with
figures, but it is not printed as yet that | know of.

— Francgois Rabelais, Pantagruel (1532)

In 1973, a Belgian computer scientist named Pierre-
Arnoul de Marneffe was finishing a report describing
his ideal programming language. More on this later.

A few years prior, Edsger Dijkstra had circulated
his Notes on Structured Programming [3]. These
Notes marked a watershed in the computing com-
munity. Dijkstra urged the systematic use of now-
commonplace programming constructs such as for
loops, if/then/else statements, and subroutines. He
also gave a method to write complex programs by
starting with an abstract description and succes-
sively refining this description into smaller, more
manageable chunks. But what should one call these
chunks of related computation? Dijsktra called them
“pearls”, regarding a program as a necklace strung
from individual pearls; Donald Knuth wrote to Dijk-
stra: “We need another word for pearl, though; what
should it be?” [7]

Prof. de Marneffe knew what the word should
be. He had recently read The Ghost in the Machine
by Arthur Koestler, in which Koestler coins the term
“holon”, denoting the various “nodes on [a] hierarchic
tree which behave partly as wholes or wholly as parts,
according to the way you look at them.” [12] The
holon would be the unifying concept in de Marneffe’s
synthesis of Dijkstra and Koestler. In December of
1973, de Marneffe privately circulated copies of his
report entitled Holon Programming: A Survey.

2 Modern times

| try to reason, and | tell myself you'll return.
— Roberta Flack, Gone Away (1970)

The year is now 2015. I had written my first few
literate programs using Norman Ramsey’s noweb

Mitchell Gerrard

doi.org/10.47397/tb/45-2/tb140gerrard-holon

TUGDboat, Volume 45 (2024), No. 2

tool [17], and was immediately smitten by this pecu-
liar approach to programming. So I reread Knuth’s
article that introduced literate programming, to
seek the font of this love potion that was on my
sleeping eyelids laid. And happy day — here were
breadcrumbs: “The design of WEB was influenced
primarily by the pioneering work of Pierre-Arnoul de
Marneffe, whose research on what he called ‘Holon
Programming’ has not received the attention it de-
serves.” [8] This statement was accompanied by two
citations, one of them a 135-page report [6]. Yet
when I searched for this report online, there were no
books published under this name, there were no PDF
scans, there was almost nothing save for a few tan-
talizing passages and descriptions of this mysterious
document. Most strange.

Was Holon Programming a fictitious entry in
The Catalog of Lost Books [20]? But there were
extracts, and de Marneffe was a real author. .. surely
this influential report hadn’t been lost to posterity.

I wrote to Prof. de Marneffe. He replied that
he indeed had a copy in his files that he would scan
and send to me, but he was recovering from a long
hospital stay, so would do so after feeling better.
Some time passed and I did not want to trouble Prof.
de Marneffe further. I then wrote to Prof. Knuth.
He replied: “I think I donated my copy to Stanford’s
tech reports collection, but they don’t seem to have
it”, and directed me to the only known library copy
that was supposedly held in Germany. Knuth also
enclosed a copy of the letter that he wrote to de Mar-
neffe in 1974. This letter contained such specific
references to the report that I was almost convinced
Holon Programming was not a fabrication. Unfor-
tunately some doubts remained, as the letter was
dated April 1st.

The full letter is reproduced below (with per-
mission).

3 Knuth’s letter

April 1, 1974
Prof. Pierre-Arnoul de Marneffe
Université de Liege
Service d’Informatique
Avenue des Tilleuls 59
B-4000 Liege, Belgium

Dear Prof. de Marneffe:

Thank you very much for sending me your survey
of Holon Programming. I especially enjoyed your
references to the non-computer literature (Koestler,
Bernard-Shaw, Shanley, Mount Vernon, etc.) since
computer scientists need to avoid insularity.

https://github.com/holon-scribe/holon-programming
https://doi.org/10.47397/tb/45-2/tb140gerrard-holon

TUGboat, Volume 45 (2024), No. 2

I believe you are making important strides to-
ward the development of a new programming lan-
guage. There still remain some unclear areas but you
are obviously addressing the correct issues; the next
thing to do (it seems to me) is to program several
hundred examples!

For related reading I would suggest that you
carefully study Ole-Johan Dahl’s papers on SIMULA
since his class concept is so close to the holon con-
cept. Also I have just heard that Brian Randell of
Newcastle has been working on a so-called PEARL
system.

I found your report could have been improved
if you had worked entirely with tree structures in-
stead of converting to binary trees. The original tree
structure is what is really relevant, and the Dewey
notation for such structure is more directly suited to
the operations you discuss. The binary tree is only a
machine-oriented representation of the basic concept,
the discussion should stay at a higher level.

Secondly, I found the report too preoccupied
with details of implementation. The people by whom
it is most important that this report be read are ei-
ther able to visualize easily how to implement this
sort of system, or else they are people who are not
likely to care how it’s implemented as long as it’s
handled sensibly. The important thing to stress is
rather the conceptual issues of how holon program-
ming differs from and improves on today’s languages.

The example didn’t come until page 100, while
I expect most readers would have preferred to see
it immediately. Since the program is almost self-
explanatory, you can let it explain the language at
the same time (integration of functions!).

Ideally there should be more examples of course.

The one example raises some interesting issues
since the individual holons don’t quite state their
assumptions. In the very first holon, for example, it
is not at all clear why you ‘find first word starting
character’ instead of going right into ‘find a word
etc.’” You must already have made a decision (a)
that you wouldn’t assume the text begins with a
nonblank, (b) that there is going to be at this level an
element of data representing the last-read character,
(c) that the ‘find a word’ routine will already have
its first character in hand, and (d) that there is no
need to test for a message that has no words (only
a full stop). As I recall when I was solving that
problem, it took me a good five minutes to reach
these decisions, during which I must have considered
lots of alternatives. Once this step was made the rest
of the program flowed naturally. My questions are:
Where should we state these assumptions? Shouldn’t
we mention the existence of data representing the

197

last-read character, even though we don’t want to
specify its detailed structure until later?

These issues seem to arise repeatedly and I
haven’t a first conclusion about what we ought to
do. That’s why I suggest working out hundreds of
examples, as being the best kind of eating to prove
the pudding at this stage. On the other hand creat-
ing the holon implementation itself is equivalent to
working out quite a few examples.

Thanks again for showing me your stimulating
work. I myself must get on with the writing of volume
4 of my series, so I have little energy to devote to
the development of languages, but I will do my best
to see that other people working in the area are kept
informed of what you are doing.

Sincerely,

Donald E. Knuth
Professor

P.S. Is there a place in Belgium whose postal code is
B-6700 like the Burroughs computer?

4 The survey itself

OQur Perdita is found.
— Shakespeare, A Winter's Tale (1611)

More time passed, revealing more false bottoms, but,
eventually, kind librarians on both sides of the At-
lantic arranged for that most elusive document to be
sent from Hanover to Nebraska.

And so: After more than 50 years in hiding,
Pierre-Arnoul de Marneffe’s Holon Programming: A
Survey, prefaced with Knuth’s letter, is returned.
Make its acquaintance at the address below.

I github.com/holon-scribe/holon-programming

I second Knuth’s suggestion to jump straight
to the (Program Example) section to get a feel for
what it’s all about. And then, in the hypertext spirit
of Hopscotch [2], jump around and go to whichever
chapter titles most draw you.

In this technical report filled with out-of-the-way
observations, projected language features and imag-
ined ecosystems (a full “holon operating system”) —
where is the literate programming? Well, if you at-
tire the program example’s bare pseudocode phrases
with a (\and) on either side, the holons transform
into the code sections of WEB. So let’s do just that:
we’ll take an extract of de Marneffe’s program and
translate its “holons” into corresponding sections
of a WEB program. This program solves a problem
from section 16 of Dijkstra’s Notes; its details aren’t
relevant here. Two notes on the syntax: the etc
keyword abbreviates unambiguous prefixes, and ‘#’
followed by ‘##’ brackets low-level statements.

Holon programming regained

https://github.com/holon-scribe/holon-programming

198

5 A holon program and its WEB twin

odd inversion program
begin find first word starting character;
repeat find a word and print correctly;
until end of useful file
end

find first word etc
begin read first symbol;
while last read symbol is a space;
do read next symbol
end

read first symbol
begin declare Irs: character at
odd inversion program level;
Irs < RNC ##;
end

And here are the equivalent extracts written in WEB.

The (Global variables) section approximates how, in
de Marneffe’s language, one “declares a variable and
specifies the scope by naming an outer holon.” [5]

1. This program is one possible solution to the
problem posed in section 16 of Dijkstra’s Notes.
program odd_inversion;
var (Global variables 4)
begin (Find first word starting character 2);
repeat (Find a word and print correctly 3);
until (End of useful file 13)
end.

2. (Find first word ... 2)=
begin (Read first symbol 11);
while (Last read symbol is a space 12);
do (Read next symbol 6)
end

This code is used in section 1.

10. (Global variables 4)+=
Irs: char; {last-read symbol }

This code is used in section 1.
11. (Read first symbol 11) =

begin lrs <~ RNC; {read next character }
end

This code is used in section 2.

RNC': procedure, §15

Mitchell Gerrard

TUGDboat, Volume 45 (2024), No. 2

The resemblance is uncanny. What de Marneffe
did was show how a program can be written “in the
order of its design”, using phrases mostly in natural
language, in digestible sections of no greater than
eight lines, that can be automatically “disentangled”
(de Marneffe’s word) into a fully executable program.
Knuth describes de Marneffe’s approach as “a way
of taking a complicated program and breaking it
into small parts. Then, to understand the compli-
cated whole, what you needed is just to understand
the small parts, and to understand the relationship
between each part and its neighbors.” [10]

I won’t go on to give a book report of Holon
Programming. Instead, I'll assign further reading
and then highlight a few more prefigurings of the
literate programming we know today.

To rough in more of the context in which de Mar-
neffe’s survey is, holon-like, embedded, I recommend
reading Chapters 2, 3 and 5 of The Ghost in the Ma-
chine through the lens of Dijkstra’s Notes. Koestler’s
arguments employ the language of computer science
(via Herbert A. Simon); the metaphors and exact
phrasings he uses to describe carrying out tasks
closely echo those Dijkstra uses to describe flesh-
ing out programs. They also share a fondness for
pugilistic asides. In a happy coincidence, the section
that de Marneffe singles out in Koestler, “How to
Build a Nest”, contains three instances of the word
“web” and four instances of “weaving”.

Now for the highlights.

We come across a few false friends in comparing
de Marneffe’s language with Knuth’s. The append
command refers to defining a new section, differing
from the += append operation in WEB. There is an ap-
pearance of suggested macro use; but unlike Knuth’s
more straightforward macros, de Marneffe’s were to
parameterize holons themselves, making them more
procedure-like.

Other constructs are remarkable prototypes of
those we know: the text command defines a section
of prose to “explain the reason of some design deci-
sions”; the change command is like Knuth’s change
file mechanism, except the entire section must be
replaced; the etc abbreviation keyword has turned
into the ‘...’ shorthand in a WEB source file; the out-
put command prints the holon program as intended
for human eyes to an output device, somewhat akin
to weaving; and the synthesize command outputs
the program intended for machine consumption, akin
to tangling.

Most wonderful!

But hol’ on there. . .if all these elements were
present in de Marneffe, what exactly were Knuth’s
contributions?

TUGboat, Volume 45 (2024), No. 2

6 Woven WEBs

Nothing about WEB is really new, | have
simply combined a bunch of ideas that
have been in the air for a long time.

— Donald Knuth, Literate Programming (1984)

Let no one say that | have said nothing new, the
arrangement of the subject is new. When we play
tennis, we both play with the same
ball, but one of us places it better.

— Blaise Pascal, Pensées (16577)

Knuth’s selection, rearrangement, and improvement
upon ideas “in the air” was decisive. He saw through
many of the irrelevant technical details in de Mar-
neffe’s report and grasped the essence. Knuth made
the subtle but crucial design decision to bring the
informal prose explanations to the forefront. (The
text command in de Marneffe never appears in exam-
ples, and seems to be regarded as a simple “comment”
mechanism, despite my hyping it just now.)

The importance of colorful language, metaphors,
and rephrasings cannot be understated when think-
ing about the unreasonable effectiveness of literate
programming. “We retain only what has been drama-
tised by language; any other judgment is fleeting.” [1]
The storytelling elements of a good literate program
act as strong fixatives in our memory. And Knuth
does not limit the prose to the “informal” portions;
it spills over into the formal (code) portions as well.
In all of Knuth’s published literate programs, he fol-
lows most macro definitions and variable declarations
with some explanatory comment.

As Knuth brings informal prose to center stage,
he also casts the prettyprinted code to be its costar.
Whereas de Marneffe banishes the lowly code state-
ments to hide within ugly ‘#’ and ‘##’ curtains and
leaves the holon names unmarred, Knuth reverses
this: he lets the (formatted) code stand on its own
and brackets the section names with (less-obtrusive)
delimiters. Knuth does not at all want to give short
shrift to the code. The typeset Pascal in WEB’s woven
output invites the reader to see how the code syncs
up with its informal explanation above.

Knuth developed the first implementation of lit-
erate programming, with the TEX and METAFONT
projects being the “proof in the pudding”. WEB in-
cludes a host of features unforeseen by de Marneffe,
such as commands to produce camera-ready pro-
grams. Alongside these projects Knuth brought the
history of literature, typography, and book design
to bear on this style of programming. Beautiful
fonts, typeset code blocks, cross-referencing included
with each section name, tables of contents, indices,
mini-indices, appendices, bibliographies, figures. . ..

199

But we are getting far afield. Briefly stated:
there was a whole lot that was new in WEB.

7 Old yarns

What threads were those, oh, ye Weird Ones,
that ye wove in the years foregone.

— Herman Melville, Pierre; or, The Ambiguities (1852)

I've focused the discussion of the genesis of holon
programming on the two authors de Marneffe cites
the most: Dijkstra and Koestler (“The author re-
ally doesn’t know to what extent the reader can
grasp the holon concept without reading Koestler’s
book.” [5]). But there was one other primary in-
fluence on de Marneffe’s language. Who? Lo and
behold: Knuth.

The program example used by de Marneffe to
illustrate his holon language is predated by two alter-
nate program solutions to the same problem, given
by Knuth in his letters to Dijkstra and Dahl [7]. We
know de Marneffe was familiar with these letters be-
cause he cites and comments upon them. In Knuth’s
first program solution, we see the program only in
its final, (mostly) executable, stage, but he does
something remarkably close to de Marneffe. That
is, Knuth composes a program out of small code
sections not exceeding eight lines, each labeled with
a natural language descriptor, constructed in “the
order in which the decisions were made” [7], and sys-
tematically expanded and interleaved into a machine-
readable form. The code sections, called “pearls” in
the letter, are identified in the left margin of the
“tangled” output. The second program solution is
largely the same, but Knuth explicitly groups the
small independent sections (here called “classes”)
in the top-down order of design. These programs
differ in many details from de Marneffe’s system,
but the influence in language design clearly ran in
both directions. And of course there are countless
other contributors who helped bring about literate
programming.

So I would like to express a desire to reprint some
of the precursors in a slim anthology entitled Pre-
literate Programming. This could include selections
from de Marneffe; the PEARL system mentioned
by Knuth in his letter to de Marneffe [18]; Dahl’s
SIMULA papers [4]; Naur’s “Programming by action
clusters” [14] and “Formalization in program devel-
opment” [15]; Knuth on Structured Programming [7];
Babbage’s “On a method of expressing by signs the
action of machinery” [13]; excerpts from Dijkstra’s
Notes [3]; selections from Chapter 2 of Wilkes et
al.’s book [22]; a rifacimento of Weinberg’s book into
a collection of aphorisms [21]; Towster’s work [19];

Holon programming regained

200

portions of Jim Dunlap’s early compiler code with
forty-character-long identifiers; a two-page spread
exhibiting the impact typography has on program
comprehension, with a non-typeset Algol program on
one side and the same program typeset with executive
editor for ACM Myrtle Kellington’s standards on the
opposite side; Derek Oppen’s “Prettyprinting” [16];
and, as a specimen of good storytelling, something by
Shirley Jackson. (We leave out the many shoots and
buds of literate programming already gathered in
Knuth’s early papers from [9] and “Computer Drawn
Flowcharts” and pp. 229-235 in [11].)

Acknowledgments

Thanks Don Knuth for help in locating this report
and for letting the 1974 letter be reproduced. Thank
you librarians. Thanks Karl Berry, Udo Wermuth,
and Andreas Scherer for your feedback and sugges-
tions. And thank you Pierre-Arnoul Frédéric Guy
Donat de Marneffe (1946-2023) for creating and shar-
ing this groundbreaking work.

References

[1] G. Bachelard. The Dialectic of Duration.
Rowman & Littlefield, 2016.

[2] J. Cortdzar. Rayuela (Hopscotch,).
Sudamericana, 1963.

[3] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare.
Structured programming. Academic Press Ltd.,
1972. archive.org/details/Structured_
Programming__Dahl_Dijkstra_Hoare

[4] O.J. Dahl, K. Nygaard. SIMULA: an
ALGOL-based simulation language.
Communications of the ACM, 9(9):671-678,
1966.

[5] P. de Marneffe, D. Ribbens. Holon
programming. In International Computing
Symposium, A. Giinther et al., ed.,
Amsterdam, North Holland, 1973.

[6] P.A. de Marneffe. Holon Programming:

A Survey. Univ. de Liege, December 1973.

[7] D.E. Knuth. A review of “Structured
Programming”. Technical Report
STAN-CS-73-371, Stanford Computer
Science Department, Stanford University,
Stanford, CA, 1973. i.stanford.edu/TR/
CS-TR-73-371.html

[8] D.E. Knuth. Literate programming.
The Computer Journal, 27(2):97-111, 1984.

Mitchell Gerrard

TUGDboat, Volume 45 (2024), No. 2

[9] D.E. Knuth. Literate Programming. CSLI,
1992.

[10] D.E. Knuth. Digital Typography. CSLI, 1999.

[11] D.E. Knuth. Selected Papers on Computer
Languages. CSLI, 2003.

[12] A. Koestler. The Ghost in the Machine.
Macmillan, 1968.

[13] P. Morrison, E. Morrison. Charles
Babbage and his calculating engines:
Selected writings by Charles Babbage
and others. Dover, New York, 1961.
archive.org/details/philtrans09445034

[14] P. Naur. Programming by action clusters.
BIT Numerical Mathematics, 9(3):250-258,
1969.

[15] P. Naur. Formalization in program
development. BIT Numerical Mathematics,
22(4):437-453, 1982.

[16] D.C. Oppen. Prettyprinting. ACM
Transactions on Programming Languages and
Systems (TOPLAS), 2(4):465-483, 1980.

[17] N. Ramsey. Literate programming simplified.
IEEE Software, 11(5):97-105, 1994.

[18] R.A. Snowdon. PEARL: an interactive
system for the preparation and validation
of structured programs. SIGPLAN Notices,
7(3):9-26, Mar. 1972.

[19] E. Towster. A convention for explicit
declaration of environments and top-down
refinement of data. IEEE Transactions
on Software Engineering, SE-5(4):374-386,
July 1979.

[20] T. Tuleja. The Catalog of Lost Books: An
annotated and seriously addled collection of
great books that should have been written but
never were. Fawcett Columbine, 1989.

[21] G.M. Weinberg. The Psychology of Computer
Programming, vol. 29. Van Nostrand Reinhold
New York, 1971.

[22] M.V. Wilkes, D.J. Wheeler, S. Gill. The
Preparation of Programs for an Electronic
Digital Computer: With special reference
to the EDSAC and the use of a library of
subroutines. Addison-Wesley Press, 1951.

¢ Mitchell Gerrard
mitchell dot gerrard (at) gmail
dot com

https://archive.org/details/Structured_Programming__Dahl_Dijkstra_Hoare
https://archive.org/details/Structured_Programming__Dahl_Dijkstra_Hoare
http://i.stanford.edu/TR/CS-TR-73-371.html
http://i.stanford.edu/TR/CS-TR-73-371.html
https://archive.org/details/philtrans09445034

TUGboat, Volume 45 (2024), No. 2

On-demand production of TEX DVDs:
first feedback

Jérémy Just
Abstract

Distributing TEX software on physical media has
been a mission of the TEX user groups since their
earliest days. As of 2024, with wide availability of
high-speed permanent access to the Internet, the
user groups agreed to switch the way this service is
provided: the DVDs are now produced and shipped
only on demand, by a group of volunteers spread
over the world.

1 The historic TEX Collection DVD

Obtaining TEX software has been a major reason
to join user groups, especially before the advent of
widespread Internet access. The 1980s saw floppy
disks being exchanged between user group members;
with an increasing number of packages deposited on
CTAN, distribution switched to CDs in the 1990s,
and quickly to DVDs (Fig. 1).

As of 2023, the TEX Collection DVD contained
more than 7.8 GB of TEX-related software, in three
distributions (TEX Live, MiKTEX and MacTgX). In
total, 3,300 copies were produced by DANTE for all
TEX user groups, at a cost of 0.50 euro each. DANTE,
TUG and a few other groups were still shipping it
to all their members, but other groups, for exam-
ple GUTenberg, were already shipping to members
exclusively on-demand.

For TUG, the contribution to production, plus
shipping of 750 DVDs, represented a budget item of
~USD 3,120 in 2023.

2 Why stop mass-production?

The general feedback was that the vast majority of
members didn’t need or want a DVD, having sufficient
bandwidth to access downloads. Some people were
even asking not to get it, to reduce clutter or to
better spend community money and time. Therefore
making the DVD as a large bulk production and
mailing didn’t seem the best choice any longer.

Nevertheless, approximately 20 individuals or-
dered a DVD from the TUG online store in 2023, and
I personally provided 6 copies to French users in the
same year; thus availability on physical media still
has a real use, in some situations.

So time had come to switch from producing
thousands of DVDs of which only a handful would
be used, to an on-demand production.

Motion 2023.3 was voted by the TUG board
in August 2023, ratifying the discontinuation of

doi.org/10.47397/tb/45-2/tb140just-dvd

201

TeX Collection TEXL

TeX Live + CTAN

s
TEX Live 7

04 TeX Collection 2005 | 22 | TeX Collection

i TeX Collection
TEX Collection 2011

Figure 1: A collection of TEX Collection DVDs.
Courtesy Robert PAPOULAR.

TEX Collection DVD as a general TUG membership
benefit.

3 A network of volunteers to burn DVDs
on demand

A network of volunteers was initiated in spring 2024.
The only requirement to join this network: have
access to a DVD burner, with a few spare dual-layer
DVDs at hand.

A web form hosted on TUG web server now al-
lows to request DVDs.! In the past, a single disc
(the “TEX Collection”) was able to store all four com-
ponents (TEX Live, MiKTEX, MacTEX and a CTAN
snapshot), but as of this year, this is no longer pos-
sible: the combined size exceeds the capacity of one
disc, even dual-layer, so people have to select one or
more of the four available DVDs.

New graphic designs for the DVDs and their
sleeves were also conceived (Figs. 2 and 3) and will
soon be made available to everyone.

The mailing list texdvd@tug.org can be used
for discussion and special requests. Please do not
post any personal information, such as your postal

! Thanks to Max Chernoff for developing this web form,
along with its back-office interface, to handle DVD requests.

On-demand production of TEX DVDs: first feedback

https://texdvd@tug.org
https://doi.org/10.47397/tb/45-2/tb140just-dvd

202

address, as the list archives are public (list archives
and information: lists.tug.org/texdvd).

4 How can I get a TEX distribution,
today?

First option: installing a TEX distribution over the

internet is now far less tedious that fifteen years ago.

If your computer has decent Internet access, give it
a try!
tug.org/texlive/acquire-netinstall.html

Second option: the DVD images are all publicly
available as ISO files. If a friend or relative nearby
has a broadband internet access and a DVD burner,

they can download them and burn a disc for you.

The up-to-date links are given on this page:
tug.org/dvd/

Third option, the new one: rely on our network of
volunteers! Just fill in and submit the DVD request
form here:

tug.org/dvd/request.html

You will be contacted by one of the volunteers
by private email. An arrangement will be made
between you and the volunteer about the price of the
DVD and shipment, and the way of transferring the
money, and you will need to provide your preferred
mailing address.

Please bear in mind that this service is being
provided by people in their spare time, and that no
profit is made on it. If you have the impression your
request has got lost, or if you're having difficulties

CTAN

TeX Live !
April 2024

J = &
TeX TeX
USERS USERS
GROUP GROUP

tps://www.tug.org/texlive
https://ctan.org/

Comprehensive TEX
Archive Network snapshot

TgX for GNU/Linux, MacOS,
Unix and MS Windows.

MiKTEX
2024

MacTgX
2024

TeX
TEX SRoth

https://miktex.org/

https://tug.org/mactex/

TEgX for macOS
including full TEX Live.

TgX for MS Windows,
GNU/Linux, macOS.

Figure 2: The four DVD designs, as of 2024. ..

Jérémy Just

TUGboat, Volume 45 (2024), No. 2

contacting the person who has volunteered to han-
dle your request, please send an email to the main
mailing list for anything related to TEX DVDs:

texdvdQ@tug.org

At this writing, it’s been about 4 months that we
have been working this way. About 26 DVDs have
been shipped, for prices ranging from 3.50 euros
(1 DVD, domestic shipping) to 10 euros (4 DVDs,
intercontinental shipping). Payments have mostly
gone though PayPal or direct bank transfers.

I personally have greatly enjoyed each time I
dropped a DVD in the nearest mailbox, knowing that
it would soon arrive at the other end of the world,
ready for a TEX installation!

5 How can I help?

If you have access to a DVD burner and are willing
to give a hand distributing TEX software, please
consider joining the group of volunteers! Just send a
message to texdvd@tug.org.

Another way to contribute to TEX and the user
groups that support is donating at tug.org/donate,
or to another group. All donations are welcome!

6 Acknowledgements

First of all, I would like to thank the hundreds of
individuals who have been instrumental in developing
the software that we’re now helping to disseminate
across the globe on those four DVDs. I'm also very
grateful to those who have consistently packaged the
distributions and made ISO images available, each
year. Finally, I want to acknowledge the work of all
people who volunteered for this new mission.

© Jérémy Just
Lyon, France
jeremy (at) jejust dot fr
https://tug.org/dvd

MacTgX 2024

Te

X for macOS,
including full TeX Live.

MacTX DVD editor: Richard Koch

Figure 3: ...and one of the sleeves.

https://lists.tug.org/texdvd
https://tug.org/texlive/acquire-netinstall.html
https://tug.org/dvd/
https://tug.org/dvd/request.html
https://texdvd@tug.org
https://texdvd@tug.org
https://tug.org/donate

TUGboat, Volume 45 (2024), No. 2

Profiling TEX input files
Martin Ruckert

Abstract

A profiler is a tool used by programmers to analyze
the runtime behavior of the code they write. The
profiler can map the CPU time of a program to spe-
cific files and lines, or it can map the time to indi-
vidual procedures. This information is necessary if
a programmer wants to optimize the code for speed.
No such tool has been available to date to pro-
grammers who write macro packages for TEX. This
paper presents texprof and texprofile, two pro-
grams working together to profile TEX input files.

1 Who needs a profiler?

The TEX profiler is a tool for programmers writ-
ing TEX macros. This does not mean that an au-
thor who occasionally writes a TEX macro should
use or even needs to use this tool. Optimizing a
macro for speed should be done only if the macro
is used wvery often. To get a feeling for what “very
often” means, consider the following: Under reason-
able assumptions (200 watt peak power consump-
tion of your PC and 500g of COs emission per kWh
electric power use) one second of CPU time results
in 28mg of CO, emission. Again under reasonable
assumptions (2370g of COs emission per liter fuel
and 61 fuel consumption per km) driving 200km re-
sults in 28kg of CO4 emission. That means that you
need to save millions of seconds in CPU time before
it has any substantial impact on your CO5 footprint
or your budget.

So for the occasional macro writer there are bet-
ter opportunities to invest time and intelligence than
optimizing macros for speed. But of course there are
macro packages for TEX that have millions of users
that use these macros in multiple runs every day,
and if you are the programmer of such a package,
you might be interested to know if there are oppor-
tunities for optimization, where these opportunities
are hiding in your code, and how much you might
gain when optimizing this code. Maybe even more
important, a profiler can tell you where not to look
for optimizations, and — after the optimization —if
the changes to your code had the desired effect. As
a general rule, you should never optimize code for
speed without using a profiler.

2 How does the TEX profiler work?
2.1 Mapping commands to files and lines

Every TEX engine is an interpreter that executes the
built-in commands of TEX, like creating a horizon-

doi.org/10.47397/tb/45-2/tbl40ruckert-profiler

203

tal box, incrementing a count register, or adding a
character to the current paragraph. The TEX pro-
filer, called texprof, is such an engine with exten-
sions to map every command to a file and a line in
that file. If texprof reads such a command from
an input file, it can determine the file name and the
line number from the data structures that every TEX
engine maintains to display good error messages. If
on the other hand, such a command was part of a
format file, the file name and the line number is not
known. We will see below how using a format file
can be avoided.

But even if we avoid using a format file, many
commands are not read directly from an input file,
instead they come from expanding a macro. When
a macro is defined, TEX stores the commands that
belong to the macro body in a hash table, and when
the macro is used, TEX retrieves the commands from
the hash table and inserts them into the input. Since
the file and line are known when a macro is defined,
this information can be stored in the hash table and
retrieved along with the commands when a macro
is expanded. The same mechanism comes into play
when TEX reads ahead, for example when scanning
a keyword, and discovers that the commands seen
must be pushed back into the input for later process-
ing: the commands take their file and line numbers
with them.

There are a few rare cases where this mecha-
nism does not work. For example TEX inserts a pair
of curly braces around an output routine to make
sure that commands executed in an output routine
do not have unexpected global effects. These extra
commands are marked as coming from the “system”
file in line zero.

There are other “line numbers” in the “system”
pseudo-file that the profiler will use. TEX invokes
system procedures like breaking a paragraph into
lines or writing a page to the DVI file that can be
quite time consuming. It would be misleading if
the time spent in these routines would be mapped
to whatever command happened to be executed at
the end of a paragraph or caused the page builder to
eject a page. So texprof associates these times with
the “system” pseudo-file and uses the line number
to indicate the responsible procedure in TEX.

2.2 Mapping execution times to commands

Most of TEX’s commands, but not all, are executed
in TEX’s main_control procedure. There we find
a loop that reads a command and then executes
the command by branching to its code to execute
it using the so-named big_switch (the label in the
Pascal code). texprof looks up the current time at

Profiling TEX input files

https://doi.org/10.47397/tb/45-2/tb140ruckert-profiler

204

the start of each iteration of this loop. The time is
taken from a hardware clock using a low-level rou-
tine provided by the operating system. The time
taken from the clock is the start time of a new time
interval and simultaneously the end time of the pre-
vious time interval. After reading the start time,
texprof continues with the normal processing of
TEX and reads the next command from its input
stack. Once the command is known, texprof takes
note of the command, its file, its line (and the macro
it comes from —but let’s focus for the moment on
commands; macros will be explained later). Then
normal processing continues and the command is
executed using the big_switch which ends with a
jump to the beginning of the loop. There texprof
will again look up the time, compute the time dif-
ference and record command, file, line, and time dif-
ference in a large array.

Occasionally, a command is “reswitched”. That
means, it is replaced in the big_switch by another
command and the big_switch is used again to ex-
ecute it. texprof ignores this replacement and will
record the entire time together with the command,
file, and line that was obtained at the beginning of
the current iteration. This introduces some impreci-
sion into the measurements but does not cause sig-
nificant errors.

A much bigger effect on the association of time
to file and line is caused by the existence of TEX‘s
main_loop. The big_switch will jump to this loop
whenever it encounters a character and it will stay
in this loop as long as the commands are the typi-
cal commands found in plain text: characters, spa-
ces, kerns, ligatures, font changes, and a few more
such things. The complete time spent in this loop
is then recorded with the command, file, and line
that started the loop. So the time used to process
an entire paragraph might be associated with the
first letter of that paragraph. The decision to forgo
a more precise attribution of time in this case is jus-
tified by the following considerations: First, such a
paragraph is normally processed only once and the
time it takes is usually not a significant fraction of
the total run time. Second, using a profiler, we are
usually not interested in the time spent on letters,
spaces and other parts of plain text. After all, no
author optimizes the text for the speed of processing
it. And finally, this reduces considerably the number
of time intervals that texprof needs to record.

TEX’s main_control procedure exits when ex-
ecuting the “stop” command. This ends the record-
ing of time intervals. As part of TEX’s closing pro-
cedure, texprof will write all the data collected to
a binary file. The name of this file is obtained by

Martin Ruckert

TUGDboat, Volume 45 (2024), No. 2

appending .tprof to the \ jobname. All further pro-
cessing of the collected data is not done by texprof
but by a second program called texprofile. Its use
will be illustrated below.

2.3 The problem of measuring time

Operating systems usually provide several clocks to
choose from. texprof uses the common function
clock_gettime to measure the CPU time of the
current thread in nanoseconds. A measurement of
nanoseconds seems like very precise information, but
the actual precision is more on the order of a hun-
dred microseconds, for several reasons. First, mod-
ern computers run many different processes at the
same time and switch the available CPUs from one
process to another. The time to switch processes
includes of course the time needed to swap out and
swap in the contents of memory caches. So when a
process was recently swapped in, a load instruction
from a location in main memory might take consid-
erately longer if that memory location is no longer
in the cache. This extra time is then associated with
the TEX command that happens to be executing.

Second, modern CPUs use a technique called
frequency scaling in order to reduce energy consump-
tion. While you just type text in the editor, you lap-
top might run with a frequency below 1 GHz; shortly
after you have started TEX, your operating system
might notice that there is a lot of work to do and in-
crease its clock frequency to 4 GHz. All commands
that are executed after this change will need less
time than the same commands before this change.

Third, in recent years manufacturers have be-
gun to combine on one chip a few performance cores
with a few efficiency cores. The former use sophis-
ticated superscalar pipelines to execute multiple in-
structions per clock cycle; the latter use simple in-
order execution which requires far less power and
produces far less heat but might need multiple clock
cycles per instruction. So if your operating system
decides to move texprof from an efficiency core to a
performance core in the middle of running, this has
a drastic effect on the command times. The operat-
ing system might move it even back to the efficiency
core if texprof starts to do file input/output which
causes it to wait for the disk.

There are a few possibilities to mitigate these
effects like computing the average over multiple runs
or using synthetic times, but none of them is cur-
rently implemented.

2.4 Mapping computing times to macros

When TEX encounters an active character or a con-
trol sequence, it knows it has to execute a macro. It

TUGboat, Volume 45 (2024), No. 2

looks up the list of commands that form the body
of the macro and pushes this list on its input stack.
When TEX needs the next command from the input,
it takes it from the topmost list on the input stack.
And when TEX reaches the end of the topmost list,
it pops it from the stack and continues to read com-
mands from where it was before in the next lower
list on the stack. The input stack is used not only
for macro calls, but also for implicit calls to other
routines. The page builder will, for example, push
the output routine on the input stack when a new
page is ready. Or at the beginning of a paragraph,
the system will push the commands specified with
\everypar on the stack. Entire files are pushed on
the stack when you use \input. It is also very com-
mon that TEX reads ahead, for example to check for
a possible keyword, and pushes unused tokens back
on the input stack to be read again if the keyword
was not found.

Most of the information texprof needs to keep
track of macros can be found on TEX’s input stack —
but not all of it. Notably, the input stack will not
contain information about the correct nesting level
of the macros. The reason for this is a clever op-
timization that TEX uses on its input stack called
last call optimization: Before a new macro body is
pushed on the input stack, TEX checks repeatedly if
the topmost list on the input stack is already empty.
And if so, it will remove the empty list from the
stack. Only after all empty lists have been removed
the body of the new macro is pushed. Using this op-
timization, a loop that is implemented by a recursive
macro, calling itself as the last action of the macro
body, can run without overflowing the stack. Un-
fortunately this technique will remove a macro from
the input stack while its last sub-macro is still run-
ning; and it will push new macros at a lower nesting
level than their “true” nesting level.

So texprof adds information about the “true”
current macro nesting level to TEX’s input stack and
maintains a separate stack that contains informa-
tion about all macros up to the true nesting level:
the name as well as the file and line number of the
macros definition. This stack provides information
about the true begin and end of a macro call which
is recorded together with the timing information of
executed commands.

3 Analyzing profiling data

The raw data that texprof writes to the output
file is just a long list of thousands of “command
file line time” records interspersed with records that
reflect the changing of the macro stack. Extracting

205

useful information from this data is the job of the
texprofile program.

To explain the use of texprof and texprofile,
it is best to use examples. For the first example, I
was looking for a large document with a focus on
text. Searching the internet for such an example,
I found a TEX version of the bible (github.com/
vermiculus/bible). With a few changes I made it
use the “plain” TEX format so that it makes only
a limited use of macros. Most macros are taken
from plain TEX, but there are also some user defined
macros. Running texprof -prof bible will cre-
ate bible.tprof with a size of 17 Mbyte. Running
tprof bible without further command line options
will print the following summary:

Total time measured: 728.92 ms
Total number of samples: 2157642
Average time per sample: 337.00 ns
Total number of files: 69
Total number of macros: 1097
Maximum stack nesting depth: 7

You can use command line options to specify which
data tables texprofile should display and how it
should display the information.

3.1 The top ten lines

Given the -T option, for example, texprofile will
traverse the data, add up the times for each file and
line combination separately, then sort the results,
and display the ten lines with the highest cumulative
times: the “Top Ten” lines. The output is shown in
Fig. 1.

The first line in the table is attributed to the
“system” pseudo-file. The entry shows the accumu-
lated time for an important system routine using the
line number to identify the specific routine like pro-
ducing the output DVI file (shipout), or a bit further
down breaking a paragraph into lines (linebrk), or
breaking the document into pages (buildpg). These
times do not depend on the use of macros but simply
on the size of the document.

From the next line, we can see that line 29 of
bible.tex is responsible for 17.63% of the total run
time and therefore is a good candidate for optimiza-
tion, which we will try to do in the next section. The
line by itself is quite fast, on average only 2.85 us are
spent on this line, but the line is used very often:
54649 times.

The fact that the remaining six lines all con-
tibute less than 1% to the overall runtime means
that we need not consider any of them for optimiza-
tion.

Profiling TEX input files

https://github.com/vermiculus/bible
https://github.com/vermiculus/bible

206 TUGDboat, Volume 45 (2024), No. 2
file line percent absolute count average file
system shipout 17.68% 156.05 ms 1130 138.09 pus system
5 29 17.63% 155.65 ms 54649 2.85 pus bible.tex
system linebrk 15.21% 134.26 ms 25777 5.21 pus system
system buildpg 1.69% 14.89 ms 55190 269.00 ns system
5 56 0.86% 7.61 ms 4750 1.60 pus bible.tex
5 15 0.62% 543 ms 6183 878.00 ns bible.tex
3 555 0.47% 417 ms 8549 487.00 ns plain.tex
3 1204 0.28% 244 ms 3390 719.00 ns plain.tex
3 1201 0.26% 233 ms 2260 1.03 ps plain.tex
3 1203 0.25% 220 ms 2258 973.00 ns plain.tex
Figure 1: Running tprof -T bible
file line percent absolute count average file
system shipout 18.35% 156.29 ms 1130 138.31 pus system
system linebrk 15.64% 133.23 ms 25777 5.17 pus system
5 29 12.85% 109.48 ms 60839 1.80 us bible-opt.tex
3 666 1.95% 16.61 ms 55847 297.00 ns plain.tex
system buildpg 1.74% 14.85 ms 55190 269.00 ns system
5 55 0.78% 6.67 ms 3552 1.88 us bible-opt.tex
5 15 0.63% 539 ms 6183 871.00 ns bible-opt.tex
3 555 0.49% 4.18 ms 8549 489.00 ns plain.tex
3 1204 0.29% 243 ms 3390 716.00 ns plain.tex
3 1201 0.27% 229 ms 2260 1.01 s plain.tex

Figure 2: Running tprof -T bible-opt

3.2 Optimizing a macro

Line 29 of bible.tex defines the \Verse macro (for-
matted on two lines here for TUGboat):

\def\Verse{\global\advance\vcount
by 1${}"{\the\vcount}$}

It is used to add the number of each verse, in small
print and raised a bit above the baseline, to the be-
ginning of every verse, like this:

17 And Moses anc
the congregation to
families, by the ho
upward, by their pc

19As the LORD |

We optimize this macro for speed: The \global
prefix is not needed because the macro is used only
on the global level. by is an optional keyword and
can be left out. Any literal constant like “1” is
stored in the macro body as a sequence of charac-
ters which is rescanned and converted to an integer
every time the macro is called. It is more efficient
to use one of TEX’s registers instead. Last but not
least, using math mode just to raise a number and

Martin Ruckert

use a small font is a lot of processing for a simple
effect. Here is the optimized version:
\newcount\1 \1=1 \newdimen\3 \3=3.6pt
\def\Verse{\advance\vcount\1

\leavevmode\raise\3

\hbox{\sevenrm\the\vcount}}

It uses two registers for the necessary constants and
requires a call to \leavevmode because \raise is
not allowed in vertical mode.

The top ten lines after optimization are shown
in Fig. 2. Line 29 of bible.tex dropped from sec-
ond place with 17.63% down to third place with only
12.85%. But this is not the full story: New is line
666 of plain.tex on fourth place with a 1.95%. So
we get an overall speed-up of almost 3% from 17.63%
down to 14.80%.

If we want to know what caused the increased
use of plain TEX, looking at the call graph can shed
some light on it.

3.3 The call graph

The call graph gives us information on a higher level
of abstraction than what we gain from looking at
the top ten lines. Consider if a different layout dis-
tributed the macro in line 29 that we have consid-
ered over 10 lines. We would have had 10 entries
with about 1.8% each and none of them would have

TUGboat, Volume 45 (2024), No. 2

time loop percent
\Verse
174.51 ms 24.64%
101.50 ms 58.16%
73.01 ms 41.84%
\output
121.22 ms 17.11%
1.15 ms 0.95%
120.07 ms 99.05%
\plainoutput
120.07 ms 16.95%
106.71 ms 88.87%
6.99 ms 5.82%
2.76 ms 2.30%
2.75 ms 2.29%
859.36 pus 0.72%
\leavevmode
73.01 ms 10.31%
20.09 ms 27.52%
52.92 ms 72.48%

207
count/total macro
* \Verse
31011 \Verse
31011/31011 \leavevmode
* \output
1130 \output
1130/1130 \plainoutput
* \plainoutput
1130 \plainoutput
1130/1130 \makeheadline
1129/1130 \pagebody
1130/1130 \makefootline
1130/1130 \advancepageno
* \leavevmode
31011 \leavevmode
495/1130 \output

Figure 3: Running tprof -G bible-opt

made it to the top of the list. The time recorded for
a macro, on the other hand, does not depend on the
layout of your source files. A macro gives a sequence
of commands a common name, typically expressing
its purpose, or the task that it will accomplish. To
accomplish a task, a macro usually calls other mac-
ros, that we call child macros in the following. Such
a child macro in turn might call again its own child
macros. Along the chain of macro calls, a macro
might eventually even call itself creating a recursive
loop (as we will see below) where a macro becomes
its own ancestor.

So when we look at the runtime of TEX from
the macro perspective, we want to know how much
time was spent in a certain macro, including all its
descendants, because this is the time used to ac-
complish the task that the macro name promises to
accomplish. We call this the cumulative time for the
macro. Further we want to know how the cumula-
tive time splits up into the time used by the macro
itself and the time used by each of its child macros.
This is the information that we gain by looking at
the call graph. Fig. 3 shows the four macros that
take the greatest percentage of the total run time.

We see the \Verse macro on top; 174.51ms are
spent executing this macro which is almost a quarter
of the total run time. But during the 31011 calls to
this macro only 101.50ms or 58.16% of the 174.51ms
are spent on the \Verse macro itself while the re-
maining 73.01ms are spent on calls to \leavevmode.

Looking at the last group of entries in Fig. 3,
we see how the time used for \leavevmode is spent:
roughly one quarter is spent on \leavevmode itself
while the remaining three quarters are due to 495
calls to the \output routine. The total number of
calls to the \output routine is 1130, which equals
the number of pages of the document.

From the remaining entries, one for \output
and one for \plainoutput, we see that \output
does little more than call \plainoutput, which does
most of the work itself, delegating only a small frac-
tion of the work to properly named child macros.

3.4 Emulating pdfTEX

Our second example is texprof itself; to be pre-
cise: its documentation. texprof is an extension
of TEX, and since TEX is implemented by a “liter-
ate” program, texprof is implemented by extend-
ing it. This literate program can be processed to
obtain texprof.c from which a compiler can create
an executable. Further it can be processed to obtain
texprof .tex from which tex or pdftex can create
a nicely typeset document.

Surprisingly creating a PDF with pdftex is sig-
nificantly slower (2327ms) than creating a DVI file
with tex (273ms). Of course, PDF is a much more
complex file format than DVI and this accounts for
some of the differences, but even if the creation
of the PDF output is disabled (1602ms), there re-
mains a considerable time difference. Just running

Profiling TEX input files

208

file line percent absolute

9 156 20.29% 522.50 ms

9 157 12.86% 331.08 ms

9 158 9.13% 235.03 ms

9 159 5.88% 151.27 ms

9 172 3.68% 94.64 ms

9 173 3.18% 81.95 ms
system shipout 3.16% 81.27 ms
system linebrk 3.14% 80.93 ms
9 152 2.16% 55.61 ms

9 166 1.86% 47.95 ms

TUGDboat, Volume 45 (2024), No. 2

count average file
225137 2.32 us cwebacromac.tex
140088 2.36 us cwebacromac.tex
140938 1.67 us cwebacromac.tex
115319 1.31 us cwebacromac.tex
15759 6.00 us cwebacromac.tex
36954 2.22 us cwebacromac.tex
775 104.87 pus system
27370 2.96 pus system
67026 829.00 ns cwebacromac.tex
13042 3.68 us cwebacromac.tex

Figure 4: Running tprof -T texprof

156 \def\addtokens#1#2{\edef\addtoks{\noexpand#1={\the#1#2}}\addtoks}
157 \def\poptoks#1#2|ENDTOKS|{\let\first=#1\toksD={#1}/,

158 \ifcat\noexpand\firstO\countB="#1\else\countB=0\fi\toksA={#2}}
159 \def\maketoks{\expandafter\poptoks\the\toksA|ENDTOKS|%

160 \ifnum\countB>"9 \countB=0 \fi

161 \ifnum\countB< 0

162 \ifnumO=\countC\else\makenote\fi

163 \ifx\first.\let\next=\maketoksdone\else

164 \let\next=\maketoks

165 \addtokens\toksB{\the\toksD}

166 \ifx\first,\addtokens\toksB{\space}\fi

167 \fi

168 \else \addtokens\toksC{\the\toksD}\global\countC=1\let\next=\maketoks
169 \fi

170 \next

171 %}

texprof -prof texprof will not suffice to find the
source of the slowdown because texprof produces
a DVI file and runs, when considering the profiling
overhead, at approximately the same speed (443ms)
as tex. The difference in speed is obviously caused
by macros that are used only when producing PDF
output. So we have to make texprof pretend to be
pdftex. This can be achieved by processing a few
macro definitions as shown in Fig. 7 before process-
ing texprof.tex.

Using the file fakepdf.tex with these defini-
tions, running texprof -prof -jobname=texprof
\input fakepdf.tex \input texprof.tex will take
1771ms as expected. The top ten lines are shown
in Fig. 4; they reveal that almost half of the run-
time is caused by only four lines, 156-159, in file
cwebacromac.tex. These lines, shown in Fig. 5, de-
fine macros \addtoks, \poptoks, and \maketoks.
For information on the purpose of these lines, we
can consult the call graph. Fig. 6 shows the three
macros that take the largest percentage of the run-
time. Let’s consider them one by one.

Martin Ruckert

Figure 5: Lines 156 to 171 of cwebacromac.tex

3.5 Recursive macros

On top is the macro \pdfnote followed by the file
number 4 and line number 152 in square brackets.
This extra information is produced when using the
-i option of texprofile and is needed to distin-
guish two macros that happen to have the same
name, as we will see below. The macro \pdfnote
creates links to the different sections of the docu-
mentation. \pdfnote is called 8473 times and each
call makes a call to \maketoks which is responsible
for almost all time needed for \pdfnote.

Each call to \maketoks in turn delegates most
of its work to \next. If we look at the file and line
information of \maketoks and \next, we discover
that both macros are defined in the same file and
on the same line 159. In Fig. 5, we see in line 159
the definition of \maketoks and in line 164 a \let
command that makes \next an alias for \maketoks.
The call to \next in line 170 ends the definition of
\maketoks. So in fact \maketoks calls itself recur-
sively. A recursive macro like this where the recur-
sive call is at the very end of the macro is called “tail

TUGboat, Volume 45 (2024), No. 2
time loop percent
\pdfnote [7,152]
1.30s 61.17%
26.54 ms 2.04%
1.21s 93.24%
46.59 ms 3.58%
14.67 ms 1.13%
99.89 us 0.01%
54.34 jis 0.00%
404.00 ns 0.00%
\maketoks [7,159]
1.24s 58.35%
4.67ms 0.38%
1.21s 97.76%
14.59 ms 1.17%
8.51ms 0.69%
\next [7,159]
1.21s 57.05%
53.94 ms 4.44%
501.23 ms 41.29%
462.00 ms 38.06%
182.12ms 15.00%
12.19ms 1.00%
2.53 ms 0.21%
0.00ns 1.19s 0.00%

209
count/total macro
* \pdfnote [7,152]
8473 \pdfnote [7,152]
8473/9271 \maketoks [7,159]
24230/28824 \pdflink [7,24]
4507/4507 \[[5,334]
80/80 \ETs [5,177]
57/57 \ET [5,176]
1/3 \glob [4,166]
* \maketoks [7,159]
9271 \maketoks [7,159]
9271/130811 \next [7,159]
9271/140082 \poptoks [7,157]
9271/225136 \addtokens [7,156]
* \next [7,159]
130811 \next [7,159]
142326/225136 \addtokens |7,156]
130811/140082 \poptoks [7,157]
28737/28737 \makenote [7,172]
9271/9271 \next [7,174]
1456/2254 \makenote [7,154]
121540/130811 \next [7,159]

Figure 6: Running tprof -G -i texprof

recursive” and is optimized by TEX to run without
growing the input stack as explained before.

The \next macro distributes the work among
\addtokens and \poptokens and some calls to the
\makenote macro. The 9271 calls of \next in the
\maketoks macro eventually end in 9271 calls of
\next as defined in line 174 where \next is rede-
fined when the final “.” is found. Because \next
calls itself, it is its own child macro and its own par-
ent macro at the same time. This has consequences
for the attribution of the cumulative times as shown
in the call graph.

The first line in the table for the \next macro
shows the total time spent in the next macro as
1.21 seconds; the following lines give a breakdown of
these 1.21 seconds; the times given in their first col-
umn should add up to 1.21 seconds and the percent-
ages given should add up to 100%. If texprofile
only determined for each child macro the start and
the end time and added up the time differences, the
values for \next as a child macro of itself would
come to 1.19 seconds, as shown in the column la-
beled “loop”. But when the \next child macro re-
turns, all of that time is already included in the time
shown in the previous lines. Therefore texprofile

maintains for each child two accumulators for the
elapsed time: For the time shown in the column
labeled “loop”, texprofile adds up the time dif-
ferences observed at the return of a child macro.
For the time shown in the column labeled “time”,
it subtracts from the time differences observed at
the return of a child macro all those time differences
that were added to the macro itself or one of the
other child macros since the start of the macro be-
cause these differences are already accounted for in
the time breakdown. In a simple loop like the one we
have here, all the time in \next as a child macro are
already taken care of in \next as the parent macro.
So the time column shows 0.00 nanoseconds. For
more complex recursive loops this is not always the
case.

4 Command line options and primitives

The command line options of texprof match those
of other TEX engines. The only addition is the -prof
option to switch profiling on right from the start. To
profile only selected parts of a file, you can use the
primitives \profileon and \profileoff.

Profiling TEX input files

210

The command line options of texprofile fol-
low the general rule that options that select data ta-
bles use upper case letters and options that change
the presentation of the data use lower case letters.
We have seen already the -T option for the “Top
Ten” table, the -G option for the call graph table,
and the -i option to annotate (ambiguous) macro
names with file and line numbers. texprofile can
also display the cumulative times by input files with
the -F option, by input lines with the -L option, or
by TEX command with the -C option. Further the
-R option displays the raw times for each and every
command that was profiled. This table can get very
large. It is useful if profiling was switched on for
only a short time or if the data is sent to a file for
further processing.

If the table data is intended for further process-
ing, the -m option favors machine readability over
human readability. Whereas by default times are
displayed using an appropriate unit, either seconds
s, milliseconds ms, microseconds us, or nanoseconds
ns, the option -m will display all times in nanosec-
onds without specifying a unit.

The option -pn will suppress lines in the tables
that fall below n percent. The option -tn with 1 <
n < 100 modifies the -T option to show the “Top
n” lines. The option -s modifies the -R option to
include in the table information about the changes
in the macro stack.

5 Improvements, workarounds, and
future work

Current versions of texprof and texprofile are
available from github.com/ruckertm/HINT. Since
the first presentation of the TEX profiler at the TUG
2024 conference in Prague, a few improvements have

Martin Ruckert

TUGDboat, Volume 45 (2024), No. 2

\def\pdftexversion{140}
\def\pdfoutput{1}
\def\pdfdest#1fith{}
\def\pdfendlink{}
\def\pdfannotlink#lgoto num#2
\Blue#3\Black\pdfendlink{#3}
\def\pdfoutline goto#1l #2 #3{}
\def\pdfcatalog#1{}

Figure 7: The file fakepdf . tex implementing stubs
for pdfTEX primitives

been made. Most notably, the format files now con-
tain file and line information for all source files used
in generating the format. Therefore the attribution
of runtime to an unknown file should now be a rare
exception.

The method shown above to make texprof ex-
pand macros as pdftex would do is a workaround.
As can be seen in Fig. 7, the stubs for the pdfTEX
primitives merely match the specific uses of these
primitives in the given files. Some primitives, e.g.
\pdfannotlink, have a complicated syntax that is
easy to implement for engine primitives but quite
complicated to achieve with TEX macros. Here some
future work is necessary, either to make the imple-
mentation of macros with the desired syntax simple
or to add a command line switch to texprof to make
the necessary stubs available as engine primitives.

o Martin Ruckert
Hochschule Miinchen
Lothstrasse 64
80336 Miinchen
Germany
martin.ruckert (at) hm dot edu

https://github.com/ruckertm/HINT

TUGboat, Volume 45 (2024), No. 2

Markdown themes in practice
Vit Stary Novotny

Abstract

The Markdown package for TEX supports themes
that allow TEXnicians to tailor the presentation of
Markdown and YAML content on the page. In this
article, I will show the current state of Markdown
themes using the example of IXTEX templates that
I developed for the International Software Testing
Qualifications Board (ISTQB). Readers will leave
with actionable steps to create or modify Markdown
themes for IMTEX, and insights into extending these
principles to other TEX engines.

Introduction

Although TEX has beautiful output, its input macro
language is an acquired taste for many authors. The
Markdown package for TEX allows authors to type
familiar Markdown and YAML directly into a TEX
document and receive a similarly beautiful output.

In my previous article, I introduced Markdown
themes [5]. Much like CSS stylesheets, Markdown
themes allow TEXnicians to tailor the presentation
of Markdown and YAML content without compli-
cating the document markup for authors. While
that article used simple examples to explain the ba-
sic concepts behind Markdown themes, it did not
demonstrate their application on a larger scale in
real-world software projects.

In July 2023, I began working with the Interna-
tional Software Testing Qualifications Board (ISTQB)
to help them typeset their certification study ma-
terials from Markdown and YAML sources. In this
article, I discuss my work as a case study of using the
Markdown package in a real-world software project.

Project overview

In my work, I developed a ITEX document class and
six Markdown themes [1].

The ETEX document class is named istqgb and
it is stored in file template/istqgb.cls. It imple-
ments the design of all ISTQB documents, defines the
meaning of common Unicode characters, and defines
TEX markup such as \istgbunnumberedsection,
\istgblandscapebegin, and \istgblandscapeend.

The Markdown themes are named istqgb/* and
stored in files template/markdowntheme*.tex and
*.sty; see also Figure 1. Here is what they do:

e The theme istqb/common enables Markdown
syntax extensions, implements the loading of
YAML language definitions and document meta-
data into TEX macros, and defines the mapping

doi.org/10.47397/tb/45-2/tb140starynovotny-markdown-themes

211

between Markdown elements and IATEX markup.
The remaining themes are based on this theme
and they implement support for specific types
of ISTQB documents.

o The istgb/body-of-knowledge and syllabus
themes are used in ISTQB Body of Knowledge
and Syllabus documents. At the time of writing,
the themes implement no extra functionality.

e The theme istqb/sample-exam implements the
loading of YAML question definitions into TEX
macros in ISTQB Sample Exam Questions and
Answers documents. The following two themes
are based on this theme.

e The theme istqb/sample-exam/questions im-
plements the typesetting of questions in ISTQB
Sample Exam Questions documents.

e The theme istgb/sample-exam/answers im-
plements typesetting of answer keys and answers
in ISTQB Sample Exam Answers documents.

In the rest of this article, I show the main concepts
behind Markdown themes using the examples of
ISTQB Sample Exam Questions and Answers docu-
ments, which use the themes istqb/sample-exam/
/questions and /answers.

With Markdown themes, your document can
wear many different disguises, just like the wolf.

Markdown themes in practice

https://doi.org/10.47397/tb/45-2/tb140starynovotny-markdown-themes

212 TUGDboat, Volume 45 (2024), No. 2

istqb/common

metadata
language

istqb/sample-exam

N

istqb/sample-exam/answers

istgb/syllabus] [istqb/body-of-knowledge

questions

‘ istqb/sample-exam/questions ’ answer-key

answers

Figure 1: A class diagram of the six Markdown themes that I developed for the
International Software Testing Qualifications Board (ISTQB). The snippets metadata,
language, questions, answer-key, and answers specify the public interface of the
themes and arrows specify inheritance.

Questions ‘ ‘ Answer key

Question #1 (1 Pomt) ‘ Question Correct Learning K-Level | Number of
What is the answer to life, the universe, and everything? Number (#) | Answer | Obijective (LO) Points

1 b EXMPL-1.2.3 Ki 1

a) 24 5 c EXMPL-4.5.6 K2 1

b) 42 6 b, d EXMPL-7.8.9 K3 2

c) 64

)

d) 84

Select ONE option @

Question #5 (1 Point) ‘

What's France’s capital?

a) Berlin ‘ Answers ‘
b) Madrid
c) Paris

Question | Correct Explanation / Rationale Learning | K-Level | Number of
d) Rome Number (#) | Answer Objective (LO) Points
Select ONE option. 1 b The answer to life, the universe, and everything is a concept from EXMPL-1.2.3 K1 1

Douglas Adams' science fiction series “The Hitchhiker's Guide to the
Galaxy", where the supercomputer Deep Thought gives the answer 42.

Question #6 (2 Points)

5 c The capital of France s Paris, known for art, fashion, and culture EXMPL4.5.6 K2 1
Which two of the following animals are classified as mammals?

6 b,d | Dolphins and whales are classified as mammals because they are EXMPL7.89 K3 2
a) Shark warm-blooded, breathe with lungs, and feed their young milk.
b) Dolphin

&) Crocodile
Select TWO options.

Figure 2: Three different ways to typeset question definitions in ISTQB Sample
Exam Questions and Answers documents: a) a list of questions, b) an answer key,
and c) a list of answers.

Vit Stary Novotny

TUGboat, Volume 45 (2024), No. 2

1 Question definitions

As an example of question definitions, I use the
following YAML file named questions.yml:

num-questions: 3
max-score: 4
pass—score: 50 # percent
duration: [10, 15] # minutes
questions:
1:
learning-objective: 1.2.3
k-level: K1
number-of-points: 1
question: >
What is the answer to life,
the universe, and everything?
answers: {a: 24, b: 42, c: 64, d: 84}
correct: [b]
explanation: >
The answer to life, the universe,
and everything is a concept from
Douglas Adams’ science fiction
series "The Hitchhiker’s Guide to
the Galaxy", where the supercomputer
Deep Thought gives the answer 42.

5:
learning-objective: 4.5.6
k-level: K2
number-of-points: 1
question: What’s France’s capital?
answers: {a: Berlin, b: Madrid,
c: Paris, d: Rome}
correct: [c]
explanation: >
The capital of France is Paris,
known for art, fashion, and culture.
6:

learning-objective: 7.8.9
k-level: K3
number-of-points: 2
question: >
Which two of the following animals
are classified as mammals?
answers: {a: Shark, b: Dolphin,
c: Eagle, d: Whale,
e: Crocodile}
correct: [b, d]
explanation: >
Dolphins and whales are classified
as mammals because they are
warm-blooded, breathe with lungs,
and feed their young milk.

The file specifies three questions. For each question,
it provides up to five possible answers.

213

2 User interface

In this section, I show how we can use themes istqb/
/sample-exam/questions, and /answers to typeset
the question definitions from the previous section.

2.1 Typesetting questions

As an example of an ISTQB Sample Exam Questions
document, I use the following KTEX file:

\documentclass{istqgb}
\usepackage{markdown}
\markdownSetup {
import = {
istqb/sample-exam/questions =
questions as gst
}
}
\begin{document}
\istqbunnumberedsection{Questions}
\markdownInput [snippet=qst]{questions.yml}
\end{document}

The file imports the snippet questions from theme
istqb/sample-exam/questions and uses it to:

1. Process question definitions in questions.yml.
2. Typeset the list of questions shown in Figure 2a.

2.2 Typesetting answer key and answers

As an example of an ISTQB Sample Exam Answers
document, I use the following BTEX file:

\documentclass{istqgb}
\usepackage{markdown}
\markdownSetup {
import = {
istqb/sample-exam/answers = {
answer—-key as key,
answers as ans,
},
}
}
\begin{document}
\istgblandscapebegin
\istqbunnumberedsection{Answer key}
\markdownInput [snippet=key]{questions.yml}
\istqbunnumberedsection{Answers}
\markdownInput [snippet=ans]{questions.yml}
\istgblandscapeend
\end{document}

The file imports snippets answers and answer-key
from theme istgb/sample-exam/answers and uses
them to:

1. Process question definitions in questions.yml.

2. Typeset the answer key shown in Figure 2b.

3. Typeset the list of answers shown in Figure 2c.

Markdown themes in practice

w

IS

o

o

214

3 Implementation

In this section, I show the implementation of ISTQB
Sample Exam Questions and Answers documents. To
make programming easier, I use the high-level expl3

language in addition to plain TEX and KATEX 2¢.

3.1

Both the snippet questions from the theme istqb/
/sample-exam/questions and the snippet answers
from the theme /answers process question defini-
tions before typesetting them. For the processing,
they use the snippet questions from the theme
istqb/sample-exam, which I describe in this section.
First, I define a key—value istgb/questions:

Processing question definitions

\keys_define:nn

{ istqgb / questions }
{ num-questions .int_gset:N =
\g_istgb_num_questions_int,
max-score .int_gset:N =
\g_istqb_max_score_int,
pass-score .int_gset:N =
\g_istqgb_pass_score_int }

The key—value stores the values in top-level unstruc-
tured fields num-questions, max-score, and pass-

-score from question definitions to variables.

22

23

24

25

26

27

28

29

30

31

32

33

Next, I define a key—value istgqb/questions/
/duration:

\keys_define:nn

{ istgb / questions / duration }
{1 .int_gset:N =
\g_istqb_duration_min_int,
2 .int_gset:N =
\g_istqb_duration_max_int }

The key—value stores the values in the top-level struc-

tured field duration to variables.

Then, I define the snippet questions itself:

\seq_new:N \g_istqb_questions_seq
\markdownSetupSnippet

{ questions }
{ jekyllData,
expectJekyllData,
renderers = {
jekyllDataBegin = {
\seq_gclear:N
\g_istgb_questions_seq },
jekyllData(String|Number) = {
\keys_set:nn
{ istqgb / questions }
{{#1}r=4{#21 1},
jekyllDataMappingBegin = ,
jekyllDataSequenceBegin = {
\str_case:nn
{#1}
{ { duration } {
\markdownSetup

Vit Stary Novotny

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

61

TUGDboat, Volume 45 (2024), No. 2

{ code = \group_begin:,
renderers = {
jekyllData(String
| Number) = {
\keys_set:nn
{ istgb / questiomns /
duration }
{{ ##1 F = { ##2 }}},
jekyllDataSequenceEnd =
\group_end: }}}}},
jekyllData(Mapping|Sequence)Begin += {
\str_case:nn
{#1}
{ { questions } {
\markdownSetup
{ code = \group_begin:,
renderers = {
jekyllData(Mapping
| Sequence)End =
1,
snippet = istqgb
/ sample-exam / questions

/ list,
renderers = {
jekyllData(Mapping

| Sequence)End
+= \group_end: }}}}}}}

The snippet processes question definitions as follows:

1. Define an empty sequence that will store ques-

tion numbers.

2. Pass unstructured top-level fields to the key—

value istgb/questions.

3. Pass the structured top-level field duration to

the key—value istgb/questions/duration.

4. Pass the structured top-level field questions to

a snippet questions/list.
Next, I define the snippet questions/list:

\markdownSetupSnippet
{ questions / list }
{ renderers = {
jekyllDataMappingBegin = {

\group_begin:

\tl_set:Nn
\1_istgb_current_question_tl
{#1}

\seq_gput_right:NV
\g_istgb_questions_seq
\1_istqgb_current_question_tl

\markdownSetup
{ renderers = {

jekyllDataMappingEnd = },
snippet = istqb / sample-exam
/ questions / *,
renderers = {
jekyllDataMappingEnd +=
\group_end: }}}}}

TUGboat, Volume 45 (2024), No. 2

The snippet processes each question as follows:
1. Store the current question number.
2. Pass all fields to a snippet questions/x*.
Then, I define key—value istgb/questions/*:
\prop_new:N
\g_istgb_question_learning_objective_prop
\prop_new:N
\g_istgb_question_k_level_prop
\prop_new:N
\g_istgb_question_number_of_points_prop
\prop_new:N
\g_istqgb_question_text_prop
\prop_new:N
\g_istgb_question_explanation_prop
\keys_define:nn
{ istqgb / questions / * }
{ learning-objective .code:n = {
\prop_gput:cVn
{ g_istgb_question_learning_objective

82

83

84

85

86

87

88

89

90

91

95 _prop }
96 \1_istgb_current_question_tl
97 {#1 1} 1},

k-level .code:n = {

\prop_gput :NVn
\g_istgb_question_k_level_prop
\1_istgb_current_question_tl
{#1 3} 3,

number-of-points .code:n = {

\prop_gput:cVn

{ g_istgb_question_number_of_points

106 _prop }
107 \1_istgb_current_question_tl
108 {#1 1} 3,

question .code:n = {

\prop_gput:NVn
\g_istgb_question_text_prop
\1_istgb_current_question_tl
{#1} 3,

explanation .code:n = {

\prop_gput :NVn
\g_istgb_question_explanation_prop
\1_istgb_current_question_tl
{#} 3}

The key—value stores the values in unstructured

fields number-of-points, learning-objective, k-

-level, explanation, and question to dicts. The

dicts use the current question number as the key.
Next, I define the snippet questions/*:

119 \markdownSetupSnippet
{ questions / * }
{ renderers = {
jekyllData(String|Number)
\keys_set:nn
{ istgb / questions / * }
{{#1}={#21 1}
jekyllDataSequenceBegin = {
\str_case:nn

1]
-~

215

{#1}
{ { correct } {
\markdownSetup
{ code = \group_begin:,
renderers = {
jekyllDataSequenceEnd =
},
snippet = istqgb
/ sample-exam / questions
/ * / correct,
renderers = {
jekyllDataSequenceEnd +=
\group_end: }}}}},
jekyllDataMappingBegin = {
\str_case:nn
{#1}
{ { answers } {
\markdownSetup
{ code = \group_begin:,
renderers = {
jekyllDataMappingEnd = },
snippet = istqgb
/ sample-exam / questions
/ * / answers,
renderers = {
jekyllDataMappingEnd +=
\group_end: }}}}}}}

The snippet processes question definitions as follows:

1. Pass unstructured fields to the key—value istqb/
/questions/*.

2. Pass the structured field correct to a snippet
questions/*/correct.

3. Pass the structured field answers to a snippet
questions/*/answers.

Notice the design pattern on lines 44-60, 64—
79, and 126-154 that locally applies a (snippet) to
an (element).! This pattern redefines the renderer
(element)Begin, which is placed to the output when
the (element) starts, as follows:

1. Open a TEX group and apply the (snippet).
2. Redefine the renderer (element)End, which is

placed to the output when the (element) ends,
so that it closes the TEX group.

Finally, I define snippets questions/*/answers
and /correct:
\prop_new:N \g_istqgb_answer_keys_prop
\prop_new:N \g_istqb_answers_prop
\seq_new:N \1_istqb_current_answer_keys_seq
\markdownSetupSnippet
{ questions / * / answers }

1 Such design patterns can be repetitive and difficult to
understand without additional comments in the code. Mark-
down Enhancement Proposal (MEP) 445 [6] envisions support
for higher-order snippets that would make it possible to hide
such design patterns behind easy-to-read shorthands.

Markdown themes in practice

216

{ renderers = {
jekyllData(String|Number) = {

\seq_put_right:Nn
\1_istgb_current_answer_keys_seq
{#1 2

\tl_set:NV
\1_tmpa_tl
\1_istgb_current_question_tl

\tl_put_right:Nn
\1_tmpa_tl
{7/ #1112

\prop_gput :NVn
\g_istqgb_answers_prop
\1_tmpa_t1l
{#2 1} },

jekyllDataMappingEnd += {

\clist_set_from_seq:NN
\1_istgb_current_answer_keys_clist
\1_istgb_current_answer_keys_seq

\prop_gput :NVv
\g_istgb_answer_keys_prop
\1_istgb_current_question_tl
{ 1_istqb_current_answer_keys

_clist } }}}

\prop_new:N \g_istqb_answer_correct_keys_prop
\seq_new:N

\1_istgb_current_answer_correct_keys_seq
\markdownSetupSnippet

{ questions / * / correct }

{ renderers = {

jekyllData(String|Number) = {
\seq_put_right:cn
{ 1_istqb_current_answer_correct
_keys_seq }
{#2 1} },
jekyllDataSequenceEnd += {

\clist_set_from_seq:cc

{ 1_istqgb_current_answer_correct
_keys_clist }
{ 1_istqgb_current_answer_correct
_keys_seq }

\prop_gput :NVv
\g_istqgb_answer_correct_keys_prop
\1_istgb_current_question_tl
{ 1_istqb_current_answer_correct

_keys_clist } }}}

The snippets accumulate potential and correct an-
swer letters in a sequence, respectively. Then, they
store the sequence as a comma-list to a dict that
uses the current question number as the key.
Moreover, the snippet questions/*/answers
stores potential answer texts to a dict that uses
(current question number)/{answer letter) as key.
Notice that I used no format-specific code in
this section. Therefore, I can use the theme istqb/
/sample-exam with any format that supports expl3
such as plain TEX and ConTEXt, not just with IXTEX.

Vit Stary Novotny

10

12

13

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

TUGboat, Volume 45 (2024), No. 2

3.2 Typesetting questions

In this section, I describe the snippet questions
from theme istgb/sample-exam/questions. This
snippet typesets the list of questions in Figure 2a.

First, I import the theme istqb/sample-exam
and I use the snippet questions from this theme to
process question definitions:

\markdownSetup

{ import = istgb / sample-exam }
\markdownSetupSnippet

{ questions }

{ snippet = istqb / sample-exam

/ questions,

After the question definitions have been pro-
cessed, I iterate over all question numbers. For each
question number, I define a variable with code that
typesets the corresponding question:

renderers = {
jekyllDataEnd = {
\seq_map_inline:Nn
\g_istgb_questions_seq
{ \tl_set:Nn
\1_istqgb_question_t1
{

First, I add a section heading for the question:

\tl_set:Nn
\1_tmpa_tl
{ Question~\# ##1~(}
\prop_get:cnN
{ g_istgb_question_number
_of_points_prop }
{ ##1 %
\1_tmpb_tl
\tl_put_right:NV
\1_tmpa_tl
\1_tmpb_tl
\tl_put_right:Nn
\1_tmpa_tl
{ ~Point }
\int_compare:VNnF
\1_tmpb_tl = { 1 }
{ \tl_put_right:Nn
\1_tmpa_tl
{s}?
\tl_put_right:Nn
\1_tmpa_t1
{)1?
\exp_args: NNV
\subsection *
\1_tmpa_tl
\exp_args:NVV
\markboth
\1_tmpa_tl
\1_tmpa_tl
\exp_args:NnnV
\addcontentsline

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

TUGboat, Volume 45 (2024), No. 2

{ toc }
{ subsection }
\1_tmpa_tl

Next, I add the question text and potential answers:

\prop_item:Nn
\g_istgb_question_text_prop
{ ##1 }
\prop_get :NnN
\g_istgb_answer_keys_prop
{ ##1 }
\1_tmpa_clist
\begin { enumerate }
\clist_map_inline:Nn
\1_tmpa_clist
{ \item [####1)]
\prop_item:Nn
\g_istqb_answers_prop
{ ##1 / ####1 }+ 3
\end { enumerate }
\medskip

Lastly, T add the text “Select (number of correct
answers) option(s).”:

\prop_get:cnN
{ g_istqb_answer_correct
_keys_prop }
{ ##1 }
\1_tmpa_clist
\int_set:Nn
\1_tmpa_int
{ \clist_count:N
\1_tmpa_clist }
Select~\int_case:nn
{ \1_tmpa_int }
{ {1} { ONE~option }
{2} { TWwO~options } }
}

Finally, I typeset the code from the variable at

natural height and store the result to a vertical box:

\vbox_set:NV
\1_tmpa_box
\1_istqgb_question_tl

For short questions, I insert the box to the current
list for typesetting to prevent page breaks within the
question. For longer questions, I place the content of
the variable to the input stream, so that page breaks
can occur naturally:

\dim_compare :nNnTF
{ \box_ht:N \1_tmpa_box }
>
{ 0.3 \paperheight }
{ \tl_use:N
\1_istgb_question_t1l }
{ \box_use:N \1_tmpa_box }
\par }}}}

B N N N

14

15

16

31

32

33

34

35

36

37

38

217

3.3 Typesetting the answer key

In this section, I describe the snippet answer-key
from the theme istqb/sample-exam/answers. This
snippet typesets the answer key in Figure 2b.

First, I load packages multicol and supertabular:

\RequirePackage { multicol }
\RequirePackage { supertabular }
\RequirePackage { array }
\newcolumntype
{cCc}
[1]
{ >{ \centering\arraybackslash } p { #1 } }

The packages allow me to typeset the answer key as
a table in a two-column layout that automatically
inserts column breaks.

Next, I import the theme istqb/sample-exam
and I use the snippet questions from this theme to
process question definitions:

\markdownSetup
{ import = istgb / sample-exam }
\markdownSetupSnippet
{ answer-key }
{ snippet = istgb / sample-exam
/ questionms,

After the question definitions have been pro-
cessed, I start a two-column layout:

renderers = {
jekyllDataEnd = {
\begin { multicols } { 2 }

Then, I set the heading and the tail of the table:

\tablehead
{ \hline
\textbf
{ Question~Number~(\#) } &
\textbf
{ Correct~Answer } &
\textbf
{ Learning~0Objective~(L0) } &
\textbf
{ K-Level } &
\textbf
{ Number~of~Points } \\ }
\tabletail { \hline }
\tablelasttail { \hline }

Next, I define a variable that typesets the table:

\tl_set:Nn
\1_istgb_answer_key_table_tl
{

First, I start the table:

\begin
{ supertabular }
{1 c{1.9m} | Cq{1.5cm}
| ¢c{2.4cm } | C { 1.4cm }
| c{1.9cm } | }}

Markdown themes in practice

218

Next, I iterate over all question numbers:

39 \seq_map_inline:Nn
40 \g_istgb_questions_seq
41 {
42 \tl_put_right:Nn
43 \1_istqgb_answer_key_table_tl
44 { \hline }
For each question, I add the question number:
45 \tl_put_right:Nn
46 \1_istqgb_answer_key_table_tl
a7 { \textbf { ##1 } & }
Next, I add the correct answer letters:
48 \prop_get:cnN
49 { g_istgb_answer_correct
50 _keys_prop }
51 { ##1 3

\1_tmpa_clist

o
o

53 \tl_put_right:Ne
54 \1_istqgb_answer_key_table_tl
55 { \clist_use:Nn
56 \1_tmpa_clist
57 {.,~}&?}
Then, I add the learning objective:
58 \tl_put_right:NV
59 \1_istqgb_answer_key_table_tl
60 \g_istqb_prefix_tl
61 \tl_put_right:Nn
62 \1_istqgb_answer_key_table_tl
63 {-17
64 \prop_get:cnN
65 { g_istgb_question_learning
66 _objective_prop }
67 { ##1 }
68 \1_tmpa_tl
69 \tl_put_right:NV
70 \1_istqb_answer_key_table_tl
71 \1_tmpa_tl
72 \tl_put_right:Nn
73 \1_istqb_answer_key_table_tl
74 {&7}
Next, I add the K-level:
75 \prop_get :NnN
76 \g_istgb_question_k_level_prop
77 { ##1 }
78 \1_tmpa_t1l
79 \tl_put_right:NV
80 \1_istqgb_answer_key_table_tl
81 \1_tmpa_tl
82 \tl_put_right:Nn
83 \1_istqgb_answer_key_table_tl
84 {&7}
Lastly, I add the number of points:
85 \prop_get:cnN
86 { g_istgb_question_number
87 _of _points_prop }
88 { ##1 }

Vit Stary Novotny

TUGboat, Volume 45 (2024), No. 2

89 \1_tmpa_tl

90 \tl_put_right:NV

91 \1_istgb_answer_key_table_tl
92 \1_tmpa_tl

93 \tl_put_right:Nn

94 \1_istgb_answer_key_table_tl
95 {\\ }

96 }

After T have iterated over all question numbers, I
end the table, I place the content of the variable to
the input stream, and I end the multicolumn layout:

o7 \tl_put_right:Nn

98 \1_istqb_answer_key_table_tl
99 { \end { supertabular } }
100 \tl_use:N

101 \1_istqb_answer_key_table_tl
102 \end { multicols } }}}

3.4 Typesetting answers

In this section, I describe the snippet answers from
the theme istqb/sample-exam/answers. This snip-
pet typesets the list of answers in Figure 2c.
First, I load package longtable:
1 \RequirePackage { longtable }
2 \dim_const:Nn
3 \c_explanation_width_dim
4 { 11.15cm }
The package allows me to typeset the list of answers
as a table that automatically inserts page breaks.
Next, I use the snippet questions from theme
istgb/sample-exam to process question definitions:
\markdownSetupSnippet
{ answers }
{ snippet = istqb / sample-exam
/ questions,

[~

After the question definitions have been pro-
cessed, I define a variable that typesets the table:

9 renderers = {
10 jekyllDataEnd = {
11 \group_begin:
12 \tl_set:Nn
13 \1_istqgb_answers_table_tl
14 {
First, I start the table and I set its heading:
15 \begin
16 { longtable }
17 {1 c{1.9em} | C{1.5cm}
18 | p
19 { \c_explanation_width_dim }
20 | ¢c{2.4cm } | C{ 1.4cm }
21 | ¢c{1.9cm } | }
22 \hline
23 \textbf
24 { Question~Number~(\#) } &
25 \textbf { Correct~Answer } &

TUGboat, Volume 45 (2024), No. 2 219

26 \multicolumn 78 \medskip }
27 {11} 79 \tl_put_right:Nn
28 {cC 80 \1_istgb_answers_table_tl
29 { \c_explanation_width_dim } 81 {& 3}
30 I } N . .
o { \textbf Next, I add the learning objective:
32 { Explanation~/~Rationale } , \t1l_put_right:NV
33 T & 83 \1_istgb_answers_table_tl
34 \textbf 84 \g_istgb_prefix_tl
35 { Learning~Objective~(L0) } & 5 \t1l_put_right:Nn
36 \textbf { K-Level } & s6 \1_istqgb_answers_table_tl
37 \textbf { Number~of~Points } \\ . {-13
38 \hline 88 \prop_get:cnN
39 \endhead } 89 { g_istgb_question_learning
Next, I iterate over all question numbers: % _objective_prop }
. 91 { ##1 }
40 \siq_@ai)_;nllneéyn o \1_tmpa_t1
. {g_ls db_questions_seq 93 \tl_put_right:NV
* 94 \1_istgb_answers_table_tl
For each question, I add the question number: 95 \1_tmpa_tl
s \t1_put_right:Nn 96 \tl_pt}t_right :Nn
" \1_istgb_answers_table_t1l o7 \1_istqgb_answers_table_t1l
45 { \textbf o8 {&}
46 {##l} Then, T add the K-level:
a7 \addcontentsline
48 { toc } 99 \prop_get :NnN
49 { subsection } 100 \g_istgb_question_k_level_prop
50 { Question~\# ##1 } & } 101 { ##1 }
1.t tl
Next, I add the correct answer letters: e \ t} ;uilpigght NV
103 - - :
51 \prop_get:cnN 104 \1_istqgb_answers_table_t1l
52 { g_istqgb_answer_correct 105 \1_tmpa_tl
53 _keys_prop } 106 \tl_put_right:Nn
54 { ##1 } 107 \1_istgb_answers_table_t1l
55 \1_tmpa_clist 108 {&?}
56 \tl_put_right:Ne
57 \1_istqb_answers_table_tl Lastly, I add the number of points:
‘:’8 { \Ciist—use:ih} . 109 \prop_get:cnN
59 -tmpa_c_1s 110 { g_istgb_question_number_of
60 t.-red 111 _points_prop }
Then I add the explanation text: 112 { ##1 %
61 \tl_put_right:Nn e \l_tmpajtl
62 \1_istqb_answers_table_tl e \tl—pl_lt—rlght v
. 115 \1_istgb_answers_table_t1l
63 { \begin
A 116 \1_tmpa_tl
64 { minipage } -
o [t] 117 \tl_put_right:Nn
o6 \c_explanation_width_dim } ''® \1_istqb_ansvers_table_t1
67 \prop_get:cnN 119 { \\ \hline } }
68 { g_istgb_question_explanation After T have iterated over all question numbers, I
69 -prop } end the table and I place the content of the variable
7 il#tl ¥ o1 to the input stream:
71 _tmpa_
72 \tl_put_right:NV 120 \tl_put_right:Nn
73 \1_istgb_answers_table_tl 121 \1_istgb_answers_table_tl
74 \1_tmpa_tl 122 { \end { longtable } }
75 \tl_put_right:Nn 123 \tl_use:N
76 \1_istgb_answers_table_tl 124 \1_istgb_answers_table_tl
77 { \end { minipage } 125 \group_end: }}}

Markdown themes in practice

220

Conclusion

In this article, I have demonstrated the practical ap-
plication of Markdown themes through a project that
enabled the International Software Testing Qualifi-
cations Board (ISTQB) to produce their certification
study materials from Markdown and YAML sources.
While my previous article [5] focused on the un-
derlying concepts of Markdown themes, this article
provides concrete code used in a real-world software
project. I hope this practical demonstration raises
awareness of Markdown themes and illustrates how
users can incorporate them into their own projects.

For ISTQB, the project has yielded numerous
benefits: Writing text in a structured format using
Markdown and YAML, while generating visually ap-
pealing outputs with BTEX, facilitates the separation
of content from formatting. This ensures consistent
application of the document’s visual style across all
ISTQB content. Additionally, the structured text
enables content verification against YAML schemas
and ISTQB writing rules and allows for the creation
of a complex knowledge base through automated
processing. This enhances the quality of learning
materials and reduces administrative overhead.

Moreover, the plain text formats of Markdown
and YAML offer significant advantages over binary
formats like Microsoft Office. They allow for efficient
version control, better tracking of changes, collabora-
tive editing, and fewer defects in the final products.
The capability to produce various output formats,
such as EPUB, HTML, and PDF with functional hy-
perlinks and cross-references, further amplifies the
utility of this approach.

Related work

In my approach, I developed an event-based ITEX
parser that constructs and typesets expl3 data struc-
tures that represent YAML files.? My approach works
in any TEX engine with shell access, such as pdfTEX
and XHTEX, not just LuaTEX.

In the previous issue of TUGboat [4], Erik Nijen-
huis showed a different approach towards typesetting
YAML files in ITEX. In their approach, Erik used
their lua-placeholders library [3] to load YAML files
into Lua tables and then query them from TEX code.
Erik’s approach requires LuaTEX but can be more
convenient for non-programmers.

2 My focus on processing and typesetting YAML files may
seem contrary to the title of this article “Markdown themes
in practice”. However, authors may use Markdown markup in
YAML files. In the examples from this article, we might use
Markdown to format questions, answers, and explanations.

Vit Stary Novotny

TUGboat, Volume 45 (2024), No. 2

Both Erik’s and my approaches use the tinyyaml
Lua library [2]. LuaTEX users who are interested in
processing YAML files directly from Lua code may
find it convenient to use tinyyaml directly.

Acknowledgements

I wish to extend my special thanks to Tereza Vrab-
cova, Marei Peischl, Daniel Polan, and Petr Sojka for
their invaluable insights and thorough review of my
work. Their expertise and thoughtful feedback have
been instrumental in shaping the final manuscript.
I would also like to thank Greg at fiverr.com/
quickcartoon for their illustrations of the wolf mas-
cot, which have provided an engaging visual identity
of the Markdown package over the past four years.

References

[1] ISTQB.ORG. WTEX+Markdown template, 2024.
github.com/istqborg/istqb_product_base

[2] Z. Lee. lua-tinyyaml: A tiny YAML (subset)
parser for pure Lua, 2023.
ctan.org/pkg/lua-tinyyaml

[3] E. Nijenhuis. lua-placeholders: Specifying
placeholders for demonstration purposes, 2024.
ctan.org/pkg/lua-placeholders

[4] E. Nijenhuis. Specifying and populating
documents in YAML with lua-placeholders
in BTEX. TUGboat 45(1):65-76, 2024.
doi.org/10.47397/tb/45-1/tb139nijenhuis-
placeholders

[5] V. Novotny. Markdown 2.10.0: IWTEX themes
& snippets, two flavors of comments, and
luametaTEX. TUGboat 42(2):186-193, 2021.
doi.org/10.47397/tb/42-2/tb131novotny-
markdown

. Stary Novotny. Parametric snippets, .
6] V. Stary Novotny. P tric snippets, 2024
github.com/Witiko/markdown/issues/445

o Vit Stary Novotny
Studend 453/15
Brno 63800, Czech Republic
witiko (at) mail dot muni dot cz
github.com/witiko

https://fiverr.com/quickcartoon
https://fiverr.com/quickcartoon
https://github.com/istqborg/istqb_product_base
https://ctan.org/pkg/lua-tinyyaml
https://ctan.org/pkg/lua-placeholders
https://doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders
https://doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders
https://doi.org/10.47397/tb/42-2/tb131novotny-markdown
https://doi.org/10.47397/tb/42-2/tb131novotny-markdown
https://github.com/Witiko/markdown/issues/445

TUGboat, Volume 45 (2024), No. 2

A large-scale format compliance checker for
TEX Font Metrics

Didier Verna

Abstract

We present tfm-validate, a TEX Font Metrics for-
mat checker. The library’s core functionality is to
inspect TFM files and report any discovered com-
pliance issue. It can be run on individual files or
complete directory trees. tfm-validate also pro-
vides a convenience function to (in)validate a local
TEX Live installation. When run this way, the li-
brary processes every TFM file in the distribution
and generates a website aggregating all the discov-
ered non-compliance issues. One public instance of
tfm-validate is now automatically triggered on a
daily basis. The corresponding website is available
at texlive.info/tfm-validate/.

1 Introduction

As part of ETAP,! our experimental typesetting algo-
rithms platform [8, 9], we have developed a parser for
TFM (TEX Font Metrics) files, simply called tfm. To
ensure robustness, a parser for an official data format
must be prepared to handle all sorts of compliance
problems, with varying degrees of seriousness rang-
ing from simple warnings to non-recoverable errors.
tfm not only provides a rich (hopefully exhaustive)
ontology of errors, but also a powerful recovery mech-
anism, allowing for proceeding as long as possible
with the parsing, for example by fixing errors on the
fly or discarding problematic input.

A side-effect of tfm’s robustness is that it is
possible to use it as a validation tool rather than
for loading font information. Indeed, the tfm excep-
tion handler reifies the problematic situations into
objects (in the “Object-Oriented” sense) which can
be silently collected until the parsing is over or needs
to be terminated prematurely. These objects can in
turn be used to produce a full compliance report for
the analyzed file. We have automated this process
for the whole TEX Live distribution, resulting in the
(in)validation of almost 80000 fonts, and the gen-
eration of a website providing direct access to the
generated compliance reports.

This paper is organized as follows. Section 2
provides an overview of the tfm library and explains
how it is made robust. Section 3 describes the very
peculiar exception handling mechanism in use, and
how it simplifies the design of tfm-validate con-
siderably. Finally, Section 4 analyzes the results of

I github.com/didierverna/etap

221

the TFM validation process applied to the whole
TEX Live distribution.

2 The tfm library

The tfm? library was designed to bring TEX Font
Metrics information to Common Lisp [1] applications.
Essentially, it provides an entry point function called
load-font, which takes a file name as argument
and returns a data structure containing an abstract
representation of the contents of the TFM file. A full
description of the library is beyond the scope of this
paper. The interested reader will find a complete
user manual in the distribution, as well as online.
The important thing for this discussion is that tfm
aims at being both robust and flexible.

2.1 Robustness

Robustness for a parser means that it should be
prepared to handle all the possible problematic sit-
uations, for example in order to abort loading the
culprit font file and exit gracefully, rather than just
crashing or behaving erratically. During the devel-
opment of tfm, we have identified twenty such situa-
tions, with varying degrees of severity.

Examples of critical situations include truncated
files or invalid section pointers, making it impossible
to know exactly where to find character, ligature,
kerning information, etc. In those situations, there
is nothing clever one can do to make the bogus font
functional.

A less critical, yet problematic situation, would
be the detection of a cycle in a ligature program,
resulting in an infinite loop when attempting the
ligature. In such a case, we can still hope to get
a functional (although incomplete) font if we just
forget about the ligature(s).

Non-critical situations might be inconsistencies
in parts of the TFM file which are purely informative
(such as several places in the header) and not used to
render the font. TEX itself simply ignores a number
of such situations and proceeds normally.

Finally, note that the severity of a problem
may depend on the context. One interesting such
case is that of the font’s design size. The TFM for-
mat requires it to be greater than 1. At the same
time, TEX allows the design size to be overridden
by the user (this is what happens when you say
\font\foo=cmr10 at 12pt for example). An invalid
design size is normally an error, but it doesn’t really
hurt when overridden by a correct one. Hence, the
tfm library signals an error in the former case, but
only a warning in the latter.

2 github.com/didierverna/tfm

A large-scale format compliance checker for TEX Font Metrics

doi.org/10.47397/tb/45-2/tb140verna-tfm

https://texlive.info/tfm-validate/
https://github.com/didierverna/etap
https://github.com/didierverna/tfm
https://doi.org/10.47397/tb/45-2/tb140verna-tfm

222

CL-USER> (tfm:load-font "/tmp/cmrl0.tfm")
While reading /tmp/cmrl0.tfm,

TUGDboat, Volume 45 (2024), No. 2

while reading the character encoding scheme string,

padded string "TeX (ex)" is not in BCPL format.

See §10 of the TFtoPL documentation for more information.
[Condition of type NET.DIDIERVERNA.TFM:INVALID-PADDED-STRING]

Restarts:

0: [KEEP-STRING] Keep it anyway.

1: [FIX-STRING] Fix it using /’s and ?’s.
2: [DISCARD-STRING] Discard it.

3: [CANCEL-LOADING] Cancel loading this font.

——-more—-—

Figure 1: Sample interactive recovery session

2.2 Flexibility

Flexibility for a parser means that when possible,
it should provide less drastic ways to recover from
problems than just giving up. tfm currently provides
a dozen recovery options, the availability of which
depends on the situation.

As mentioned previously, it is possible to discard
a ligature or a kerning instruction rather than abort-
ing the whole loading process if something is wrong
(like an invalid character code). Another example is
the requirement that the width, height, depth and
italic corrections tables all start with a first value
of 0. When appropriate, tfm offers to fix a bogus
value (by setting it to 0) and proceed, rather than
just aborting.

The question of whether a font would be func-
tional after recovery is crucial. Discarding a single
ligature because of an invalid character code may be
safe. Resetting a non-zero first table entry may be
safe as well, but it might also be the case that the
entire table (or the whole font for all we know) is in
fact completely corrupted. The point here is that it
is not the job of the library to make a decision, only
to offer options.

In fact, having options may come in handy for
interactive use (Common Lisp applications can be
run both interactively and as standalone executa-
bles). Figure 1 illustrates this. In this example,
a fake cmr10 font has been corrupted on purpose:
the character encoding string present in the file’s
header has been modified to contain parentheses,
which is illegal. When loading the font interactively,
the user ends up in the debugger and is presented
with a number of “soft” recovery options (keeping
the string as-is, fixing it, discarding it), in addition
to plain cancellation.

Didier Verna

A non-interactive application, on the other hand,
would have the ability to automatically select an op-
tion without requiring user intervention. In produc-
tion, the most likely choice is CANCEL-LOADING (and
then fall back to another font). Given the goal we are
trying to achieve here however, we would prefer to
select the recovery option that allows us to proceed
with the parsing for as long as possible.

Figure 2 summarizes all the possible problems
(rectangles) and the corresponding recovery options
(ellipses) that tfm provides. The details are not
important. The intent of this picture is to convey the
feeling that even for a relatively simple file format, a
complete error/recovery ontology can quickly become
rather intricate.

3 The tfm-validate library

While tfm was originally a requirement for ETAP,
tfm-validate? is a typical case of a project that was
born out of curiosity rather than necessity, and also
because it was quite easy to do. The key ingredient in
tfm-validate’s design simplicity is the very peculiar
exception handling that Common Lisp provides, the
so-called “condition system” [4, 6], which we’ll now
describe.

3.1 The Common Lisp condition system

Most programming languages with explicit support
for exception handling use some form of “try/catch”
mechanism, as illustrated in the left part of Figure 3.
A program may establish points at which exceptions
(thrown elsewhere) are caught and handled. In the
example, the program throws an exception while
executing func4. The exception travels up the call
stack until it reaches the handler in func2. If the
exception is caught there, execution resumes at that

3 github.com/didierverna/tfm-validate

https://github.com/didierverna/tfm-validate

TUGboat, Volume 45 (2024), No. 2

character-list-cycle

223

file-overflow

padded-string-overflow

invalid-original-design-size

file-underflow

ul6-overflow

invalid-ligature-opcode

discard-next-character

ligature-cycle

spurious-char-info \

invalid-character-code

invalid-table-index

no-boundary-character

invalid-table-start

set-to-zero

fix-word-overflow

invalid-character-range {

invalid-padded-string-length

read-maximum-length
invalid-padded-string '—V @

invalid-design-size

invalid-header-length

invalid-section-lengths

invalid-table-length

discard-string

Figure 2: The tfm error ontology

point. Otherwise, the exception goes one more step
up, to funcil.

Unfortunately, this mechanism suffers from an
unnecessary limitation in expressiveness: the excep-
tion handler actually does two different things at
the same time (and for no good reason). Namely, a
control point established by a handler serves not only
to catch an exception, but also to resume execution.
There is in fact no reason to limit ourselves to such a
simple scheme, and the Common Lisp condition sys-
tem adds one more degree of freedom to its exception
handling infrastructure.

3.1.1 Signal / Handle / Restart

The equivalent of “throwing an exception” is called
“signalling a condition” in Lisp, and the concept is
equivalent. There is, however, no such thing as
single catch/resume points in the Lisp condition sys-
tem. Instead, a program establishes points where it
is possible to resume execution (called “restarts”),
and points where conditions are caught (called “han-
dlers”). This is illustrated in the right part of Fig-
ure 3. Given the same scenario as before, func4
signals a condition. The condition goes up the call

A large-scale format compliance checker for TEX Font Metrics

224

funcl() funcl()
try/catch 1 handler 1

func2() func2()
try/catch 2 handler 2

restart 1

func3() func3()

restart 2

func4 () func4 ()

throw signal

Figure 3: try/catch vs. handle/restart

stack and finds a handler in func2. If this handler is
interested, it now has two options: resume execution
right here (with restart 1), or in func3 with restart 2.
Otherwise, the condition goes one more step up and
the handler in func1l is given the same two choices,
since no additional restart is installed.

3.1.2 First-class conditions

A second important aspect of the Common Lisp con-
dition system (not unique to Lisp this time) is that it
is grounded in CLOS [5], the object-oriented layer of
the language. This means that creating an ontology
of errors boils down to designing a hierarchy of condi-
tion classes, and the signalled conditions are reified
as objects, that is, instances of the corresponding
classes. In other words, conditions are “first-class”
citizens in the language [2, 7].

3.2 The design simplicity of tfm-validate

Why is all this relevant to the design simplicity of
tfm-validate? Asmentioned before (Section 2.2), it
is not the job of tfm to handle errors; only to detect
them and offer as many soft recovery options as
possible, for flexibility. In the technical terms of the
Common Lisp condition system, we now understand
that tfm signals conditions and provides a variety of
restarts, but does not establish any handlers.

Short of handling conditions, a tfm user ulti-
mately ends up in the debugger if something goes
wrong (again, as demonstrated in Figure 1). But
the key point is that since restarts and handlers are
different concepts, it is possible to decide what to
do programmatically rather than interactively, by es-
tablishing handlers outside tfm, or more specifically
around calls to it.

We can now understand why tfm-validate
was in fact quite easy to write. The main entry

Didier Verna

TUGDboat, Volume 45 (2024), No. 2

point is a function called invalidate-font, which
calls tfm’s load-font function. But before doing so,
invalidate-font establishes a (rather large) han-
dler for all the conditions that tfm may signal, and
for every one of them, selects the “softest” restart
available, allowing to proceed with the parsing for
as long as possible. Note again that because han-
dlers and restarts are not required to be located at
the same places in the code, no modifications to the
original tfm library are required to make it work like
a compliance checker rather than for loading fonts.

But invalidate-font doesn’t stop there. Ev-
ery time a condition is caught, the function collects
it before restarting (remember that conditions are ac-
tual objects). The return value of invalidate-font
is thus the list (possibly empty) of all the signalled
conditions. In fact, invalidate-font doesn’t do
any printing by itself. After execution, the user gets
the list of signalled conditions, and is then free to
do whatever they wish with it, such as inspecting,
printing in one form or another, or even generating
a website ...

4 TgX Live validation

. which is the point we are getting to. The function
invalidate-font which, again, is essentially a wrap-
per around load-font, collecting the signalled condi-
tions, is 68 lines long. With 10 more lines, we offer a
function checking the compliance of a whole directory
tree rather than of a single font file. This function is
unsurprisingly called invalidate-directory.

At that point, we were curious about the state
of the TEX Live distribution, since it is a rather
large repository of TFM files, all located under a
single directory tree. As it turns out, running our
function invalidate-directory on it revealed a
quite large number of non-compliance issues, which
was an incentive to put all that information into a
human-readable shape.

4.1 Non-compliance reports

The tfm-validate library provides yet another en-
try point called invalidate-texlive. It generates
a website aggregating non-compliance reports (one
HTML page per culprit TFM file) plus a couple of
indexes. With the help of Norbert Preining, the
system is now run on a daily basis and the cor-
responding website is made available at texlive.
info/tfm-validate/.

At the time of this writing, the results of the
validation process are as follows. 79016 fonts are in-
spected. 2983 fonts are skipped because tfm doesn’t
support OFM or JFM yet. 770 fonts are found to be
non-compliant, which may seem quite a lot. On the

https://texlive.info/tfm-validate/
https://texlive.info/tfm-validate/

TUGboat, Volume 45 (2024), No. 2

other hand, there are only 4 kinds of problems: 3 of
which are considered warnings, and only a single one
a truly unrecoverable error.

4.2 File overflow

By far, the most common issue that tfm-validate
finds is file overflows, affecting 628 fonts. The TFM
standard mandates that the first two bytes of a TFM
file encode the file’s length. A “file overflow” warning
is signalled if the actual file’s length is greater than
expected. Note that tfm knows about the special
values 0, 9, and 11, denoting extended TFM files
(OFM or JFM), which are not supported yet.

Of course, when the declared file size disagrees
with the actual, there is no way to tell for sure
which (if any) is correct. However, absent any other
problem during parsing, the file containing a tail of
junk is much more likely than the first two bytes
(only) being corrupted, hence a warning.

A quick test on a couple of such files seems
to confirm that hypothesis. We compiled a sample
document with them, and it appears that not only
TEX has no problem loading the fonts, the outputs
look normal as well. On top of that, let us mention
that tftopl adopts the same posture: it signals
the problem but otherwise just discards the junk
(Section 20 of tftopl).

Further investigation on the tails was inconclu-
sive. In particular we couldn’t figure out whether
some tails contain meaningful information rather
than just junk (a possible cause for file overflows
could be padding to storage blocks). As a conse-
quence, the signalled warnings do not include the
tails’ content.

4.3 String overflow

The situation is slightly different with the next kind
of problem we encountered, namely, padded string
overflows, currently affecting 74 fonts.

A TFM file may contain two optional strings in
its header. The first one, 40 bytes long, identifies
the character coding scheme. The second one, 20
bytes long, is the font identifier (font family name).
These strings are supposed to be in BCPL format.
In particular, the first byte must contain the actual
length of the string.

tfm signals a “padded string overflow” warning
when a BCPL string is not padded with zeros. Doug
McKenna suggested* that padding a BCPL string
with zeros may not have always been a requirement,
as it was only added to pltotf in April 1983, for
version 1.3, that is, two years after its initial release
(Section 87 of pltotf). On the other hand, David

4 reference lost; could have been in a thread on texhax. ..

225

Fuchs mentioned padding with zeros as early as in
February 1981 [3].

Anyway, the decision as to whether a padded
string overflow should be a warning or an error is even
simpler to make than in the case of a file overflow.
Those strings are purely informative, they have no
impact on the font’s usability, so it does not hurt to
continue loading the font.

Besides, the padding area seems to have been
intentionally abused in the majority of the cases: a
lot of fonts contain “Y&Y Inc” in there, making their
origin quite clear. Because of that (and contrary to
file overflows), the content of the padding area is
included in the warnings.

4.4 Spurious char info

The next problem we encountered (also a warning,
affecting 66 files) is a more obscure matter. TFM files
have a so-called “char info table” providing the actual
character metrics of the font. The table contains 4-
byte entries for the full range of characters from the
minimum character code (bc) to the maximum one
(ec). However, a font may also have “holes” in this
range, that is, undefined characters for some codes
between bc and ec.

Undefined characters must have a width of 0,
materialized by a width table index of 0 as well. The
spurious char info warning indicates that an entry for
a non-existent character is not completely zeroed out.
In the problematic char info entries that we found,
the third byte usually has a value of 1 (indicating
an index into a ligature or kerning program), and
sometimes a non-zero fourth byte (the actual index).

A possible explanation would have been the
existence of a so-called “boundary character” (also
an obscure matter in TFM) which is not required
to exist for real in the font, but upon inspection of
several problematic ones, this appears not to be the
case.

tftopl completely ignores characters with a
width index of 0 (Section 78 of tftopl), and pltotf
zeroes out non-existent characters (Section 74 of
pltotf). All the more reasons to not consider this
problem a showstopper.

4.5 Fix word overflow

Finally, this one is the only true error we encountered,
and it only affects two fonts: ArevSans-Bold, and
ArevSans-BoldOblique. TFM has a notion of “fix
word” numerical values which (with two exceptions)
must remain within |—16,+16 [. In particular, the
actual font metrics (width, height, depth, and italic
correction) are expressed in fix words.

A large-scale format compliance checker for TEX Font Metrics

226

In the two aforementioned fonts, exactly 124
such values are off the charts. Again, for the sake
of flexibility, tfm offers a soft recovery option for
this problem (see Figure 2): setting the culprit value
to 0, which would most likely result in an unreadable
document. TEX refuses to load these fonts, which
confirms the severity of the problem; hence an error.

5 Related work

Manuel Pégourié-Gonnard wrote a Perl script® for
checking the validity of a variety of files using ex-
ternal programs (typically, tftopl for TFM files).
It is our understanding that this script produces
a somewhat terse output: it prints a list of “bad”
files without collecting more specific information, let
alone presenting it in a human readable form.

According to a comment by Karl Berry, the
script took a long time to run and maintenance of
the list of broken fonts was tedious, with no particular
action happening on the part of the font maintainers
to fix the problems, so using it was abandoned in
August 2019.

6 Conclusion and perspectives

As mentioned before, this project was born out of
curiosity rather than necessity, and because it was
easy to develop. Whether it is actually useful remains
to be seen. Perhaps having compliance problems
publicly advertised on a website will be a new kind
of incentive for authors to update their files, and
perhaps this project will be more helpful to watch
over new additions rather than blame older content.

One merit of this project is to provide an insight
into the global status of TFM compliance over a
large set of fonts. In particular, we can see that the
surprising number of non-compliant files is mitigated
by the fact that most issues are in fact benign (only
two fonts were found to be truly unusable).

In the future, we plan on adding new font for-
mats to the system. Provided that we can find the
appropriate documentation, OFM and JFM are likely
to be straightforward additions and as a matter of
fact, the tfm library is already prepared for it. We
have also started to work on an OTF parser, designed
along the same lines (that is, built around the Com-
mon Lisp condition system) but this will take slightly
longer to complete.

Finally, the current layout of the website still has
a lot of room for improvements. It currently provides
two indexes, but the general question boils down to
offering different forms of access to cross-referenced
information. Karl Berry has already suggested a cou-

5 tug.org/svn/texlive/trunk/Master/tlpkg/bin/
tl-check-files-by-format

Didier Verna

TUGDboat, Volume 45 (2024), No. 2

ple of possible ways to do so, which we will definitely
take into account in the future.

Acknowledgements

The author wishes to thank Norbert Preining, Karl
Berry, and Doug McKenna for fruitful exchanges dur-
ing the development of both tfm and tfm-validate.

References

[1] ANSI. American National Standard:
Programming Language — Common Lisp.
ANST X3.226:1994 (R1999), 1994.

[2] R. Burstall. Christopher Strachey —
Understanding programming languages.
Higher Order Symbolic Computation,
13(1-2):51-55, 2000.

[3] D. Fuchs. TEX font metric files. TUGboat,
2(1):12-16, Feb. 1981.
tug.org/TUGboat/tb02-1/tb02fuchstfm. pdf

[4] M. Herda. The Common Lisp Condition System.
Apress, 2020.
doi.org/10.1007/978-1-4842-6134-7

[5] S.E. Keene. Object-Oriented Programming in
Common Lisp: a Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[6] P. Seibel. Practical Common Lisp. Apress,
Berkeley, CA, USA, 2005. Online version at
gigamonkeys.com/book/.

[7] J. Stoy, C. Strachey. OS6— An experimental
operating system for a small computer. Part 2:
Input/output and filing system. The Computer
Journal, 15(3):195-203, 1972.

[8] D. Verna. ETAP: Experimental typesetting
algorithms platform. In 15th Furopean Lisp
Symposium, pp. 48-52, Porto, Portugal,

Mar. 2022. doi.org/10.5281/zenodo.6334248

[9] D. Verna. Interactive and real-time typesetting
for demonstration and experimentation: ETAP.
TUGboat 44(2):242-248, 2023. doi.org/10.
47397/tb/44-2/tb137verna-realtime

¢ Didier Verna
EPITA Research Lab
14-16, rue Voltaire
94270 Le Kremlin-Bicétre
France
didier (at) lrde.epita.fr
https://www.lrde.epita.fr/~didier/
ORCID 0000-0002-6315-052X

https://tug.org/svn/texlive/trunk/Master/tlpkg/bin/tl-check-files-by-format
https://tug.org/svn/texlive/trunk/Master/tlpkg/bin/tl-check-files-by-format
https://tug.org/TUGboat/tb02-1/tb02fuchstfm.pdf
https://doi.org/10.1007/978-1-4842-6134-7
https://gigamonkeys.com/book/
https://doi.org/10.5281/zenodo.6334248
https://doi.org/10.47397/tb/44-2/tb137verna-realtime
https://doi.org/10.47397/tb/44-2/tb137verna-realtime

TUGboat, Volume 45 (2024), No. 2

Creation of IATEX documents using a
cloud-based pipeline

Marei Peischl, Marcel Kriiger, Oliver Kopp

Abstract

Using web-based platforms for collaborative editing
of IXTEX documents is common these days. These
tools focus on writing documents and not on cre-
ation of templates or packages. Using build servers
with automated pipelines is common within software
development but can easily be adapted for TEX &
friends.

This article will show how to get started us-
ing automated workflows on platforms like GitHub,
Forgejo, or GitLab for document authors as well as

TEX developers.

1 Introduction

Everything has become available in or is moving
towards the cloud. IATEX is already there for about
10 years and today it’s quite common to use a web
editor for collaboration and local compilation became
the “nerdy” way. But there also is a third variant
to compile documents which can be used also to
improve package development and in general the
stability of IXTEX: adapting DevOps methods, like
continuous integration and delivery (CI/CD) using
automated workflows.

As a very rough working definition, let us con-
sider a CI/CD workflow as a number of steps to
compile a TEX document to PDF on some kind of
online service that has access to the source files.

2 Why continuous integration?

Having an established workflow usually makes people
avoid thinking about changing anything. So there
have to be reasons why it might be worth reading
this article, let alone integrating the mechanisms into
projects.

Early adopters of continuous integration tech-
niques in the TEX ecosystems tried to follow the
current state of open source development and open
doors for contributors in the development process.
For example, the IWTEX Project is currently wel-
coming a lot of user interaction via their GitHub
projects [16] and also takes contributions from which
the whole (I&)TEX community will profit.

But the advantages of these methods extend
beyond that. We will focus on some cherry-picked
aspects as the remainder could probably be an article
by itself.

227

2.1 Works for me?!

Sometimes, I can successfully compile my document
on my machine, but my supervisor can’t on theirs.
There are many reasons why a TEX compilation may
succeed on one system and fail on another. Running
some external continuous integration pipeline will
not only illustrate the necessary steps to go from
source to the full PDF, it will also help understand
if problems are machine-specific or general.

2.2 Compatibility and regression testing

With CI/CD, it is possible to run workflows on multi-
ple TEX distributions or versions. This can be used to
test if there are issues with some package update be-
fore updating a machine to, e. g., the latest MiKTEX
updates where downgrading may be complicated.’

Additionally, one can also use it to check back-
wards compatibility, e. g., if one collaborator is using
a Debian stable version which has only some out-
dated version. As mentioned, the IATEX Project
Team is already using these techniques and even pro-
vides functionality for regression testing within their
build system, 13build [17, 19].

Using CI/CD as a package developer enables a
general interface to be used for regression testing.
This allows for avoiding some of the bugs which
otherwise would be published and found by a user.
Furthermore, it can be used to avoid inconsistent
structures, e.g., one of the authors recently found
that numerous packages and files within TEX Live
do not have a proper version number set within the
code.

3 Structure of this tutorial

The idea is to introduce readers to the basics of
setting up automated workflows on GitHub, Forgejo,
and GitLab. This tutorial mainly addresses two
groups of users:

1. authors focusing on typesetting actual content,
including those collaborating on a document,
and

2. package or template developers who provide
their work to be used by the first group.

The second group obviously can also use work-
flows of the first, e. g., for typesetting documentation.
So developers usually use an extended version of the
setup provided for authors.

As all platforms covered by this article are re-
lated to the git version control system, we expect
the project to be some kind of git repository. In case
the reader does not yet use git, there is a little bit of
information attached to this tutorial. Using that, it

I That’s another issue to address ... but a different story.

Creation of IMTEX documents using a cloud-based pipeline

doi.org/10.47397/tb/45-2/tb140peischl-pipeline

https://doi.org/10.47397/tb/45-2/tb140peischl-pipeline

228

would be possible to use git without even noticing as
it is attached to the autosave function of an editor.

Because the IXTEX project is using GitHub, we
are going to start with a detailed explanation of
GitHub Actions and create a matching setup on the
other platforms afterwards. All workflows are avail-
able for customization in the template repositories
listed in Table 1 near the end of the article. Within
this article the listings are marked by icons to not
confuse readers as the platform is switched multiple
times to show the differences. €) is used to indicate
the listing belongs to GitHub Actions, whereas &
marks the GitLab CI variant.

4 Compiling a document in a CI pipeline
4.1 First steps with GitHub Actions

To get started, we need a git repository somehow
hosted on GitHub. It does not have to be public.

Thinking of the tasks needed to compile a I4TEX
document in any “blank slate” environment, we have
to do the following:

1. Prepare the environment and install a IATEX
distribution.
2. Run ITEX on the document.

GitHub provides pre-configured actions which are
able to combine multiple steps, e.g., the “latex-
action” action [20]; this starts another container
inside the action container to run latexmk. However,
these and other actions typically limit the configura-
tion options to simplify the interface. We are going
to elaborate on two variants: Using a container im-
age with a full TEX Live (this section) and a minimal
installation (see Section 6).

The configuration for an action is done by cre-
ating a yaml file within the repositories’ subdirec-
tory .github/workflows/hello-world.yml. The
filename may be chosen at will. The following code
snippet shows a minimal configuration:

1 name: Hello World Action
[push]

3 jobs:

4 action-test:

5 runs-on: ubuntu-latest

6 steps:

7 - run: echo "Hello world @ gg"‘ O

2 0n:

name: of the workflow. This is important if a
project contains multiple workflows.

on: This directive indicates conditions under which
the workflow will be started. In this configura-
tion, the jobs will be started on any push, i.e.,
whenever the repository on the server receives
an update.

Marei Peischl, Marcel Kriiger, Oliver Kopp

TUGDboat, Volume 45 (2024), No. 2

Besides attaching the trigger to some user

action it is possible to use time-based settings.
For all options it is worth having a look at the
configuration manual [5]. The default settings
differ for all platforms, and may be specific for
a single instance.

jobs: contains a list of jobs to be run one after an-
other. For example, it is quite common to have
one job for compiling a document and another
one to make the PDF available. In this example,
there is only one job called “action-test”.

runs-on: This value corresponds to a runner setup.
Runners are the systems that actually execute
the jobs defined in a workflow. It does not have
to be the same server as the one where the
repository is hosted. In this example, “ubuntu-
latest” indicates running on one of the provided
runners by GitHub which is based on Ubuntu.
It includes NodeJS and some tooling to simplify
the work using predefined actions. A full list
of the readily available runners and detailed
description of the images can be found at [4].

steps: This is what the workflow should actually
do. As one can see it is possible to directly
enter (ba)sh code in there, and use UTF-8. This
example merely echoes a string to stdout and
therefore should run without any issues.

On GitHub, actions are automatically enabled
for new repositories. When combined with an avail-
able runner as we do here, it is enough to add a yaml
configuration file to the repository to see the effect.
After pushing that configuration, the pipeline will
start running on all subsequent pushes.

The current status of an action, i.e., what step it
is currently running or if it has already finished, can
always be checked by having a look at (repository
url)/actions; e. g., for the first of our demo reposito-
ries, this can be found at github.com/islandoftex/
tug2024-workflow-github/actions. It looks like
this:

@ Initial Setup
Build #23: Commit 1d1cfad pushed by TeXhackse — *°°
a last week @ 2m 14s

main

The pipeline ran successfully but did not do
anything except create some shell output. Hence,
we can move on to the next step: building a IATEX
document.

4.1.1 GitHub Actions using IATEX

Actions are fundamentally based on isolated contain-
ers of software, which are run using Docker. Luckily,

https://github.com/islandoftex/tug2024-workflow-github/actions
https://github.com/islandoftex/tug2024-workflow-github/actions

TUGboat, Volume 45 (2024), No. 2

some of us live on the Island of TEX (IoT) and main-
tain images we can make use of here.?2 The setup of
the images was described within [12].

The first part of the workflow will stay the same
for the moment. Changes apply only after runs-on:

5 runs-on: ubuntu-latest

¢ container:

7 image: texlive/texlive:latest

8 steps:

9 - name: Checkout repository

10 uses: actions/checkout@v4

11 - name: Run latexmk

12 run: "latexmk --lualatex" O

container: Choose the IoT “texlive-latest” image
which provides a full TEX Live and some tools
[11].

steps: The first step looks different from the one we
had before. It’s given a name, “Checkout repos-
itory”, which is helpful to simplify debugging as
GitHub will tell us which step failed.

uses: is a reference to another action and GitHub’s
way to reference pre-configured pipelines encap-
sulating more complex tasks. In the example,
checkout@v4 refers to a separate repository [6].
This action takes care of the authentication and
some internals, so we do not have to deal with
those details.
A crucial point is that only after this action
are the following steps begun to be executed,
within the root directory of our repository.

second step: The second step is also given a name
(“Run latexmk”), and then uses the same run:
directive as our first example, but this time we
run latexmk [2] with the option --lualatex (to
use the Lual&TEX engine, as you might guess).
By default, latexmk will operate on all *.tex
files within the root directory. So we do not
even have to depend on the file name, as long
as we store any files to be included within sub-
directories.

4.1.2 Where is the PDF?

If the pipeline succeeds, there will be a green check-
mark, but we will fail to find the PDF somewhere.
This is because GitHub cannot know which (output)
files the user actually wants to see or download. Such
files are called “artifacts”, so now we will add another
step to the action to keep the PDF and upload it to
GitHub as a so-called “artifact”:

2 Special thanks to the other islanders at that point!

229
13 — name: Archive documentation
14 uses: actions/upload-artifact@v4
15 with:
16 name: Documentation
17 path: "./*x.pdf" ()

After another (successful) run of the pipeline,
it is possible to access the PDF wrapped within a
x.zip at the run’s status page. Clicking on the run
on the actions overview page leads there:

Artifacts

Produced during runtime

Name Size

@ Documentation 18KB & U

Sadly, GitHub currently does not provide an
option for individual files without a zip. Also it is
not possible to have a static link pointing to the
latest artifacts. (Other platforms such as GitLab
do provide that feature by default.) To resolve this
and make the PDF easier to access on GitHub, it is
required to use additional actions. The most common
way to do it is publishing the PDF to an orphan
branch. Usually this mechanism is used to create
web pages and is called “github-pages”.

To be able to write in the repository, it is neces-
sary to adjust the permissions. GitHub provides an
interface within the yaml configuration:

8 permissions:
9 contents: write O

This has to be added to the job which should up-
load the PDF. Additionally, most actions which can
be used for uploading artifacts to separate branches
request a directory instead of a file. Consequently,
all files have to be moved to a separate directory to
be used with these actions.

15 — name: move pdf

16 run: mkdir -p build && mv *.pdf build/.

17 - uses: crazy-max/ghaction-github-pages@v4

18 with:

19 target_branch: pdf-output

20 build_dir: build

21 env:

22 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN
S ()

The GitHub token on the last line is required
for authentication. Otherwise, the run might be
successful, but no PDF will appear on the branch.

Creation of IMTEX documents using a cloud-based pipeline

230

4.2 Differences with Forgejo Actions

Forgejo [3] is another code platform which has the
aim to be more open than GitHub. It can be self-
hosted and provides mechanisms similar to GitHub
Actions. They will never act in exactly the same way
as GitHub’s mechanisms, but are almost compatible.

By default, Forgejo first searches .forgejo/
workflows/ for configuration files. If none are found
it will fall back to look inside the .github/ directory.
The only issue you would probably face from simply
reusing a GitHub setup is that there are no hosted
runners on most instances. Even if there are run-
ners available, they will probably be different from
GitHub’s.

However, if you can configure a runner yourself
and use the same labels as the GitHub runner uses
(described in [1]), it is possible to use the same work-
flow configurations on both. The provided demo
repositories on codeberg.org, which is a Forgejo
instance, also explain how the runners used there are
configured.

4.3 Compiling a document using GitLab CI

GitLab CI is not too different from the previous Ac-
tions setup. It is even a bit easier to set up continuous
integration here as some steps are run automatically.
For example, it is not necessary to check out the
repository, because this is done by default.

The configuration file has to be placed within
the repository’s root directory and given the name
.gitlab-ci.yml. Here’s our same example:

1 runlatex:

2 image: registry.gitlab.com/islandoftex/
— images/texlive:latest

3 script:

4 - 'latexmk —--lualatex'

5 artifacts:

6 paths:

7 - ", /%.pdf" N/,

Here the steps are simply a list of commands
run after each other. Our list just contains one call
to latexmk.

In contrast to GitHub, GitLab provides an API
which allows creating static links to the artifacts.
Thus, the README.md of the demo repositories there
include a link of the following structure:

(repository url)/-/jobs/artifacts/(branch)
/brouse?job=(name of job)

This will list all artifacts attached to the job.
For instance, using the example configuration on one
of the demo projects results in this sample url:

Marei Peischl, Marcel Kriiger, Oliver Kopp

TUGDboat, Volume 45 (2024), No. 2

gitlab.com/islandoftex/texmf/tug2024-
workflow-document-gitlab/-/jobs/artifacts/
main/browse?job=check: [latest,lualatex])]

5 Testing with multiple versions
or compilers

We promised that one can extend these setups to
test using multiple TEX versions or engines. Different
engines are straightforward to include by running
additional steps with different commands. Alter-
natively, it is possible to use different engines in
separate actions or even workflow files. There is no
general way to structure those, as the choice always
depends on whether to always run everything or save
resources via conditional or sequential execution.

To use different versions of TEX Live, the Island
of TEX provides historic images of all but the latest
TEX Live release (which is not yet historic).

1 test-on-IoT-texlive:
2 runs-on: ubuntu-22.04
3 strategy:
4 matrix:
5 image: ["TL2022-historic",
<, "TL2023-historic", "latest"]
6 name: "Test on ${{ matrix.image }}"
7 container:

8 image: texlive/texlive:${{ matrix.image
- 1}
o steps: 0

strategy: this is used to create a loop over elements.
In this case, a variable called matrix containing
a list of images is used and the content can then
be accessed within other parts of the file using
${{ matrix.image }}. Thus, the first run will
use TL 2022, continue on 2023 and finally run
on the latest release. A full list of the provided
images can be found at [9)].

Similarly, GitLab also has a matrix feature. The
following example illustrates how to run multiple
engines, each on multiple TEX Live releases:

1 check:

2 image: registry.gitlab.com/islandoftex/
— images/texlive:$TEXLIVE_VERSION

[... contains script + artifacts ...]

6 parallel:

7 matrix:

8

- TEXLIVE_VERSION: ['TL2022-historic',

< 'TL2023-historic', 'latest']
9 TEX_ENGINE: ['pdflatex', 'xelatex',
< 'lualatex'] N7,

Here the variable is more like a shell variable
but can be used the same way.

https://codeberg.org
https:///browse?job=

TUGboat, Volume 45 (2024), No. 2

6 Minimize the build container

The previous examples used a full TEX Live instal-
lation to have the most convenient setup.® The IoT
images even ship all dependencies of additional tools
such as arara or minted, which enables that all tools
in TEX Live will work out of the box.

Still, sometimes you will not need all the bells
and whistles and there are advantages to smaller
build containers. For instance, downloading more
than one gigabyte can take quite some time. Or you
may only have limited disk space available on the
runner server.

Side remark: If you are looking to reduce not
the images themselves but the compile time because
you are building many documents, have a look at
last year’s ToT article [11].

Back to minimizing the build environment: the
most annoying part here might be discovering which
packages are actually needed to compile ...

So the Island of TEX proudly presents: DEPP —
The DEPendency Printer for TEX Live [7].4

As this article focuses on pipelines we won’t go
into detail on the tool itself but instead show how
DEPP produces a file listing all TEX Live packages
necessary for the build. For the example projects
these look like:

Proudly generated by the Island of TeX's...
blindtext
cm

6.1 GitHub

On GitHub there are multiple actions available to
install TEX Live as a part of the workflow [13, 18].
Using those, it is possible to minimize the container,
which will also reduce the build time.

o — name: Install TeX Live
10 uses: zauguin/install-texlive@v3
11 with:

12 package_file: .github/tl_packages O

This snippet can be used within steps: and
makes the container: directive obsolete, so it should

be removed. The package_file: is the path to the
DEPP output or a manually created list of packages.

3 Not exactly full: the images we used include neither the
documentation nor the source trees of TEX Live.

4 If you are German, do not be surprised if this tool is
more clever than its name suggests.

231

6.2 GitLab

On GitLab the simplified syntax makes running a
minimized TEX Live a bit more complex. The DEPP
repository [7] luckily provides a shell script to install
a TEX Live based on the package file. This can be
used in the pipelines to modify the container.

5 image: registry.gitlab.com/islandoftex...
6 before_script:
7 - minimal_tl_setup.sh "tl_packages" &g

Another option would be to provide a container
image which already contains the necessary packages.
If a self-hosted runner is used, this is usually the best
option as caching can be configured to control when
the container is rebuilt or updated.

7 Pipelines for package developers

As promised, the advantages of using automated
pipelines are even more significant when used within
the development process of packages or templates.
In this case, we expect the repository to contain a
package and some kind of 13build configuration.®

7.1 GitHub

The latex step (calling latexmk in the examples) is
replaced by

9 — name: Run 13build
10 run: 13build check --show-log-on-error -q

— -H ()

This will automatically run all test files accord-
ing to the 13build setup. As this is within the
context of running a package’s test suite, the arti-
facts are totally different. Now, we are not interested
in a PDF but rather the test output. One of the
present authors has created another action to take
care of this [14]:

11 - name: Archive failed test output

12 if: ${{ always() 1}}

13 uses: zauguin/l3build-failure-artifacts@vl
14 with:

15 name: testfiles

16 retention-days: 3 (»]

Apart from uploading the artifacts, this config-
uration illustrates another important point: In con-
trast to the PDF of a document, where we are only
interested in the successful output, for test suites we
are less interested in success than the failure output.
To let GitHub know that we are in fact interested in

5 The setup itself also works for other tools, but that is
out of scope for this article.

Creation of IMTEX documents using a cloud-based pipeline

232

these artifacts, if: ${{ always() }} has been added.
This will also force the step to run even if the previous
step failed.

7.2 GitLab

Again, GitLab directly supports the artifact upload
without loading external extensions.

4 - 13build check --show-log-on-error -q -H
s artifacts:

6 when: on_failure

7 paths:

s - ./build/test/*.diff N2

This simplifies the standard setup but is less
flexible. For example if you want to use different
artifacts for success and failure, it is required to do
that within two separate jobs within GitLab.

8 Running locally

During the tutorial at the TUG’24 conference there
was a short demonstration of running the pipelines
locally. This might be helpful for debugging as one
can control the steps manually or to ensure the local
setup matches the one on the server.

These setups usually use Docker. For the plat-
forms which use actions there is a tool called “act”
to simplify that process using the Docker API.

GitLab extends this with the option to simply
have a GitLab runner installed locally. This provides
the option of running

gitlab-runner exec

within a local repository containing some Gitlab CI
configuration.

9 This is Continuous Development

Of course every configuration shown here is only
an example and can be extended depending on the
project’s requirements. It is possible to run arbitrary
commands, which might be necessary especially for
complex setups.

For example, when creating magazines, it is
possible to continuously create a print and an on-
line version, excerpts of single articles as well as
HTML/EPUB output, while the editors only have
to wait for the compilation of the article they are
actively working on.

The same goes for study material, where we can
have rendered versions including solutions or not, or
documents which share links between each other and
therefore require many runs.

Integrating these structures into more advanced
git usage like a useful branching concept can also help

Marei Peischl, Marcel Kriiger, Oliver Kopp

TUGDboat, Volume 45 (2024), No. 2

improve collaboration or simplify the contribution
process within open source projects. It will reduce
frustration for maintainers as some issues do not
have to be checked manually.

10 Conclusion and call for action & feedback

We’ve explained the use of GitHub, Forgejo, and
GitLab for compiling IATEX documents and pack-
ages. We showed how different releases of TEX Live
and even different compilers can be used to simplify
testing across platforms. Also we took care of be-
ing able to access the PDF or the testing results in
some way. To increase the stability of all parts of
TEX development we hope this will help with more
testing of packages and even less waste of time while
compiling complex setups.

If you maintain any packages, it would be great
if you could try setting up a test to check it against
the latest release of TEX Live or even current TL
development. This can also be a preparation for
next years TEX Live pretest, as the Island of TEX
is creating a Docker image for the pretests. If you
are planning or attempting to do that and face any
issues, we will try to help.

We would love to maintain this as a tutorial to
simplify the use of automation for users of TEX &
friends. So if we've left open questions, we would
love to hear about it and will try to improve this
tutorial as well as the examples. Table 1 summarizes
the related repositories.

Contributions to this project are very welcome!

References

[1] Codeberg doc contributors.
docs.codeberg.org/ci/actions/

[2] J. Collins. latexmk — fully automated KTEX
document generation. ctan.org/pkg/latexmk

[3] Forgejo. Forgejo repository. codeberg.org/
forgejo/forgejo

[4] GitHub. Choosing GitHub-hosted runners.
docs.github.com/en/actions/using-
workflows/workflow-syntax-for-github-
actions#choosing-github-hosted-runners

[5] GitHub. Workflow syntax for github actions.
docs.github.com/en/actions/using-
workflows/workflow-syntax-for-github-
actions

[6] GitHub and contributors. Checkout action.
github.com/actions/checkout/

[7] Island of TEX. DEPP — dependency printer
for TEX Live.

gitlab.com/islandoftex/texmf/depp

https://docs.codeberg.org/ci/actions/
https://ctan.org/pkg/latexmk
https://codeberg.org/forgejo/forgejo
https://codeberg.org/forgejo/forgejo
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://github.com/actions/checkout/
https://gitlab.com/islandoftex/texmf/depp

TUGboat, Volume 45 (2024), No. 2

233

Table 1: Template repositories published with this article. The naming scheme is
structured as (ci-type)_ (task), adding “__minimal” if the example is not using a
pre-packaged Docker image but includes methods to install packages based on a

dependency file as described in section 6.

All variants listed here have been prepared for at least the three platforms mentioned

here (GitHub, GitLab, ForgeJo).

As the urls are quite long, we have published the list including links within the

paper’s repository tug.org/1l/peischl-cicd2024.

Name Platforms Document 13build Testing IoT image
latex O & r v v
latex minimal O & F v
latex_ testing O ¥ r v v v
latex_ testing minimal O & F v v
13build O & F v v v
13build__minimal (o RN/ F v v
[8] Island of TEX. GitHub workflow template for [16] IXTEX Project. GitHub organization.
IATEX packages. github.com/islandoftex/ github.com/latex3/
tug2024-workflow-github [17] BTEX Project. 13build — a testing and building
[9] Island of TEX. GitLab repository: TEX Live system for (I£)TEX. ctan.org/pkg/13build
Docker image. [18] teatimeguest/setup-texlive-action repository.
gitlab.com/islandoftex/images/texlive github.com/teatimeguest/setup-texlive-
[10] Island of TEX. GitLab workflow template for action
IATEX documents. gitlab.com/islandoftex/ [19] J. Wright. 13build: The beginner’s
texmf/tug2024-workflow-document-gitlab guide. TUGboat 43(1):40-43, 2022.
[11] Island of TEX. Living in containers—on doi.org/10.47397/tb/43-1/tb133wright-
TEX Live (and ConTEXt) in a Docker 13build
setting. TUGboat 44(2):249-252, 2023. [20] C. Xu. latex-action. GitHub action to compile

doi.org/10.47397/tb/44-2/tb137island-
docker

Island of TEX. Providing Docker images

for TEX Live and ConTEXt. TUGboat
40(3):231, 2019. tug.org/TUGboat/tb40-
3/tbl126island-docker.pdf

M. Kriiger. zauguin/install-texlive repository.
github.com/zauguin/install-texlive

M. Kriiger. zauguin/13build-failure-artifacts
repository. github.com/zauguin/13build-
failure-artifacts

M. Peischl, M. Kriiger, O. Kopp. Source to
this paper, and links to additional resources.
tug.org/1l/peischl-cicd2024

IATEX documents.
github.com/xu-cheng/latex-action/

o Marei Peischl
Gneisenaustr. 18
20253 Hamburg
Germany
marei (at) peitex dot de
https://peitex.de

© Marcel Kriiger
Hamburg, Germany

¢ Oliver Kopp
Sindelfingen, Germany
ORCID 0000-0001-6962-4290

Creation of IMTEX documents using a cloud-based pipeline

https://tug.org/l/peischl-cicd2024
https://github.com/islandoftex/tug2024-workflow-github
https://github.com/islandoftex/tug2024-workflow-github
https://gitlab.com/islandoftex/images/texlive
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab
https://gitlab.com/islandoftex/texmf/tug2024-workflow-document-gitlab
https://doi.org/10.47397/tb/44-2/tb137island-docker
https://doi.org/10.47397/tb/44-2/tb137island-docker
https://tug.org/TUGboat/tb40-3/tb126island-docker.pdf
https://tug.org/TUGboat/tb40-3/tb126island-docker.pdf
https://github.com/zauguin/install-texlive
https://github.com/zauguin/l3build-failure-artifacts
https://github.com/zauguin/l3build-failure-artifacts
https://tug.org/l/peischl-cicd2024
https://github.com/latex3/
https://ctan.org/pkg/l3build
https://github.com/teatimeguest/setup-texlive-action
https://github.com/teatimeguest/setup-texlive-action
https://doi.org/10.47397/tb/43-1/tb133wright-l3build
https://doi.org/10.47397/tb/43-1/tb133wright-l3build
https://github.com/xu-cheng/latex-action/

234

A short note on typesetting Latin verse
scansion with BTEX and LualATEX

Antoine Bossard

Abstract

Large parts of the Latin literature are written in
verse: Virgil’s Aneid and Ovid’s Metamorphoses are
two well-known examples. As can be noticed from
a glance at most specialised textbooks, typesetting
the scansion of Latin verses is not trivial. To this
end, analysing the syllable quantity, or duration, is
required — this is prosody. Conventionally, prosody
is denoted with diacritical marks, typically above
the vowel of a syllable. Although I#TEX provides
such a feature, it is not always simple to adjust it
to authors’ needs. In this short note, several issues
arising from the scansion of Latin verses in both
ITEX and Lual#TEX are discussed and technical
solutions are described.

1 Introduction

Latin verses are based on prosody, that is the syllable
quantity, or duration (long, short or common), which
in turn defines metrical feet: for example, the foot
called dactyl consists of one long syllable followed by
two short. The quantity of a syllable is determined
by the quantity of its vowel (or vowels, typically in
the case of diphthongs).

Scanning a Latin verse is about identifying feet,
which requires checking the quantity of all the sylla-
bles. To this end, diacritical marks are used: conven-
tionally, a breve (7) denotes a short vowel, a macron
(7) along one and both diacritics used atop one same
vowel indicate that the quantity of the corresponding
syllable is common.

A verse is usually split into two with a czesura,
which is also typically indicated at scansion. While
feet are conventionally separated by vertical bars (]),
the verse caesura is often materialized with a double
vertical bar (||). Elision is sometimes denoted with
square brackets or parentheses, and sometimes with
a lengthened breve below the space that follows the
elided syllable. On the opposite end, a hiatus is
sometimes denoted with a lengthened inverted breve
below the space that separates the two words forming
the hiatus [7].

From various Latin grammar textbooks and dic-
tionaries, it can be deduced that scansion typesetting
is a non-trivial issue. For example, the typesetting
of diacritical marks is uneven and sometimes lacking
in classic textbooks such as [3, 5]. The 2018 edition
of [6] is amongst the nicest. More recent textbooks
often keep scansion and prosody information at a

Antoine Bossard

doi.org/10.47397/tb/45-2/tb140bossard-verse

TUGDboat, Volume 45 (2024), No. 2

minimum [1, 2, 4] and their typesetting sometimes
remains below par [8].

In this short note, compiled with KTEX and not
Lual&TEX, we review how to typographically realise
the scansion of a Latin verse in ITEX and Lual&TEX,
and the possible shortcomings of these two solutions.
A few technical details are given in an appendix.

2 The case of BKTEX

With respect to single diacritical marks applied to
single letters, no problem whatsoever has been wit-
nessed when relying on IATEX. In both lower and
upper case, both accented Unicode characters (e.g.
U+0103 &, U+0100 A) and letters manually marked
with the commands \u (breve), \= (macron) (e.g.
\u{a}, \=A) are correctly rendered. In the case of
manual marking applied to the vowel i, the dotless
version of the letter is of course highly desirable: for
instance, \=\1 instead of \=i to obtain T instead of i.

Regarding the stacking of several diacritical
marks atop one letter, typically to denote a sylla-
ble whose quantity is common, it remains difficult
with ITEX: \u{\=a} is of no avail as it produces
“a. Relying on additional packages is probably the
best solution, like tipa by R. Fukui, which notably
provides the \u= command to combine a breve above
a macron, stackengine by S. B. Segletes or covington
originally by M. A. Covington with its \twodias
command.

One single syllable sometimes includes several
consecutive vowels: diphthongs, like &, au, eu and ce.
The quantity of such syllables is long by principle.
So, when denoting prosody, a macron is in most cases
expected on top of these vowel combinations. The
rendering of & and ce with either manually set dia-
critical marks or the corresponding accented Unicode
characters is acceptable: &, A, &, B, albeit with
the macron being somehow too short. The duration
of the @& diphthong can however be short in some
words, like preustus: &, EE are rendered as expected.
It is however more difficult to add a diacritical mark
above the other diphthongs (i.e. diphthongs for which
a ligature is not applicable), such as au and eu, and
in the case of syneeresis, like in deest and at the first
syllable of deinde (a disyllabic word). Relying on the
\overline command is one solution: au, ee. The bar
this time is slightly too long and is, more or less de-
pending on the font, too close to the letters. Whilst
the former issue can be addressed with \mkern: au,
&e (helpful, by the way, for a lengthened macron too:
®, [, &, (B), the latter remains.

Finally, it also happens that two consecutive
vowels count as a single short one. This is the case,
for example, with the ua in genua, a disyllabic word.

https://doi.org/10.47397/tb/45-2/tb140bossard-verse

TUGboat, Volume 45 (2024), No. 2

To avoid complications, publishers often resort to
typesetting genua, which can be misleading during
scansion. It could be typeset genva for facilitated
scansion, but it is not satisfactory either (the letter
v notably tends to be avoided in favour of the letter
u in modern Latin text editions). The diacritical
mark could also be moved so that it stands between
both vowels: genua, but once again we find this
solution not optimal (the mark is too narrow). The
\textasciibreve command combined with \1lap is
not really helpful either: genua. The Comprehensive
ITEX Symbol List by S. Pakin does not mention any
extensible breve; note that the stix package has a
\widecheck though.

This discussion of a breve over two letters also
applies to the stretched breve sometimes used to
denote elision: although a \textasciibreve lowered
below the base line (and negatively kerned) produces
acceptable results, like ego_ipse, there is still room
for improvement. Similarly, the inverted stretched
breve to denote a hiatus can be obtained with a
lowered and negatively kerned \newtie: modo.ipse.
Acceptable but not quite satisfactory.

3 The case of Lual®TEX

Support for diacritical marks, both single and multi-
ple, strongly depends on the selected font, and this
can rapidly become problematic: the desired font
may not support them. In addition, a font that works
flawlessly with IATEX is not guaranteed to work with
Lual&TEX; this is the case, for instance, of TEX Gyre
Pagella (loaded with the package tgpagella). This
is especially the case when adding diacritical marks
on capital letters. Furthermore, this can happen
whether Unicode includes the desired character, like
U+0232 Y, or not, like V (both letters are incorrectly
rendered; they have been rendered separately with
Lual&TEX and its default font).

Assuming a font that is aware of such diacritical
issues has been selected, LualATEX brings significant
advantages over I/TEX as far as we are concerned
(cf. Section 2). First, it enables multiple diacritical
marks on a character: &, V (both letters are correctly
rendered; they have been rendered separately with
Lual2TEX and the Noto Serif font).

Second, the macron over diphthongs can be fur-
ther improved: not only its width but also the ver-
tical gap between it and the corresponding letters
can be adjusted thanks to the \Umathoverbarvgap
command. The previous au, €e respectively become
an, ee (note the increased gap below the macron;
both digrams have been rendered separately with
LualATEX and its default font).

235

Next, we acknowledge that Unicode does pro-
vide glyphs that could be helpful for our purpose
and review their current support with the multiple
diacritical mark-aware Noto Serif font. (Note that
the results could differ with another font. The sup-
port of Unicode by Noto Serif is complete enough
so that it is a good candidate for this experiment
though.) Once again, the following examples have
been rendered separately with Lual&TEX.

First, there is the Combining overline glyph
(U+0305), whose purpose is to render a continuous
line above several letters. In our case, this could
be especially helpful to typeset a macron over diph-
thongs for which a ligature is not applicable. So, we
have applied a Combining overline to each vowel of
the au diphthong, but the result is not satisfactory:
au. In fact, the two overlines are not combined at
all.

Second, there is the Combining double macron
glyph (U+4035E), whose purpose is obvious from its
name, and which could once again apply to the
macron added to a diphthong scenario. So, we have
inserted a Combining double macron between the
two letters of the au diphthong, but the result is still
unsatisfactory: au. Although spanning both letters,
the macron is oddly positioned (not centred), and
too short.

Third, there exists the Combining double breve
glyph (U+035D), whose purpose is to add a breve
above two letters. This could apply to two consecu-
tive vowels counting as one single short, as in genua.
So, we have inserted a Combining double breve be-
tween the two letters of the ua syneeresis, and this
time we find the result satisfactory: wa.

Next, it is now possible to rely on the Under-
tie glyph (U+203F) to typeset a stretched breve to
denote elision, which is just fine: ego_ipse. Note
that in this experiment with the Noto Serif font,
the Undertie glyph was unexpectedly “combining”
(i.e. like the Combining breve glyph U+0306) and
not “spacing” (i.e. like the Breve glyph U+02D8),
that is, behaved like the Combining double breve be-
low glyph (U+035C), which seems to contravene the
Unicode standard. We thus combined the Undertie
glyph with two spaces as a workaround.

Finally, there exists the Inverted undertie glyph
(U+2054) which is just fine to denote a hiatus be-
tween two words: modo_ipse. And just like with the
Undertie glyph, in this experiment with the Noto
Serif font, the Inverted undertie glyph was unex-
pectedly “combining” instead of “spacing”; we thus
combined it with two spaces to fit our needs.

A short note on typesetting Latin verse scansion with ITEX and LualATEX

236

4 Summary

Regarding KWTEX, the support of single diacritical
marks applied to a single letter is fully satisfactory.
With respect to ligatured diphthongs such as & and
ce, macrons and breves are rendered as expected,
although the macron may seem a bit too short. Re-
garding other diphthongs, like au and eu, and other
digrams induced by synaeresis, rather simple com-
mands could do the trick but results can remain
imperfect. In fact, in our experiments, while the
macron width is all right, it is placed too close to
letters and this is not easily adjustable: a completely
new user definition is required if such an adjustment
is needed. The breve diacritical mark is not extensi-
ble, so the result is only average. The most problem-
atic issue arises from double diacritical marks: their
support requires an additional package.

Regarding Lual&TEX, Unicode provides useful
features for typesetting Latin verse scansion. How-
ever, their support strongly depends on fonts, which
can provide full, partial (e.g. Noto Serif) or no sup-
port at all (e.g. the default LualATEX font). For
instance, the default Lual4TEX font does not render
correctly multiple diacritics nor diacritics on capi-
tal letters. For these cases, the Noto Serif font is
significantly better.

Finally and on a side note, depending on the
font, the \textbar command may produce a vertical
bar with too much space around, especially when
used within a word: negative kerning will do in such
a case.

5 Epilogue
We conclude this note by giving sample Latin verses
with their scansion:

ille pedum melior motu fretusque iuventa,

1llé pé|dam méli|or | molta fré|tisqué jujventa,

hic membris et mole valens; sed tarda trementi

hic mém|bris &t | molé va|léns; | séd | tarda tréjmeénti

genua labant, vastos quatit aeger anhelitus artus.

génua lajbant, vas|tos || quatit | &gér anfhélitls | artas.

multa viri nequiquam inter se vulnera iactant,

multd virl nélquiquam|in|tér sé | vilnéra | jactant,
(Virgil, Eneid, book v, lines 430-433)
References

[1] P. Boehrer, M.F. Delmas-Massouline, et al.
Bled latin. Hachette, Paris, 2018. ISBN
978-2-01-170040-7. In French.

Antoine Bossard

TUGDboat, Volume 45 (2024), No. 2

[2] B. Bortolussi. Bescherelle Grammaire du latin.
Hatier, Paris, 2021. ISBN 978-2-218-93175-8.
In French.

[3] A. Cart, P. Grimal, et al. Grammaire latine.
Nathan, Paris, 2014. ISBN 978-2-09-171242-0.
In French.

[4] F. Gaffiot. Le Grand Gaffiot Dictionnaire
Latin—Francais. Hachette, Paris, 3rd ed., 2014.
ISBN 978-2-01-166765-6. In French.

[5] R. Morisset, J. Gason, et al. Précis de
grammazire des lettres latines. Magnard, Paris,
1963. ISBN 978-2-210-47230-3. In French.

[6] H. Petitmangin. Grammaire latine.
Nathan, Paris, revised ed., 2018. ISBN
978-2-09-171001-3. In French.

[7] E. Plantade. Aspects métriques et rythmiques
de la couleur archaique dans les distiques
élégiaques d’Apulée. In Stylistique et poétique
de l’épigramme latine : Nouvelles études,

D. Vallat, F. Garambois-Vasquez, eds.,

pp. 139-153. MOM Editions, Lyon, 2022.

In French. https://doi.org/10.4000/books.
momeditions.16900

[8] L. Sausy. Grammaire latine compléte. Eyrolles,
Paris, 8th ed., 2019. ISBN 978-2-212-54685-9.
In French.

(Since this article focuses on typography issues, the
publication years of the books mentioned in the bib-
liography correspond to the date of the dépét légal
(“registration of copyright”) so as to avoid ambiguity
regarding the considered printing.)

A User commands and settings

We give the user-defined commands and settings
used hereinbefore. (The author has partially relied
on information found on tex.stackexchange.com.)
First, to typeset a breve and a macron over
diphthongs, in both BTEX and LualdTEX:

\newcommand*{\dbrevel} [1]
{$\breve{\hbox{#1}}\m@th$}
\newcommand*{\dmacron}[1]
{$\overline{\hbox{#1}}\m@th$}
\newcommand*{\dmacronkern} [1]
{$\mkern 1.5mu
\overline{\mkern-1.5mu\hbox{#13}%
\mkern-1.5mul}Y
\mkern 1.5mu\m@th$}

(The \dmacronkern command produces a slightly
shortened macron, as demonstrated.)

Second, to adjust the vertical gap, for instance
to 1.6 pt, between a macron (obtained with \dmacron
or \dmacronkern) and letters, in LualdTEX:

https://doi.org/10.4000/books.momeditions.16900
https://doi.org/10.4000/books.momeditions.16900

TUGboat, Volume 45 (2024), No. 2

\check@mathfonts
\Umathoverbarvgap\textstyle=1.6pt

(Note that this setting is declared within the main
document, that is, not in the preamble, and needs to
appear after the \maketitle command, if called.)
Third, negative kerning, for instance of —1.5 pt,
around a vertical bar can be obtained as follows:

\kern-1.5pt\textbar\kern-1.5pt

Finally, when denoting elision with a stretched
breve below the baseline and there is an elision at
the caesura, we have used a \makebox of zero width
to typeset a double bar over an undertie:

L\symbol{"203F}\makebox [Opt]{\textbardbl}
This could be considered future work: the stretched
breve covers two characters, but three would be bet-

ter in this case (i.e. a double bar surrounded by
spaces).

B Related Unicode glyphs

A summary of the Unicode glyphs mentioned in this
note mostly for diacritical marks and ties is given in
the table below.

Description Code point
Breve U+402D8
Combining overline U+0305
Combining breve U-+0306
Combining double breve below U+035C
Combining double breve U+035D
Combining double macron U+035E
Undertie U+203F
Inverted undertie U-+2054

¢ Antoine Bossard
Kanagawa University, Graduate
School of Science, Yokohama
221-8686, Japan
abossard (at) kanagawa-u.ac.jp
ORCID 0000-0001-9381-9346

Ac dubitabam tunc an non Pragam essem aditurus.
Ac dubijtabam | tanc || an | non Prajgam_éssem_adi|taris.

237

KTEX Tagged PDF project progress report
for summer 2024

Frank Mittelbach, Ulrike Fischer

Abstract

The BTEX Tagged PDF project was started in spring
2020 and announced to the TEX community by the
KTEX team at the (online) 2020 TUG conference.
This short report describes some of the progress in
this multi-year project made during 2024.

Contents

1 Introduction 237
2 Why bother? 237
3 The WTPDF (Well Tagged PDF) examples 238
4 Tagging status of WTEX packages and classes238
5 Progress in math tagging 239

1 Introduction

For a description of the background, goals and pre-
vious progress reports of the IATEX Tagged PDF
project we refer the reader to various previous arti-
cles [8, 1, 6, 2]. This report concentrates on a few
important additions in the past year.

As a quick summary, the most important goals
of the Tagged PDF project are:

e to improve accessibility of PDF documents pro-
duced by ETEX;

e to provide tagging of PDF in an automatic and
easy way;
e to also improve conversion to HTML;

e to push the use of PDF 2.0 — better for accessi-
bility, especially if math is involved;

e and to push improvements in viewers and tools.

On all these topics there has been noticeable progress.

2 Why bother?

In his article about “Signing PDF files” [4], Hans
Hagen wrote “ Personally I wonder why one would
use PDF to provide adaptive accessibility, because
HTML is meant for that.” This is a sentiment that
you encounter quite often: That PDF is such a bad
format that it is not worth the time to improve its
accessibility.

There is clearly some truth in this. Nobody can
deny that HTML is more accessible. It is a structured
language, so the structure is there from the start and
every viewer that wants to render an HTML page
has to understand this structure. Also HTML has
a long history of accessibility support, with various

doi.org/10.47397/tb/45-2/tb140mittelbach-tagging24

238

well-known and well-understood standards and im-
plementations. PDF, on the other hand, is a page
description language where structure can be added
optionally (by “tagging” the PDF) and as the struc-
ture is not relevant for rendering, its use by viewers
is optional too. While there is a PDF standard for ac-
cessibility, PDF/UA, it is not really well understood
how conforming processors should behave, and it is
not easy to test if a PDF is accessible or not. So why
do we bother?

The answer is twofold. Firstly, while HTML
is a nice format for accessibility it has also some
drawbacks. For instance, HTML is not a single file.
HTML pages can load graphics, CSS files, JavaScript
files, webfonts, session cookies and more from many
places and servers. This makes it difficult to store an
HTML “document” for offline reading or for archiving.
You never know if tomorrow you will see the same
thing if you reload the HTML — and so the general
advice for keeping evidence about what’s shown on
a web page is to make a screenshot or to print into a
PDF. The large number of files also makes it difficult
to forward or distribute a text in HTML format.
In this respect PDF is clearly the better format as
it is a single self-contained file and works offline
without problems; with PDF/A, a well-known and
well-understood standard for archivable PDFs exists.

Furthermore, HTML is not intended to guaran-
tee a faithful and unchanging representation. Instead
it deliberately delegates some of the visual presen-
tation decisions to the browser that can adjust the
interpretation of the HTML structure to outer circum-
stances or consumer choices, e.g., the window size,
the available fonts, etc. In contrast, PDF provides
such a faithful visual presentation of the document,
capturing the exact intentions of its author, regard-
less of the printer or viewer used to render the PDF.

Both models have their important use cases and
S0 it is not surprising that PDF has been widely used
for more than thirty years and in all likelihood will
continue to be so used when controlled presentation
form is important. Thus, PDF is also highly impor-
tant for users with special accessibility requirement,
and the fact that most PDF documents are essen-
tially not accessible is a major concern, which we
address with this project.

The second reason is to improve and simplify
HTML production. Currently all existing workflows
that create HTML from KTEX sources are based
on patching and overwriting package code. For ex-
ample, tex4ht contains many .4ht files (such as
biblatex.4ht and enumitem.4ht). Analogously,
the latexml workflow contains many so-called “bind-
ings” (biblatex.sty.ltxml, enumitem.sty.ltxml),

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 45 (2024), No. 2

and the lwarp package also (lwarp-biblatex.sty,
lwarp-enumitem.sty). All these files do at their
core is essentially the same: they reconfigure INTEX
commands and environments so that they produce a
structure suitable for HTML. All this configuration
work is done without direct contact with the package
authors. Thus, if a package changes or extends it
features, or if a new package appears on CTAN, all
HTML converter have to adapt their configuration
files individually and on their own. The Tagged PDF
project is different here: while it also changes TEX
commands and environments so that they produce a
structure, the goal is to make changes in the kernel
and in the packages directly. Once the structure
is there, it can than also be used to create HTML
without the need of many fragile external patches.

3 The WTPDF (Well Tagged PDF)
examples

At the begin of 2024 two standards for PDF 2.0 were
finally released: PDF/UA-2, the ISO standard for
Universal Accessibility in PDF 2.0 [5] and WTPDF
(Well Tagged PDF) for Accessibility and Reuse in
PDF 2.0 [10]. The members of the PDF association
were asked for examples and the KTEX team was
one of the first to provide a reasonably large set of
more or less randomly chosen texts. The set covers a
variety of document types and demonstrates various
tagging techniques—and also open problems. E.g.,
the Bible, a document with simple tagging but with
many structures due to the large number of verses,
pushed hard on some limits (it can not be compiled
with pdfEATEX) and revealed a number of bugs that
slowed down both compilation and validation. The
Max and Moritz example demonstrates problems
in the handling of documents with more than one
language: we were not yet able yet to convince the
speech reader to use the correct voice when switch-
ing from one language to another. The amsmath
documentation, amsldoc, demonstrates the current
state of math tagging.

These examples and many more, along with
their sources, can be found at github.com/latex3/
tagging-project/discussions/72.

4 Tagging status of MTEX packages
and classes

One step of the project is the adaptation of external
packages and classes. For this we have created a
database that shows the tagging status of various

https://github.com/latex3/tagging-project/discussions/72
https://github.com/latex3/tagging-project/discussions/72

TUGboat, Volume 45 (2024), No. 2

packages and classes.! A week before the TUG con-
ference, the database contained around 200 entries;
since then it has grown at great speed and now covers
over 1000 packages and classes. The database shows
if a package is compatible, partially compatible or
currently incompatible with the tagging code and
links to issues and test files. If we do not have tests
to certify the status it is listed as unknown.

The database is meant as help both for users
who want to know if a package can be safely used
and for package developers, who can check the status
of the packages they maintain.

The database is a yaml file. A subset of around
700 entries can be viewed on this web page: latex3.
github.io/tagging-project/tagging-status.

5 Progress in math tagging

Accessibility of math in a PDF is clearly not very
good. In PDF/UA-1 and PDF 1.7 or earlier there is
basically no provision for good math tagging — the
best one can do is to add some alternative text and
hope that the PDF reader doesn’t mess up punctu-
ation, etc. In PDF 2.0 there are better options: it
supports the MathML namespace and allows to at-
tach additional files (e.g., a MathML representation
or the BTEX source of an equation) to the math
structure, but these new options are not well sup-
ported by consumer applications. The creation and
publishing of the WTPDF examples mentioned above
triggered some development here. For example, the
next release of the Foxit PDF reader [3] will extract
a MathML file and pass it on to the AT-technology.
Together with changes in the NVDA screen reader [9]
it will greatly improve the reading of math. More
details can be found in [7]. We expect that other
applications will follow, now that there are a growing
number of real documents to support.

1 We thank here Ian Thompson who created the initial list
and Matthew Bertucci who greatly extended and improved it,
providing many test files for future use.

239

References

[1] U. Fischer. On the road to Tagged PDEF:
About StructElem, marked content, PDF/A
and squeezed Béars. TUGboat 42(2):170-173,
2021. doi.org/10.47397/tb/42-2/
tb131fischer-tagpdf

[2] U. Fischer, F. Mittelbach. Automated tagging
of BTEX documents — what is possible
today, in 20237 TUGboat 44(2):262-266,
2023. doi.org/10.47397/tb/44-2/
tb137fischer-tagging23

[3] Foxit. PDF reader.
www.foxit.com/pdf-reader/

[4] H. Hagen. Signing PDF files. TUGboat
45(1):145-149, 2024. doi.org/10.47397/tb/
45-1/tb13%hagen-pdfsign

[5] ISO/FDIS 14289-2; Document management
applications — Electronic document file format
enhancement for accessibility — Part 2: Use
of ISO 32000-2 (PDF/UA-2), 1st ed., 2024.
www.iso.org/standard/82278.html

[6] F. Mittelbach, U. Fischer. The IATEX Tagged
PDF project —a status and progress report.
TUGboat 43(3):268-272, 2022. doi.org/10.
47397/tb/43-3/tb135mitt-tagged

[7] F. Mittelbach, U. Fischer. Enhancing BTEX to
automatically produce tagged and accessible
PDF. TUGboat 45(1):52-59, 2024. doi.org/
10.47397/tb/45-1/tb139mitt-deims24

[8] F. Mittelbach, C. Rowley. IWTEX Tagged
PDF — a blueprint for a large project.
TUGboat 41(3):292-298, 2020. doi.org/10.
47397/tb/41-3/tb129mitt-tagpdf

[9] NV Access. NVDA screenreader.

www.nvaccess.org/download

[10] PDF Association. Well-Tagged PDF
(WTPDF), Feb. 2024. Version 1.0.0.
pdfa.org/wp-content/uploads/2024/02/
Well-Tagged-PDF-WTPDF-1.0.pdf

¢ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

¢ Ulrike Fischer
Bonn, Germany
https://www.latex-project.org

KTEX Tagged PDF project progress report for summer 2024

https://latex3.github.io/tagging-project/tagging-status
https://latex3.github.io/tagging-project/tagging-status
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/10.47397/tb/44-2/tb137fischer-tagging23
https://doi.org/10.47397/tb/44-2/tb137fischer-tagging23
https://www.foxit.com/pdf-reader/
https://doi.org/10.47397/tb/45-1/tb139hagen-pdfsign
https://doi.org/10.47397/tb/45-1/tb139hagen-pdfsign
https://www.iso.org/standard/82278.html
https://doi.org/10.47397/tb/43-3/tb135mitt-tagged
https://doi.org/10.47397/tb/43-3/tb135mitt-tagged
https://doi.org/10.47397/tb/45-1/tb139mitt-deims24
https://doi.org/10.47397/tb/45-1/tb139mitt-deims24
https://doi.org/10.47397/tb/41-3/tb129mitt-tagpdf
https://doi.org/10.47397/tb/41-3/tb129mitt-tagpdf
https://www.nvaccess.org/download
https://pdfa.org/wp-content/uploads/2024/02/Well-Tagged-PDF-WTPDF-1.0.pdf
https://pdfa.org/wp-content/uploads/2024/02/Well-Tagged-PDF-WTPDF-1.0.pdf

240

IXTEX News

Issue 39, June 2024 (KTEX release 2024-06-01)

Contents

Introduction

News from the “IMTEX Tagged PDF” project
Enhancements to the new mark mechanism
Providing xtemplate in the format

New or improved commands
doc: Provide \ProvideDocElement
doc: Better support for upquote
ifthen: Allow active characters in comparisons .
New conditionals: \IfClassAtLeastT and
friends

Code improvements
Load packages only at the top level
Keep track of lost glyphs
Improve fontenc error message
Warn if counter names are problematic
Extended information in \listfiles
Optimize creation of simple document

commands
Handling of end-of-lines in +v arguments of

\NewDocumentCommand and friends
Declaring appropriate sub-encodings for TS1

symbol fonts
Behavior when loading textcomp without options
Rollback improvements

Documentation improvements
Further updates to the guides

Bug fixes
Fix inconsistent expansion of the package
option list
Fix logic for first mark (page region)
Struts at the end of footnotes or p columns
Fix a “missing \item” rollback error

Changes to packages in the amsmath category
amsmath: Correct equation tag placement

Changes to packages in the tools category
array, longtable, tabularx: Support tagging
array: No \unskip in mathcells
verbatim: \verb showed visible spaces
verbatim: Support tabs in \verbatiminput* . .
multicol: \columnbreak interferes with mark

mechanism
showkeys: Allow \newline in amsthm to work .

ITEX News #39

doi.org/10.47397/tb/45-2/tb1401tnews39

w w w w W

W W W ww W

ot O Ut Ot Ot Ut

(o> e e 2]

DO

TUGDboat, Volume 45 (2024), No. 2

xr: Support links and properties 6

Changes to files in the cyrillic category 6
Correct definition of \k

Introduction

The BTEX Project team remains strongly focused

on producing automatically tagged PDF output for
accessibility and reuse. At the beginning of 2024

the ISO PDF/UA-2 and the WTPDF (well-tagged
PDF) standards were released and we are glad to be
able to report that it is now possible to use ITEX to
automatically produce documents that conform to these
new standards.! A sample collection of such documents
ranging from classical texts, such as the Bible, to recent
technical papers submitted to arXiv.org can be found
at https://github.com/latex3/tagging-project/
discussions/72.

In February Ulrike and Frank presented the current
project status during the 5th International Workshop
on “Digitization and E-Inclusion in Mathematics and
Science 2024” (DEIMS 2024) at Nihon University,
Tokyo, Japan; see [8].

News from the “IATEX Tagged PDF" project

In the previous IWTEX News [7] we announced some
prototype support for tagged tabulars. Some of the
necessary code has now been moved from latex-lab to
the corresponding packages (using sockets and plugs)
and to the IATEX kernel (for those parts that are also
necessary for other aspects of tagging).

The kernel code specific to tagging is implemented
in the file 1ttagging.dtx. For now it contains
\UseTaggingSocket, a special invocation command for
sockets that are specific to tagging. This enables us to
also provide \SuspendTagging and \ResumeTagging,
i.e., a very efficient way to temporarily disable the
whole tagging process. This is, for example, necessary
if some code is doing trial typesetting. In that case
the trials should not generate tagging structures—only
the finally-chosen version should. Thus, tabularx, for
example, stops the tagging while doing its trials to
figure out the correct column widths to use, and then
re-enables tagging when the table is finally typeset.

Over time, lttagging.dtx will hold more general
tagging code as appropriate. For now it is only

LAt the present time we are still in a trial/prototype phase in
which only a limited set of document classes and packages are sup-
ported. Over the next releases we expect to gradually lift these
restrictions and eventually provide the full functionality as part of
the core distribution, rather than through latex-1lab modules.

TUGboat, Volume 45 (2024), No. 2

documented as part of source2e.pdf but long term we
will provide a separate guide for tagging, which will then
also include the information currently found in various

other places, e.g., tagpdf.pdf.

We also added support for a few missing commands
described in Leslie Lamport’s BTpX Manual [1]: If
phase-IITI is used the \marginpar command will be
properly tagged (depending on the PDF version) as
an Aside or a Note structure. In the standard classes
\maketitle will be tagged if the additional testphase
module title is used.

The math module has been extended and now includes
options to attach MathML files to the structures.
First tests with a PDF reader and screen reader that
support associated files look very promising. Examples
of PDF files tagged with the new method can be found
at https://github.com/latex3/tagging-project/
discussions/72.

At last various small bugs and problems reported at
https://github.com/latex3/tagging-project have
been fixed. Such feedback is very valuable, so we hope
to see you there and thank you for any contribution,
whether it is an issue or a post on a discussion thread.

Enhancements to the new mark mechanism

In June 2022 we introduced a new mark mechanism [2,
p. 76] that allows keeping track of multiple independent
marks. It also properly supports top marks, something
that wasn’t reliably possible with INTEX before.

There was, however, one limitation: to retrieve
the marks from the page data it was necessary to
\vsplit that data artificially so that TEX would
produce split marks that the mechanism could then
use. Unfortunately, TEX gets very upset if it finds
infinite negative glue (e.g., from \vss) within this data.
This is not totally surprising because such glue would
allow splitting off any amount of material as such glue
would hide its size. TEX therefore responds with an
error message if it find such glue while doing a \vsplit
operation (and it does so even if a later glue item cancels
the infinite glue).

To account for this, the code in 2022 attempted to
detect this situation beforehand and if so did not do any
splitting but, of course, it would then also not extract
any mark information.

In this release the approach has been changed and we
always do a \vsplit operation and thus always get the
right mark data extracted. While it is not possible to
avoid upsetting TEX in case we have infinite negative
glue present, it is possible to hide this (more or less)
from the user.? With the new code TEX will neither
stop nor show anything on the terminal. What we can’t

2A note to 13build users that make use of its testing capabilities:
the new mechanism temporarily changes \interactionmode and,
for implementation reasons in TEX, that results in extra newlines
in the .log file, so instead of seeing [1] [2] you will see each on
separate lines. This means that test files might show differences of
that nature, once the code is active, and must therefore be regen-
erated as necessary.

241

do, though, is avoid an error being written to the log

file, but to make it clear that this error is harmless and
should be ignored we have arranged the code so that the
error message, if it is issued, takes the following format:

! Infinite glue shrinkage found in box being split.
<argument> Infinite shrink error above ignored !

1. ...}

Not perfect (especially the somewhat unmotivated
<argument>), but you can only do so much when error
messages and their texts are hard-wired in the engine.

So why all this? There are two reasons: we do not lose
marks in edge cases any more, and perhaps more im-
portantly we are now also reliably able to extract marks
from arbitrarily boxed data, something that wasn’t
possible at all before. This is necessary, for example, to
support extended marks in multicols environments or
extract them from floats, marginpars, etc.

Details about the implementation can be found
in texdoc ltmarks-code or in the shorter texdoc
ltmarks-doc (which only describes the general concepts
and the command interfaces).

Providing xtemplate in the format

In BTEX News 32, we described the move of one
long-term experimental idea into the kernel: the package
xparse, which was integrated as ltcmd. With this edition,
we move another long-term development idea to stable
status: templates.

In this context, templates are a mechanism to abstract
out various elements of a document (such as “sectioning”)
in such a way that different implementations can be
interchanged, and design decisions can be implemented
efficiently and controllably.

In contrast to Itcmd, which provides a mechanism that
many document authors will exploit routinely, templates
are a more specialised tool. We anticipate that they will
be used by a small number of programmers, providing
generic ideas that will then be used within document
classes. Most document authors will therefore likely
directly encounter templates only rarely. We anticipate
though that they will be using templates provided by
the team or others.

The template system requires three separate ideas

o Template type: the “thing” we are using templates
for, such as “sectioning” or “enumerated-list”

e A template: a combination of code and keys that
can be used to implement a type. Here for example
we might have “standard-I#TEX-sectioning” as a
template for “sectioning”

e One or more instances: a specific use case of a
template where (some) keys are set to known
values. We might for example see “IXTEX-section”,
“IATEX-subsection”,; etc.

As part of the move from the experimental xtemplate
to kernel integration, the team have revisited the
commands provided. The stable set now comprises

ITEX News #39

242

e \NewTemplateType

e \DeclareTemplateInterface
e \DeclareTemplateCode

e \DeclareTemplateCopy

e \EditTemplateDefault

o \UseTemplate

e \Declarelnstance

e \DeclarelInstanceCopy

o \EditInstance

o \Uselnstance

e \IfInstanceExistsTF and variants

To support existing package authors, we have released
an updated version of xtemplate which will work
smoothly with the new kernel-level code. The existing
commands provided in xtemplate will continue to work,
but we encourage programmers to move to the set above.

New or improved commands

doc: Provide \ProvideDocElement

In addition to \NewDocElement and \RenewDocElement
we now also offer a \ProvideDocElement declaration
that does nothing unless the doc element could be
declared with \NewDocElement. This can be useful if
documentation files are processed both individually and
combined.

doc: Better support for upquote

In BTEX News 37 [6] we wrote that support for the
upquote package was added to the doc package, but back
then this was added only for \verb and the verbatim
environments. However, in a typical .dtx file, most
of the code will be in the body of some macrocode or
macrocode* environments, and neither of these was
affected by adding upquote. We have now updated doc
so that upquote alters the quote characters in these
environments as well. (github issue 1230)

ifthen: Guard against active characters in comparisons
The \ifthenelse command now ensures that <, = and
> are safe in numeric tests, even if they have been
made active (typically by babel language shorthands).
(github issue 756)

New conditionals: \IfClassAtLeastT and friends
Around 2020 we added a number of con-
ditionals with CamelCase names, i.e.,
\IfClassAtLeastTF, \IfClassLoadedTF,
\IfClassLoadedWithOptionsFF, \IfFormatAtLeastTF,
\IfPackageAtLeastTF, \IfPackageLoadedTF, and
\IfPackageLoadedWithOptionsTF to help arranging
conditional code that depends on the release of a
particular class, package or format. However, we only
provided the TF commands and not also the T and F
variants. This has now been changed.

In 2023 we introduced \IfFileAtLeastTF but we
did not also provide \IfFileLoadedTF at the same

ITEX News #39

TUGDboat, Volume 45 (2024), No. 2

time. This conditional and its T and F variants have
now also been added. Remember that one can only
test for files that contain a \ProvidesFile line. We
did the same for the conditionals \IfLabelExistsTF
and \IfPropertyExistsTF, also introduced in 2023.3
(github issues 1222 1262)

Code improvements

Load packages only at the top level

Classes and packages must be loaded only by using
the commands \documentclass and \usepackage or
the class interface commands such as \LoadClass or
\RequirePackageWithOptions; moreover, all of these
must always be used at the top level, and not inside a
group of any type (for example, within an environment).
Previously ITEX did not check this, which would often
lead to low level errors later on if package declarations
were reverted when a group ended. ITEX now checks
the group level and an error is thrown if the class or
package is loaded in a group. (github issue 1185)

Keep track of lost glyphs
A while ago we changed the BTEX default value for
\tracinglostchars from 1 to 2 so that missing glyphs
generate at least a warning, but we forgot to make the
same change to \tracingnone. Thus, when issuing
that command IXTEX stopped generating warnings
about missing glyphs. This has now been corrected.
(github issue 549)

Improve fontenc error message

If the fontenc package is asked to load a font encoding
for which it doesn’t find a suitable .def file then it
generates an error message indicating that the encoding
name might be misspelled. That is, of course, one of the
possible causes, but another one is that the installation
is missing a necessary support package, e.g., that no
support for Cyrillic fonts has been installed. The error
message text has therefore been extended to explain the
issue more generally. (github issue 1102)

Warn if counter names are problematic

In the past it was possible to declare, for example,
\newcounter{index} with the side-effect that this
defines \theindex, even though I¥TEX has a theindex
environment that then got clobbered by the declaration.
This has now been changed: if \the(counter) is already
defined it is not altered, but instead a warning message
is displayed. (github issue 823)

Extended information in \1istfiles

The \listfiles command provides useful information
when finding issues related to variation in package
versions. However, this has to date relied on the
information in the \ProvidesPackage line, or similar:

3By mistake they were initially introduced under the names
\IfLabelExistTF and \IfPropertyExistTF; we corrected that at
the same time. This is a breaking change, but the commands have
been used so far only in kernel code.

TUGboat, Volume 45 (2024), No. 2

that can be misleading if for example a file has been
edited locally. We have now extended \listfiles to
take an optional argument which can include the MD5
hash and size of each file in the .log. Thus for example
you can use

\listfiles[hashes,sizes]

to get both the file sizes and file hashes in the . log as well
as the standard release information. (github issue 945)

Optimize creation of simple document commands
Creating document commands using declarations such as
\NewDocumentCommand, etc., provides a very flexible way
of grabbing arguments. When the document command
only takes simple mandatory arguments, this has to-date
added an overhead that could be avoided. We have
now refined the internal code path such that “simple”
document commands avoid almost any overhead at
point-of-use, making the results essentially as efficient as
using \newcommand for low-level TEX constructs. Note
that as \NewDocumentCommand makes engine-robust
commands, the direct equivalent to \newcommand is
\NewExpandableDocumentCommand. (github issue 1189)

Handling of end-of-lines in +v arguments of
\NewDocumentCommand and friends

The +v argument type provided by declarations such as
\NewDocumentCommand, etc., allows grabbing of multiple
lines of text in a verbatim-like argument. Almost always,
the result of this grabbing will be used in a typesetting
context. Previously, the end-of-line characters were
stored literally as category code 12 (“other”) ~~M tokens.
However, these are difficult to work with in general. We
have now revised this behavior, such that end-of-line
characters are converted to the \obeyedline command
when parsed by +v-type arguments. This change may
require adjustments to the source of some documents,
but the enhanced ability of users and programmers to
exploit the +v-type argument means we believe it is
necessary.

Declaring appropriate sub-encodings for TS1 symbol fonts
In 2020 we incorporated support for the TS1 symbol
encoding directly into the kernel and in this way
removed the need to load the textcomp package [3] to
make commands such as \texteuro available.

There is, however, a big problem with this TS1 symbol
encoding: only very few fonts provide every glyph that
is supposed to be part of TS1. This means that changing
font families might result in certain symbols becoming
unavailable. This can be a major disaster if, for example,
the symbol \texteuro (€) or \textohm (£2) no longer
gets printed in your document, just because you altered
the text font family.

To mitigate this problem, in 2020 we also introduced
the declaration \DeclareEncodingSubset. This
declaration is supposed to be used in font definition files
for the TS1 encoding to specify which subset (we have
defined 10 common ones) a specific font implements.

243

If such a declaration is used then missing symbols are
automatically taken from a fallback font.

While this is not perfect, it is the best you can do
other than painstakingly checking that your document
uses only glyphs that the font supports and, if necessary,
switching to a different font or avoiding the missing
symbols. See also the discussion in [4].

To jumpstart the process we also added declarations to
the IXTEX kernel for most of the fonts found in TEX Live
at the time—with the assumption that such declarations
would over time be superseded by declarations in the .fd
files. Unfortunately, this hasn’t happened yet (or not
often) and so many of the initial declarations went stale:
several fonts got new glyphs added to them (so their
sub-encoding should have been changed but didn’t);
others (mainly due to license issues) changed the family
name and thus our declarations became useless and
the renamed fonts (now without a declaration) ended
up in the default sub-encoding that offers only a few
glyphs; yet others such as CharisSIL (which triggered
the GitHub issue) were simply not around at the time.

We have, therefore, again attempted to provide the
(currently) correct declarations, but it is obvious that
this is not a workable process. As we do not maintain the
fonts we do not have the information that something has
changed, and to regularly check the ever growing font
support bundles is simply not possible. It is therefore
very important that maintainers of font packages not
only provide .f£d files but also add such a declaration to
every TS1...fd font definition file that they distribute.

To simplify this process, we now provide a simple
KTEX file (checkencodingsubset.tex) for determining
the correct (safe) sub-encoding. If run, it asks for a font
family and then outputs its findings, for example, for
AlgolRevived-TLF you will get:

Testing font family AlgolRevived-TLF

Some glyphs are missing from sub-encoding 8:
==> \textcelsius (137) is missing
==> \texttwosuperior (178) is missing
==> \textthreesuperior (179) is missing
==> \textonesuperior (185) is missing
Some glyphs are missing from sub-encoding 7:
==> \texteuro (191) is missing
All glyphs between sub-encoding 6 and 7 exist
All glyphs between sub-encoding 5 and 6 exist
All glyphs between sub-encoding 4 and 5 exist
Some glyphs are missing from sub-encoding 3:
==> \textwon (142) is missing
All glyphs between sub-encoding 2 and 3 exist
Some glyphs are missing from sub-encoding 1:
==> \textmho (77) is missing
==> \textpertenthousand (152) is missing
All glyphs between sub-encoding O and 1 exist
All glyphs in core exist

TS1 encoding subset for AlgolRevived-TLF (ok)

ETEX News #39

244

Use sub-encoding 9

This output is meant for human consumption, e.g.,
you see which glyphs are missing and why a certain
sub-encoding is suggested, but it is not that hard to use
it in a script and extract the suggested sub-encoding by
grepping for the line starting with Use sub-encoding.

Of course, this check will only work if the missing
glyphs are really missing: some fonts placed “tofu”* into
such slots and in this case it looks to TEX as if the glyph
is provided. For example, for the old Palatino fonts
(family ppl) it would report

TS1 encoding subset for ppl (bad)
Use sub-encoding O (not 5)

thus it claims that all glyphs are provided, while

in reality more than twenty are missing and sub-

encoding 5, as declared in the kernel, is in fact correct.
(github issue 1257)

Behavior when loading textcomp without options

When incorporating the textcomp package into the
BTEX kernel, in the February 2020 release [3], the
default type of its package messages was changed from
package info (Package textcomp Info) to IXTEX kernel
info (LaTeX Info). But if textcomp was loaded without
options, the message type got restored to package info.
This restoration has now been canceled.

Note that loading textcomp with one of the options
error, warn, or info still changes the message type to
an error, warning, or info message from the textcomp
package. (github issue 1333)

Rollback improvements

When requesting a rollback of the IXTEX kernel
and/or packages, several packages produced the error
“Suspicious rollback date” because their rollback section
contained only data about recent releases even if the
package, such as array, was available since the first
release of IMTEX 2¢ in 1994. We now suppress this
error and load the first release that is still part of the
distribution (and hope for the best). This change was
implemented for the packages amsmath, array, doc,
graphics, longtable, multicol, showkeys, textcomp, and
varioref. (github issue 1333)

Documentation improvements

Further updates to the guides

We reported about the updated versions of usrguide
and clsguide in BTEX News 37 [6]. We have now
revised fntguide as well to reflect the changes and
macros added to the kernel over the last years of
development. Note that the file name hasn’t changed
and there is no fntguide-historic.

4Little squares to indicate a missing symbol.

ITEX News #39

TUGDboat, Volume 45 (2024), No. 2

Bug fixes

Fix inconsistent expansion of the package option list
KTEX applies one-step expansion to the raw option list
of packages and classes, so that constructions such as

\def\myoptions{optl,opt2}
\usepackage [\myoptions]{foo}

are supported. But if a package declares its options
using the new key/value approach [5] and it gets loaded
a second time, then its raw option list will not be
expanded and so an error might be raised. This has now
been corrected. (github issue 1298)

Fix logic for first mark (page region)
In the new mark mechanism introduced in June 2022 [5]
the result of \FirstMark on a two-column page was
incorrect if the first column contained no marks. In that
case it should have returned the first mark of the second
column but didn’t. This has now been corrected.
Documents using \leftmark are not affected, because
that command is still using the old mechanism for now.
(github issue 1359)

Struts at the end of footnotes or p columns
To produce consistent spacing in footnotes and tabular
p-cells BTEX adds a strut at the beginning and end of
the content. This assumed, however, that the content of
the footnote or tabular cell ended in horizontal mode and
so, until now, these struts were unconditionally added;
as a result, if this content ended with vertical material
then this strut started a new paragraph consisting of
a single line with just the strut in it. This has finally
been corrected and now the placement logic for the strut
changes when vertical mode is detected.

(First seen in a bug report for footmisc in combination
with bigfoot)

Fix a “missing \item" rollback error

If ITEX is rolled back to a date between 2023/06,/01
(inclusive) and 2024/06/01 (exclusive), any list-based
environment would raise an error (shown on two lines
for TUGboat):

! LaTeX Error:
Something’s wrong--perhaps a missing \item.

This has now been corrected as a hotfix in patch level
2, by enhancing the 2023/06/01 version rollback code of
the new paragraph mechanism. (github issue 1386)

Changes to packages in the amsmath category

amsmath: Correct equation tag placement

If there is not enough space to place an equation tag on
the same line as the equation then amsmath calculates a
suitable offset and it places the tag above (or below) the
equation. In the case of the gather environment this
offset was not reset at the end, with the result that it
also got applied to any following environment, resulting
in incorrect spacing in certain situations. This has now
been corrected. (github issue 1289)

TUGboat, Volume 45 (2024), No. 2

Changes to packages in the tools category

array, longtable, tabularx: Support tagging
These three packages have been extended so they can
now, on request, produce tagged tabular. This is done
by adding a number of sockets (see [7]) that, by default,
do nothing; but when tagged PDF is requested they get
equipped with appropriate plugs.

In the previous KTEX release this was handled in
latex-lab, by patching the packages when tagging was
requested.

array: No \unskip in math cells

Math cells in the standard array environment of the
kernel are not subject to space removal at the right end
of the cell, i.e., explicit spaces from \hspace or \,, etc.
are honored (normal spaces are automatically ignored
in math). In the array package all spaces got removed
by calling \unskip unconditionally, regardless of the
type of cell. This difference in behavior has now been
removed by correcting the processing of math cells in
array. (github issue 1323)

verbatim: \verb showed visible spaces

A recent change in the kernel was not reflected in the
verbatim package, with the result that \verb showed
visible spaces (1) after the package was loaded. This
has already been corrected in a hotfix for the November
2023 release. (github issue 1160)

verbatim: Support tabs in \verbatiminput*

Mimicking the November 2023 kernel update that
allowed \verb* to mark tabs as spaces, the verbatim
package has now been updated so that \verbatiminputx*
also marks tabs as spaces. (github issue 1245)

multicol: \columnbreak interferes with mark mechanism
The multicol package has to keep track of marks
(from \markright or \markboth) as part of its output
routine code and can’t rely on I#TEX handling that
automatically. It does so by artificially splitting page
data with \vsplit to extract the mark data. With
the introduction of \columnbreak that code failed
sometimes, because it was not seeing any mark that
followed such a forced column break.

This has now been corrected, but there is further
work to do, because as of now multicol does not yet
handle marks using the new mark mechanism—see
the discussion at the beginning of the newsletter.

(github issue 1130)

showkeys: Allow \newline in amsthm to work
Previously showkeys added an extra box layer which
disabled the \newline of amsthm theorem styles. This
extra box has now been avoided. (github issue 1123)

245

xr: Support links and properties
The xr package implements a system for eXternal
References. The xr-hyper package (in the hyperref
bundle) extended this to also support links to external
documents. Using last year’s extension of the \label
command, which unified the label syntax of IATEX and
hyperref, it became possible to merge the two packages
and thus make xr-hyper obsolete. With this change it
is also possible to refer to properties that are stored
in external documents using \RecordProperties.
(github issue 1180)

Changes to files in the cyrillic category

Correct definition of \k

Ages ago, the encoding-specific definitions for various
accent commands were changed to guard against altering
some parameter values non-locally by mistake. For some
reason the definition for \k in the Cyrillic encodings T2A,
T2B, and T2C didn’t get this treatment. This oversight
has now been corrected. (github issue 1148)

References

[1] Leslie Lamport. BTEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition,
1994. ISBN 0-201-52983-1. Reprinted with
corrections in 1996.

[2] WTEX Project Team. BTEX 2¢ news 1-39. June,
2024. https://latex-project.org/news/
latex2e-news/ltnews.pdf

[3] WTEX Project Team. BTEX 2: news 31. February,
2020. https://latex-project.org/news/
latex2e-news/ltnews31.pdf

[4] BTEX Project Team. BTEX 2¢ news 33. June 2021.
https://latex-project.org/neus/
latex2e-news/ltnews33.pdf

[5] WTEX Project Team. BTEX 2: news 35. June 2022.
https://latex-project.org/neus/
latex2e-news/ltnews35.pdf

[6] WTEX Project Team. BTEX 2c news 37. June 2023.
https://latex-project.org/neus/
latex2e-news/ltnews37.pdf

[7] WTIEX Project Team. BTEX 2: news 38. November
2023. https://latex-project.org/news/
latex2e-news/ltnews38.pdf

[8] Frank Mittelbach and Ulrike Fischer. Enhancing
BTEX to automatically produce tagged and
accessible PDF. TUGboat 45:1, 2024.
https://latex-project.org/publications/
indexbyyear/2024/

ETEX News #39

246

‘Web page to PDF conversion with
Rmodepdf: Leveraging LualATEX for
e-book reader-friendly documents

Michal Hoftich

Abstract

This article presents the use of responsive design
methods and advanced features of Lual&ATEX for au-
tomatic document typesetting intended for various
target outputs, both printed and electronic, such as
mobile phones, tablets, or e-readers.

Specifically, it focuses on the use of LualATEX for
automated typesetting with the help of the Respon-
sive package [7] for setting font size and line spacing
according to page size, the Luavlna package [5] to
prevent single-character prepositions at the ends of
lines, the Lua-widow-control package [2] to minimize
widows and orphans at the ends and beginnings of
pages, and the Linebreaker package [4] to prevent
line overflow.

1 Introduction

Some time ago, I acquired an e-book reader, but I still
read most texts on my PC screen because they come
from web sources. It occurred to me that I could save
longer articles for later reading on my e-reader. There
are, of course, several applications for this purpose,
but I decided to create my own, tailored exactly to
my needs and preferences. Another motivation is the
opportunity to learn something new and create pack-
ages that could be useful for other TEX users as well.

My goal is to make the solution as automated
as possible, so I don’t have to deal with overfull lines
or other errors that would require manual interven-
tion. Thanks to the capabilities of Lual&TEX, such a
solution is possible today, as we will demonstrate in
the following text.

Because LuaTEX provides the Lua programming
language in TEX distributions, I used it to create
my project Rmodepdf [8]. It uses the LuaXML pack-
age [6] to transform HTML into TEX and a few ex-
ternal commands — Curl for downloading of the web
pages, and Rdrview [3], which removes navigation el-
ements, advertisements, and other distractions from
the page. Rdrview is based on the JavaScript library
used by the Firefox browser for its Reader Mode.
However, it has been translated from JavaScript to
C, making it significantly faster and eliminating the
need for any additional dependencies.

During the development of the program, I also
created or significantly expanded three ATEX pack-
ages that may be useful on their own. For the Lua-
XML package, I created an HTML parser that allows

Michal Hoftich

doi.org/10.47397/tb/45-2/tb140hoftich-rmodepdf

TUGDboat, Volume 45 (2024), No. 2

web pages to be processed directly from the Lua
language. The Responsive package enables the cre-
ation of templates that adjust font size, page margins,
and other parameters according to the current page
size. Finally, the Linebreaker package prevents line
overflow, which is crucial in automated document
typesetting where we neither want nor can manually
correct such errors.

In addition to saving articles for reading on an e-
reader, there are other ways to utilize the Rmodepdf
program. One such use is archiving web content
on paper. By removing all navigation elements, we
obtain a document that can be easily printed, bound,
and archived as a book.

2 Basic usage of Rmodepdf

The rmodepdf command accepts one or more urls as
arguments. It is also possible to use the addresses of
local HTML files.

$ rmodepdf (urll) (url2)

The output file is named based on the title of
the first document. If the title cannot be found, a
name based on the current date and time is chosen.
The generated name is displayed in the terminal
output. You can specify a custom file name using
the -o option.

If you prefer not to compile the document di-
rectly but only to display the text generated by the
IATEX document, you can use the -p option.

$ rmodepdf -p (url) > foo.tex

You can choose a different page size using the
-P option. By default, the page size and margins
are set for e-book readers, but you can also select
other sizes, such as A4 paper size. The page style is
currently set to empty (blank), but you can change
it using the -s option.

$ rmodepdf -P adpaper -s plain (url)

For speed, images are stored in a local directory.
By default, this is the img/ subdirectory within the
current directory, but you can specify a different
directory using the -i option.

save the document as foo.pdf and
save images in the temp dir
$ rmodepdf -o foo.pdf -i /tmp/img (url)

You can disable image downloading entirely with
the -n option. Rmodepdf also detects and displays
IXTEX mathematical commands embedded in web
pages that use MathJax or KaTeX for rendering.
This default behavior can be disabled using the -N
option. Additionally, the removal of page elements
using Rdrview can be disabled with the -R option.

https://doi.org/10.47397/tb/45-2/tb140hoftich-rmodepdf

TUGboat, Volume 45 (2024), No. 2

3 Configuration
3.1 Settings

It often happens that during conversion you en-
counter errors or wish to change how certain elements
on the page are converted into I¥TEX. Therefore,
Rmodepdf provides the option to use a Lua con-
figuration script. This script allows you to modify
the code of translated pages, define conversion rules,
set variables, or change templates as needed. The
configuration file is loaded using the option -c.

$ rmodepdf -c script.lua (url)
The script might look like this, for example:

add_to_config {
document = {
preamble_extras = [[
\setmainfont{Linux Libertine 0}
11,
3,
img_convert = {
-- modify the command used for
-- conversion of SVG images to PDF
svg = "cairosvg -o ${dest} -",
3,
}

Above, the command add_to_config is used,
which safely copies new configuration values into the
original configuration. If you only want to set a
single configuration value, you can also directly write
to the config table:

config.document.geometry = "a6paper"

The config table contains several subtables
that you can configure. The document subtable in-
cludes properties of the output document, such as
preamble_extras for adding additional code to the
document preamble, or geometry, which allows you
to directly specify the dimensions of the page or
margins of the output document.

The subtable img_convert defines commands
for converting image formats used on the converted
web pages that are not supported in LualATEX to
one of the supported formats. For example, in the
sample, we define a command to convert from SVG
format to PDF. This command must support reading
from standard input, and you can specify the output
file name using the template ${dest}.

The subtable html_latex contains settings for
translating IWTEX code embedded in web pages. The
ignored item contains a list of HTML elements where
embedded IXTEX code should not be searched for.
Typically, this includes elements like <pre>, which
contain source code that should not be processed in
our document.

247

The subtable pages contains converted files and
their metadata. Its content is populated after the
configuration script runs, so it is not available before-
hand but is utilized in templates. It includes items
such as language for the document language, title
for the document title, and content which contains
the IATEX code of the document for transformation.

3.2 Callbacks

The configuration script is executed before the ac-
tual conversion, so it cannot directly influence the
conversion process. However, we can define several
callback functions that allow us to affect the conver-
sion. These functions are as follows:

preprocess_content modify string with the
raw HTML before readability and DOM
parsing.

preprocess_dom modify the DOM object before
fetching of images or handling of MathJax.

postprocess_dom modify the DOM after all
processing by Rmodepdf.

postprocess late post-processing of the config
table.

The most useful are the first three. The
preprocess_content function takes a string param-
eter with the HTML code of the page as it was
downloaded from the original website, before any
modifications by Rdrview. Here, you can use Lua
string functions to fix certain elements that may
cause issues during processing with Rdrview. This
method is quite limited and, especially when using
regular expressions, it can cause more harm than
good. Therefore, use it with caution.

The difference between the next two callbacks is
that with the first one, you can still influence image
downloading or the processing of IXTEX commands.
For modifications to the final version of the document,
it is best to use postprocess_dom.

Both functions receive a LuaXML DOM object as
a parameter. This allows you to safely traverse and
transform the entire document. LuaXML includes
many functions for working with the DOM; here, we
will introduce just a few basics. For example, the
following example prints the resulting DOM object
as HTML code:

function postprocess_dom(dom)
print(dom:serialize())
return dom

end

The dom:serialize() method obtains the
HTML code from the DOM object, which we then
print using the print command. It is important
to return the DOM at the end of the function; this

Web page to PDF conversion with Rmodepdf: Leveraging Lual&ATEX for e-book reader-friendly documents

248

ensures that any modifications made to the DOM are
preserved and applied to the final document.

Here’s a slightly more complex example. Let’s
assume we want to remove a menu that might look
like this, since Rdrview did not do the removal:
<div class="menu">

. menu contents ...

</div>

We can use the postprocess_dom function to
remove this menu:

function postprocess_dom(dom)
-- Find the menu using a CSS selector
local menu = dom:query_selector(".menu"

-— Iterate over the menu elements

-— and remove each one

for _, el in ipairs(menu) do
el:remove_node ()

end

-- Return the modified DOM
return dom
end

In this example:

1. We use the query_selector method to find
all elements with the class menu.

2. Tterate over each element retrieved in the
previous step using a for loop.

3. Remove each menu element using the
remove_node method.

4. Return the modified DOM at the end of the
function.

This ensures that any remaining menus are re-
moved from the final document.

3.3 Transformation from HTML to IATEX

We perform the conversion of HTML elements to
IATEX using the luaxml-transform library. This
library allows us to declare simple rules for trans-
forming XML or HTML elements into text. Elements
can be selected using CSS selectors, which is im-
portant because elements with the same name but
different classes may need to be converted differently.
For example, or <div> elements are often
used as universal tags, but their intended display can
vary greatly, depending on their class.

In the configuration file, the htmlprocess vari-
able contains an object with rules for converting
HTML elements. It provides two main functions:
htmlprocess.reset_actions, which clears all rules
for a given selector, and htmlprocess.add_action,
which adds new rules. The following code displays
some basic usage of the transformation library:

Michal Hoftich

TUGDboat, Volume 45 (2024), No. 2

htmlprocess.reset_actions("br")
htmlprocess.reset_actions("figure")
htmlprocess.add_action("br", "\n\n")
htmlprocess.add_action("img",
[[\includegraphics[max width=\textwidth]
{@{src}}1])
htmlprocess.add_action("figure",
"\n\n\\medskip\n\n\\noindent %s")

In this example, we reset the default rules for the

 and <figure> elements and introduce custom
rules with specific syntax. The rules adhere to the
following conventions:

o The %s string inserts the transformed content of
the element. It is crucial to include %s in most
rules to ensure the content is correctly processed;
omitting it would hide the entire element’s con-
tent. However, since the
 element does not
contain any text, it is unnecessary to use %s
with it.

e In the rule for the element, @{src} inserts
the value of the src attribute, which contains the
image’s address. We use Lua’s double-bracket
syntax for string constants to avoid C-like inter-
pretation of the backslashes.

The following example demonstrates the use of
CSS selectors for classes and attribute value compar-
isons to handle different types of links differently:

htmlprocess.reset_actions("a"
htmlprocess.add_action(
"a.easy-footnote-to-top", "")
htmlprocess.add_action(
'a[href |="#easy-footnote"]', "¥%s")

Links with the class a.easy-footnote-to-top
are hidden because the replacement text string is
empty. However, for links whose href attribute
starts with '#easy-footnote', only their text con-
tent is displayed.

This was just a brief introduction to the transfor-
mation possibilities using luaxml-transform. You
can find many more examples in the LuaXML man-
ual.

4 Template

After converting from HTML to IATEX, we need to
combine the resulting code into a single document
that can be compiled. Therefore, Rmodepdf includes
a simple templating system that allows us to merge
individual pages and their metadata together.

A basic template might look like this:

\documentclass{article}
\usepackage{linebreaker,responsive}
\usepackage [_{document.languages}¥s/{,}]
{babel}

TUGboat, Volume 45 (2024), No. 2

\usepackage [@{document . geometry}] {geometry}
\pagestyle{@{document.pagestylel}}
@{document.preamble_extras}
\begin{document}

_{pages}
\selectlanguage{@{language}}
7{title}{Title: @{title}}\par}{}
7{author}{Author: @{author}t\par}{}
\href{@{url}}{@{url}}\par
@{content}

/{\clearpage}

\end{document}

Templates contain three syntactic constructs.
The basic one is printing a variable using
@{variablename}. Variables are contained in
the config table, and using a dot, we can
also print properties of subtables. For example,
@{document .preamble_extras} prints the config.
document . preamble_extras variable.

The next construct is loops. They have the
syntax _{variablenamel}loop code/{separator}.
The variables used have to be arrays. For exam-
ple, document . languages contains the languages of
all translated documents in a format suitable for
the Babel package, or pages, which contains all con-
verted documents. In the loop code, variables of the
currently processed array are available. If the array
contains only strings, we can use the placeholder %s.
This is used for document.languages. If the cur-
rent object is a table, we can access its fields directly
using @{variablename}.

The last construct is conditions. Their syntax is
?{variablename}{true}{false}. In the example,
we use them to insert the title and author, because
not all pages have these items.

Custom templates can be read using the -t
option.

$ rmodepdf -t mytemplate.tex <url>

5 Automatic typesetting

This brings us to the next part. Since Rmodepdf
compiles web pages directly into PDF, we cannot
easily intervene in the conversion process. Therefore,
the conversion needs to be as automated and error-
free as possible. The output PDF can also have
various page sizes. The default size is adapted for
e-book readers, but we might also want to create
a PDF suitable for smartphones or, conversely, a
standard A4 size. For all these sizes, we need to
choose different font sizes or page margins. This can
be achieved using two new packages, which we will
demonstrate in this section.

249

5.1 Responsive design

One of the issues that needs to be addressed is setting
the correct font size for readability. The default font
size in IATEX is 10 points, regardless of the page
size. This is a suitable font size for an A5 page. For
A4 format, the font size should be larger, and for
smaller screens of e-readers and mobile phones, it can
be smaller. Similarly, we can change the line spacing,
which also affects text readability depending on the
font size and page size.

Web browsers face a similar problem, as they
need to display text on large PC monitors as well as
on the smaller screens of laptops, tablets, and mobile
phones. The solution they use is called responsive
design.

Responsive design is a way of designing web
pages that allows flexible and dynamic adaptation
of the appearance and layout of the page content to
different display devices. One of the key elements of
responsive design is a flexible structure that allows
elements on the page to be resized to fit the display
device.

Another important element is media queries.
These allow defining rules that apply based on the
properties of the display device, such as screen width
and height or the type of output (paper, display).
Thanks to these rules, the same page code can be
displayed well on both large monitors and mobile
devices or when printed.

The Responsive package [7] is inspired by
these principles. Its main function is to set the
font size according to the page size and the
approximate number of characters that should fit
on a line. Tt also sets the typographic scale [9]
(affecting font sizes for headings or footnotes),
the font baseline, and supports a simple version
of media queries.

5.1.1 Setting up the Responsive package

Responsive automatically sets the font size, line spac-
ing, and typographic scale at the beginning of the
document. Default values can be changed using
package options:
\usepackage [(options)] {responsive}
or the \ResponsiveSetup{(options)} command.
The \ResponsiveSetup command can also be used
directly in the document text, for example, for local
font settings changes.

The Responsive package offers the following op-
tions:

noautomatic prevents automatic setting of font
size and line spacing at the beginning of the
document.

Web page to PDF conversion with Rmodepdf: Leveraging Lual&ATEX for e-book reader-friendly documents

250

characters number of characters for automatic font
size setting.

scale typographic scale used for font sizes.
lineratio ratio used in line spacing calculation.

5.1.2 Basic font size

The font size can be set using the \setsizes com-
mand. Responsive tries to set the font size so that
the desired number of characters fits on a line on
average. The actual number of characters depends
on the text used, as each letter has a different width
when using proportional fonts. In practice, the num-
ber of characters displayed on a line may be slightly
higher.

If the number of characters is not specified in the
\setsizes command, the value of the characters
option is used. The following example uses this
option setting. Figure 1 shows how the same text
can be displayed differently within the same frame,
depending on the settings.

\begin{minipage}{5cm}
\ResponsiveSetup{characters=553}
\setsizes{}

\lipsum[1]

\end{minipage}

5.1.3 Line spacing

By default, ITEX sets the line spacing to the font
size multiplied by 1.2. For different fonts and page
sizes, different line spacing is appropriate. Similarly,
different values may be suitable for the printed and
electronic versions of the document.

I was inspired by Edoardo Cavazza’s article [1]
on readability and added support for setting line
spacing based on the ratio of lowercase letter height
and the lineratio variable. This ratio is obtained
by the following calculation:

lex
lineratio/100
You can observe the impact of changing the
lineratio value in Figure 2. The choice of its op-
timal value depends on the font used and the page
size. To achieve maximum output readability, it’s
advisable to compare the output using different val-
ues.

line spacing =

5.1.4 Media queries

Media queries are a technique that allows web de-
velopers to dynamically adapt the appearance and
behavior of web pages based on various device prop-
erties, such as screen width and height, device orien-
tation, color support, and many others. With these
conditions, it is possible to create responsive and

Michal Hoftich

TUGDboat, Volume 45 (2024), No. 2

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabi-
tur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus
sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis
in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean
faucibus. Morbi dolor nulla, malesuada eu,
pulvinar at, mollis ac, nulla. Curabitur auc-
tor semper nulla. Donec varius orci eget risus.
Duis nibh mi, congue eu, accumsan eleifend,
sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

(a) characters=55

Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. Ut purus elit, vestibu-
lum ut, placerat ac, adipisc-
ing vitae, felis. Curabitur dic-
tum gravida mauris. Nam
arcu libero, nonummy eget,
consectetuer id, vulputate a,
magna. Donec vehicula au-
gue eu neque.

(b) characters=25, lineratio=38

Figure 1: Difference in font size depending on the
number of characters per line

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac, adi-
piscing vitae, felis. Curabitur dictum gravida mau-
ris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Mauris ut
leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus
sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius
orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

(a) lineratio=38

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac, adi-
piscing vitae, felis. Curabitur dictum gravida mau-
ris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Mauris ut
leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus
sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius
orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

(b) lineratio=34
Figure 2: Change in line spacing by changing the
lineratio value

TUGboat, Volume 45 (2024), No. 2

Lorem ipsum dolor sit amet, consectetuer adipisc-
ing elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy eget, con-
sectetuer id, vulputate a, magna. Donec vehicula
augue eu neque.

(a) Text width 5cm

Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adip-
iscing vitae, felis. Curabitur dictum
gravida mauris. Nam arcu libero, non-
ummy eget, consectetuer id, vulpu-
tate a, magna. Donec vehicula augue

eu neque.

(b) Text width 3.9cm
Figure 3: Media query example

flexible web pages that can automatically adjust to
different types and sizes of devices on which they are
displayed.

How can this technique be useful for WTEX pack-
age authors? They could, for example, set the font
size, line spacing, and other elements for specific page
dimensions. After the user chooses the page size ac-
cording to the device for which they want to compile
the document, these elements are set automatically.
The package author can define, for instance, that
if the width of the text line is less than a certain
size, fewer characters will be displayed on it than on
longer lines. The result is shown in Figure 3.

This example will display fewer characters per
line if the text width is less than 4 cm.

\mediaquery{max-textwidth=4cm}
{\ResponsiveSetup{characters=45}}
{\ResponsiveSetup{characters=60}}

A media query can be declared using the
\mediaquery command, which expects three param-
eters: the first is a list of tests, the next parameter
expects the code to be executed if the tests evaluate
to true, and the last one contains the code to be
executed if the condition is not met. The code can
include the \ResponsiveSetup command, as well
as any other commands. For example, setting the
size of the text block, header, and footer using the
geometry package.

We can test the following page properties:
paperwidth and paperheight for page dimensions,
textwidth and textheight for text dimensions,
orientation for text orientation, and twocolumn
for detecting the use of two-column text in the docu-
ment.

Tests for text and page dimensions also support
the prefixes max- and min-. Using these, we can test
whether a given dimension is smaller or larger than
a specified value.

For example, the following command changes
the text color to blue if the document has landscape

251

The example document
given below creates two pages
by using Lua code alone. You
will learn how to access TEX’s
boxes and counters from the Lua
side, shipout a page into the PDF
file, create horizontal and
vertical boxes (hbox and vbox),
create new nodes and ma-
nipulate the nodes links struc-
ture.

(a) Without the Linebreaker package

The example document
given below creates two
pages by using Lua code
alone. You will learn how
to access TEX’s boxes and
counters from the Lua side,
shipout a page into the PDF
file, create horizontal and
vertical boxes (hbox and
vbox), create new nodes and
manipulate the nodes links
structure.

(b) With the Linebreaker package

Figure 4: Example of using the Linebreaker package

orientation, the text width is less than 20 cm, and
two columns are used.

\mediaquery{orientation=landscape,
max-textwidth=20cm,
twocolumn=true}

{\color{blue}}
{3

5.2 The Linebreaker package

The Linebreaker package [4] prevents text from over-
flowing in boxes and paragraphs. An example of its
output is in Figure 4, where it prevents several lines
from overflowing when typeset in a narrow column.

Linebreaker utilizes LuaTEX’s callback which
controls line breaking. It replaces the default
line breaking function with a modified version
that detects overflow or underflow in the broken
text. Upon detecting this problem, it retypesets
the text with increased values of \tolerance and
\emergencystretch until the overflow is suppressed
or the maximum \tolerance limit is reached. These
changes to \tolerance and \emergencystretch are
local to the currently broken paragraph and do not
affect the rest of the text.

Web page to PDF conversion with Rmodepdf: Leveraging Lual&ATEX for e-book reader-friendly documents

252

5.2.1 Linebreaker configuration

The Linebreaker package can be configured by speci-
fying package options using
\usepackage [(options)]{linebreaker}

or later in the document body with the command
\linebreakersetup{(options)}. The options are:

maxcycles the number of attempts to re-typeset a
paragraph.

maxemergencystretch the maximum value of
\emergencystretch.

maxtolerance the maximum value of
\tolerance.

For example:

\linebreakersetup{
maxtolerance = 90, % default 8189
maxemergencystretch = lem, % default 3em
maxcycles = 4, % default 30
}

5.3 Other packages useful for automatic
typesetting

We have demonstrated the use of the Responsive
and Linebreaker packages for automatic typesetting.
These are not the only useful packages that lever-
age the power of LuaTEX for automatic typesetting.
Noteworthy examples include Lua-widow-control for
suppressing widows and orphans, and Luavlna, which
addresses certain typographical issues for Czech and
Slovak, while also preventing line breaks in SI units
or academic titles.

6 Summary

I hope the demonstration of the Rmodepdf program
caught your interest. Even if it didn’t, I believe that
the side products developed alongside it can be useful
on their own.

This includes the capability to process HTML
files using the LuaXML package and convert them to
IATEX using its luaxml-transform library. The Re-
sponsive package allows you to declaratively set the
document design depending on the currently chosen
page size. Lastly, the Linebreaker package prevents
line overflow, which is a common issue especially in
documents with fewer characters per line.

Michal Hoftich

TUGDboat, Volume 45 (2024), No. 2

References

[1] E. Cavazza. Modern CSS techniques to
improve legibility. Smashing Magazine,

2020. www.smashingmagazine.com/2020/07/
css-techniques-legibility/

[2] M. Chernoff. The Lua-widow-control package.
Automatically remove widows and orphans from
any document.
ctan.org/pkg/lua-widow-control

[3] E. Ferndndez. Rdrview.
github.com/eafer/rdrview

[4] M. Hoftich. The Linebreaker package.
Prevent overflow boxes with Lual4TEX.
ctan.org/pkg/linebreaker

[5] M. Hoftich. The Luavina package. Prevent
line breaks after single letter words, units, or
academic titles. ctan.org/pkg/luavlna

[6] M. Hoftich. The LuaXML package. Lua library
for reading and serialising XML files.
ctan.org/pkg/luaxml

[7] M. Hoftich. The Responsive package.
Responsive design methods for IATEX.
ctan.org/pkg/responsive

[8] M. Hoftich. Rmodepdf. Convert web pages in
reader mode to PDF.
github.com/michal-h21/rmodepdf

[9] S. Mortensen. The typographic scale,
2011. spencermortensen.com/articles/
typographic-scale/

¢ Michal Hoftich
Magdalény Rettigové 4
Praha, 116 39
Czechia
michal.h21 (at) gmail dot com
https://www.kodymirus.cz/

https://www.smashingmagazine.com/2020/07/css-techniques-legibility/
https://www.smashingmagazine.com/2020/07/css-techniques-legibility/
https://ctan.org/pkg/lua-widow-control
https://github.com/eafer/rdrview
https://ctan.org/pkg/linebreaker
https://ctan.org/pkg/luavlna
https://ctan.org/pkg/luaxml
https://ctan.org/pkg/responsive
https://github.com/michal-h21/rmodepdf
https://spencermortensen.com/articles/typographic-scale/
https://spencermortensen.com/articles/typographic-scale/

TUGboat, Volume 45 (2024), No. 2

Navigating common challenges in
manuscript submission:

Insights for authors and publishers using
Elsarticle and CAS packages

Rishikesan T, Apu V, Rajagopal CV,
Radhakrishnan CV

Abstract

The elsarticle.cls, cas-sc.cls, and cas-dc.cls
classes are the preferred ITEX class files recom-
mended by Elsevier, a publishing company specializ-
ing in scientific, technical, and medical (STM) content
for manuscript submissions to their journals. These
class files are available on CTAN along with tem-
plates, BibTEX style files, and user documentations.
In this article, we will mainly explore the purpose,
features and benefits of these class files and how to
utilize these packages effectively for their intended
purposes. We also list the challenges resulting from
not using these recommended templates.

1 Introduction

As dedicated typesetters with over two and a half
decades of experience in using TEX and related tools
for scientific, technical, and medical (STM) journal
and book typesetting, and having collaborated with
nearly 20 publishers worldwide, we would like to offer
some suggestions to authors. These tips can help
streamline the publication process and ensure that
articles are published quickly, provided they meet all
other editorial standards.

Using Elsevier, one of the largest STM publish-
ers, as an example, this advice is applicable to all
authors preparing manuscripts for any publisher.

Elsevier, an academic publisher, releases ap-
proximately 3,000 journals across various disciplines.
These journals follow specific typesetting models
characterized by defined margins, text areas, fonts,
and column formats (single and double columns). Au-
thors preparing their manuscripts in KTEX for most
of these journals are required to use elsarticle.cls,
cas-sc.cls, or cas—-dc.cls, and format their work
according to the guidelines provided on the “Guide
for Authors” page. [3, 4]

Given that manuscript publishing is an integral
part of research, authors should pay close attention
to adhering to publishing guidelines. Compared to
the complex nature of their research and the tasks
they have already completed with great care and
efficiency, manuscript preparation requires only a bit
of skill and time, as the data is already available and
only formatting remains. The saying “Well begun
is half done” certainly applies to manuscript prepa-

253

ration. If a manuscript is meticulously prepared
according to the publishing guidelines and submitted
for publication, the remaining process will be much
smoother. This careful preparation minimizes the
need for additional communications with the pub-
lisher, ensuring a hassle-free journey for the authors
until their manuscript is published.

2 The purpose

Beyond merely formatting ITEX submissions to a
specific style, authors should understand that these
class files are designed with several other beneficial
purposes to meet the requirements. These addi-
tional features ultimately contribute to a faster and
smoother publishing process. Before a manuscript
is published, it undergoes numerous stages involv-
ing human intervention, as well as automatic and
semi-automatic processing. Proper use of these class
files and following other rules mentioned in the pub-
lishing guidelines ensures that each stage is handled
efficiently, reducing potential delays and complica-
tions. Now let us see the main intended purposes:

1. Maintaining a uniform format for review pur-
poses, especially with wide margins, increased in-
terline spacing, and maintaining the page count
if there is any restriction to the number of pages.

2. Assisting authors in formatting equations, ta-
bles, textboxes, and other elements to fit within
the column and text width of the final published
article, to require minimal intervention during
the subsequent stages of the publishing process.
This careful formatting reduces the risk of errors
being introduced in the subsequent stages and
streamlines the overall journey of the manuscript
through the publishing pipeline.

3. Ensuring that authors include all mandatory
information is crucial to avoid rejections. The
templates provided with the class files contain
most of the required fields, reminding authors
to supply the necessary details. If any manda-
tory information is missing, the publisher will
query the authors, causing delays as the informa-
tion must be submitted later. By providing all
mandatory details initially, authors can review
the proofs to ensure everything is correctly set
and no errors are introduced, again streamlining
the publishing process.

4. The templates are meticulously designed for mul-
tiple purposes, which we have been discussing
here. One of the most important purposes is to
automate the typesetting process during publica-
tion. When manuscripts are prepared according
to these templates, they can be converted into

Navigating common challenges in manuscript submission

doi.org/10.47397/tb/45-2/tb140rishi-elsarticle

https://doi.org/10.47397/tb/45-2/tb140rishi-elsarticle

254

the required deliverables, such as PDFs, using
automated tools. This minimizes manual inter-
vention, significantly reducing the publishing
timeline.

Manuscripts are published not only as PDFs
but also in formats like XML, and MathML; un-
fortunately, many of the authors are unaware
of this fact. When proper templates are used,
these conversion processes are largely automated.
Otherwise, typesetters must reformat your ar-
ticle to fit these templates, adding time to the
publishing timeline. Additionally, proofing tools
flag most changes in the manuscript. Authors
are then required to review and confirm these
changes, increasing their workload and making
the proofreading process more challenging.

3 Features

In this section we will discuss the prominent features
of these class files. First we will review the features
of elsarticle.cls. [1, 5, 6, §]

1.

Many features are implemented as class file
options: preprint, nopreprintline, review,
twocolumn, times, sort&compress, etc. Thus,
documents should start with:

\documentclass[(options)]{elsarticle}

Using the nopreprintline option, frontmatter
which runs on multiple pages can be typeset
easily without breaking it manually.

The position of the whole front matter can be
changed to left-justified, from the default align-
ment of center, using the lefttitle option.
This is purely for presentation purpose and is
not needed for Elsevier submission.

Options to omit loading natbib. If any of your
packages conflict with the natbib package, and
you need to use biblatex instead, you can do
that using the option nonatbib as a class option,
and then load biblatex.

Double-blind and single-blind options for peer-
reviewing.

Structured front matter coding. Authors them-
selves should code the organisation, city, post-
code, state in the respective fields in the tem-
plate and they are in the best position to identify
and format their affiliation correctly. The follow-
ing is a specimen coding as per elsarticle.cls:

Rishikesan et al.

TUGDboat, Volume 45 (2024), No. 2

\begin{frontmatter}

\title{This is a specimen a_b
title\tnoteref{t1,t2}}

\tnotetext[t1]{This document is
the results of the research
project funded by the National
Science Foundation.}

\tnotetext [t2]{The second title
footnote which is a longer
text matter to fill through
text width and overflow into
another line in the footnotes
area of the first page.}

\author[1]1{J.K. Krish\corref{coril}y
\fnref{fn1}}

\ead{jkk@example.in}

\cortext [corl]{Corresponding author}

\author[1,2]{Han Jane\corref{cor2}}
\ead{han@different.edu}
\cortext [cor2] {Corresponding author}

\author [2]{T. Rafeeq\fnref{fnl,fn2}}

\ead [url] {www.nowhere.com}

\fntext [fn1]{This is the first
author footnote.}

\fntext [fn2]{Yet another author
footnote.}

\affiliation[11{%
organization={Department of
Physics, J.K. Institute
of Science}l,
addressline={Jawahar Nagar},
city={Trivandrum},
% citysep={}, % Uncomment if no
% comma needed between city and
% postcode
postcode={695013},
state={Kerala},
country={India}}

\affiliation[2]{%

organization={World Scientific
Universityl,

addressline={Street 29},
postcode={1011 NX},
postcodesep=1{},
city={Amsterdam},
country={The Netherlands}}

\end{frontmatter}

TUGboat, Volume 45 (2024), No. 2

Here is another example, showing frontmat-
ter coding features in the classes cas-sc.cls
and cas-dc.cls. This does not cover all the
features, but shows how it is designed. [2, 7]

\begin{frontmatter}
\title[mode = title]{Leveraging
social media news}

\tnotemark[1,2]

\tnotetext[1]{This document is
funded by the ABC Organisation}

\tnotetext [2]{The second title
footnote which is a longer text}

\author[1,3]{V. {{\=A}}nand
Rawat}’

[type=editor,
auid=000,bioid=1,
prefix=Sir,
0orcid=0000-0001-7500-0000]

\cormark[1]

\fnmark[1]

\ead{a.rawat@txgabcd.org.in}

\ead [url] {www.txgabcd.in}

\credit{Conceptualization of this
study, Methodology, Software}

\affiliation[1]{%
organisation={IMI},
city={Trivandrum},
postcode={695014},
country={India}}

\author[2,4]{Han Xil}}%
[style=chinese]

\author[2,3] {Gautham T.}}
[role=Co-ordinator,
suffix=Jr]
\fnmark[2]
\ead{gautham.t@organisation.org}

\credit{Data curation, Writing}

\affiliation[2]1{%
organisation={ABC Foundation},
addressline={Jagathy},
city={Trivandrum},
postcode={695014},
country={Indial}}

7.

10.

255

\author[1,3]{Jane Doe}
\cormark [2]

\fnmark[1,3]
\ead{jane@janedoe.org}
\ead [URL] {www. janedoe.org}

\affiliation[3]{V
organisation={The Jane Doe
Group},
postcode={MA 12345},
country={USA}}

\cortext [corl]{Corresponding
author}
\cortext [cor2]{Principal
corresponding author}
\fntext[fn1]{This is the first
author footnote, and is common
to third author as well.}

\nonumnote{This note has no
numbers.}
\maketitle
\end{frontmatter}

Options to insert a page break easily after the
title, author/affiliation or abstract. Some jour-
nals require, for submission, that authors for-
mat the title, or title, author, and affiliation de-
tails or the whole frontmatter on separate pages.
A page break can be introduced within the
frontmatter using the \newpageafter{title}
command, or the \newpageafter{author} com-
mand, or lastly the \newpageafter{abstract}
command. Without these commands, it is diffi-
cult to introduce breaks in this area.

Environments are defined to code graphical ab-
stract, highlights, etc., properly.

Options like 1p, 3p, 5p, twocolumn, etc. as per
the journal they choose. Even if the author
guideline says to submit the manuscript in sin-
gle column, whereas the final output when the
article publishes in the journal is double column,
we have advice for authors: first format the man-
uscript in the final output style (e.g., 5p which
is double column) and format the equations
by breaking and aligning the lengthy equations
properly. Then submit with 1p or 3p option
as requested. This will ensure fewer changes
during the pre-publishing process.

Many bst files adhering to both numbered and
author-year citation styles are available.

Navigating common challenges in manuscript submission

256

11.

12.

In addition to the main title, options are avail-
able to code the alternate title, sub-title, trans-
lated title and translated sub-alttitle. ORCID
links, social media links like X (Twitter), Face-
book, LinkedIn, etc., can be given in the optional
argument of author command.

And many more. ..

4 The beneficiaries

The primary beneficiaries will be the authors them-
selves if they follow the template as per the instruc-
tions laid out in the guide for authors document.

1.

Authors: It helps in adhering to the submission
guidelines of journals, which may reduce the
risk of rejection due to formatting issues. It
can potentially speed up the publication process
since less time may be needed for formatting
revisions during the review stage.

Reviewers: Consistent formatting across sub-
missions can help reviewers focus on the content
rather than getting distracted by varying styles
and layouts. Good typesetting ensures that the
text is legible, which is particularly important
for reviewers who may spend long hours reading
multiple manuscripts.

Publishers: Publishers can expedite the pub-
lication process when manuscripts are already
formatted correctly, reducing the time to mar-
ket. Publishers can make revisions and update
files as needed without extensive reformatting,
maintaining the integrity of the document

Typesetters: Using templates reduces the like-
lihood of errors in formatting, which can save
typesetters time in proofreading and corrections.
Templates streamline the typesetting process,
allowing typesetters to work more efficiently and
handle more projects in less time.

5 The challenges

1.

2.

3.

The main challenge is authors overlooking the
Guide for Authors, where the details of the
templates with proper instructions are given.
For example, authors may merely load the class
file, but the rest of the coding will not be ac-
cording to the template.

Not using BIBTEX databases.

6 How to overcome the challenge?

This is a significant question. Based on our experi-
ence as typesetters, we suggest the following:

Rishikesan et al.

TUGDboat, Volume 45 (2024), No. 2

. Publishers should educate authors by commu-

nicating best practices in publishing. Provide
numerous use cases and highlight the advantages,
including faster publication, of using proper tem-
plates. Emphasize the disadvantages of non-
compliance with author guidelines. This is a big
task!

. Develop and maintain an effective automatic

content profiler that validates author submis-
sions and reports shortcomings back to the au-
thors.

Ensure user-friendly documentation is created
and made easily accessible.

Establish a robust support system with a knowl-
edgeable typesetting team to assist authors and
provide timely help.

Publishers should actively participate in TEX
conferences and interact with experts to under-
stand the power of TEX. This will help them
modulate policies and communicate effectively
with the TEX author community.

Organize free webinars or seminars on best prac-
tices for manuscript preparation at universities,
especially those with a high number of contribut-
ing authors.

References

ctan.org/pkg/elsarticle
ctan.org/pkg/els-cas-templates

elsevier.com/en-in/subject/next/
guide-for-authors

elsevier.com/en-in/researcher/
author/policies-and-guidelines/
latex-instructions
support.stmdocs.in/index.php/Elsarticle.
cls

support.stmdocs.in/index.php/FAQ_-_
elsarticle.cls

support.stmdocs.in/index.php/
Elsarticle_-_CAS

support.stmdocs.in/index.php/
Model-wise_bibliographic_style_files

¢ Rishikesan T, Apu V, Rajagopal CV,
Radhakrishnan CV
STM Software Engineering Pvt Ltd.,
Trivandrum 695571, Kerala
India
rishi (at) stmsoft dot in,
apu.v (at) stmsoft dot in,
cvr3 (at) stmsoft dot in,
cvr (at) stmsoft dot in
https://stmsoft.org

https://ctan.org/pkg/elsarticle
https://ctan.org/pkg/els-cas-templates
https://elsevier.com/en-in/subject/next/guide-for-authors
https://elsevier.com/en-in/subject/next/guide-for-authors
https://elsevier.com/en-in/researcher/author/policies-and-guidelines/latex-instructions
https://elsevier.com/en-in/researcher/author/policies-and-guidelines/latex-instructions
https://elsevier.com/en-in/researcher/author/policies-and-guidelines/latex-instructions
https://support.stmdocs.in/index.php/Elsarticle.cls
https://support.stmdocs.in/index.php/Elsarticle.cls
https://support.stmdocs.in/index.php/FAQ_-_elsarticle.cls
https://support.stmdocs.in/index.php/FAQ_-_elsarticle.cls
https://support.stmdocs.in/index.php/Elsarticle_-_CAS
https://support.stmdocs.in/index.php/Elsarticle_-_CAS
https://support.stmdocs.in/index.php/Model-wise_bibliographic_style_files
https://support.stmdocs.in/index.php/Model-wise_bibliographic_style_files

TUGDboat, Volume 45 (2024), No. 2

Making BachoTEX proceedings —extended
version®

Jean-Michel HUFFLEN

Abstract

We report an experiment of making the proceed-
ings of a conference by automatically generating as
much information as possible. For example, we look
for titles and other metadata in successive source
files to build the table of contents. Separate source
files must be processed by a TEX-like format, which
may be pdfIATEX, XqIMTEX, LualATEX or ConTEXt.
Installing our functions requires a UNIiX-like make
command and some programs written mostly using
Scheme, partly using Ruby.

0 Introduction

We expose the method we used to make the 3-year
proceedings of the Polish-speaking TEX user con-
ference (BachoTEX). These proceedings have some
specific aspects, but we think that our method may
be applied —even improved —to similar contexts.
Our guiding idea: the process of grouping succes-
sive articles in one printable file should be auto-
mated as far as possible. Besides, we succeeded
in avoiding information redundancy. For example,
the metadata for successive articles— authors, ti-
tles and page ranges — are extracted from successive
source files and the two tables of contents are auto-
matically generated.

In the first section, we introduce to our frame-
work’s guidelines and show how our programs be-
have, we explain why we gained valuable experience
through previous projects and why we have volun-
teered for this task, which should be finished before
the summer’s end. Section 2 gives the features spe-
cific to BachoTEX conferences. Then the successive
steps of our modus operandi are described in Sec-
tion 3. Some paths to go further and improve our
tools are discussed in Section 4. We give some ex-
amples of short programs throughout this article,
but reading them requires only basic knowledge in
programming.

1 Genesis: Cahiers GUTenberg, #58

In the fall of 2020, there was some substantial reor-
ganisation of GUTenberg, the French-speaking TEX
users group.! This process and its reasons have al-
ready been described and discussed in many places,

* A first version of this article [15] has been included in
the proceedings of BachoTEX 2024.
1 In French: Groupe francophone des Utilisateurs

de TEX.

doi.org/10.47397/tb/45-2/tb140hufflen-bachoproc

257

including [1, 16|, so hereafter we do not give more de-
tails about that. We just mention that after a period
of lethargy, a new board of directors was elected.
During this new board’s first meeting, we were ap-
pointed as the new editor of this group’s journal:
the Cahiers GUTenberg, as already reported in [13].

When we started our mandate, in the begin-
ning of 2021, we inherited many article proposals,
more or less recent, more or less ready. Some used
IXTEX 2¢ packages incompatible with other engines,
some showed LualATEX [11] abilities, some were com-
pilable only by XgIATEX? [28]. In other words, we
had to use several typesetting systems for compos-
ing the same issue. Besides, putting Cahiers GUTen-
berg’s articles on the Web after a while —exactly
like TUGboat’s— was planned. That is, for an is-
sue, the whole of it will be available, as well as sepa-
rate articles, including editorials. In addition, let us
mention that some .pdf? files resulting from such
articles may be interactive or include animation ef-
fects—e.g., by means of the animate package [10] —
when read on line. More precisely, each separate ar-
ticle could be given printed and online versions—
the latter using hyperlinks by means of the hyperref
package [27] —, additional versions being available
if they are of interest. The printed version of the
whole issue is easily built by means of the pdfpages
package [20].

Controlling the whole process by means of check
programs may seem perfectionist, or be viewed as a
mind game. However, we have personally experi-
enced a situation in which such a control program
would have been very useful: the French transla-
tion of The IMTEX Companion’s second edition [22].
As time began to run out, a last change shortened
a chapter from two pages: the body’s page num-
bers were updated, but not the page numbers put
within the index.* We understood that lesson: as
soon as we were in charge of the Cahiers GUTenbery,
we decided to implement programs to automate this
process as far as possible—e.g., building the table
of contents —other programs are devoted to some
checks —the succession of page ranges within the
editorial and subsequent articles.

Implementing all our programs by means of ad-
ditional TEX 2¢ classes or additional options of our

2 We were told that a source file compiling with XqIATEX
should compile with Lual&TEX. But at this time, that was
not always the case; we were forced to acknowledge that as
evidence. We asked many people about that; no one was able
to explain why to us.

3 Portable Document Format.

4 This mistake has been pointed out in [26], even if the
book’s overall review is very good.

Making BachoTEX proceedings — extended version

https://doi.org/10.47397/tb/45-2/tb140hufflen-bachoproc

258

TUGboat, Volume 45 (2024), No. 2

(define-record-type <cg-contents-info-record> ; Defining a structure’s components for keeping the suitable
.2) ; Information.

(define cg-current-contents-info ; Defining a placeholder for the information to be retained when a .tex file

2 kdummy-valuex*)

(define cg-toc-function
(g-mk-tex-parsing-f

; is parsed. Processing a new file causes this variable to be reinitialised.

(g-retain-command "author" 1 #f ; No optional argument.

#t ; Top level only.

#£f ; Recursive search if files are input.
#t ; Preamble only.

#t ; Get all the occurrences.

(lambda (author-s) ; Function to be applied as soon as this command is to be

.))

; processed.

(g-retain-command "title" 2 #t ; The first argument is optional.

#t #f #t 1

; Only one occurrence, then give up.
(lambda (ignored-s title-s)

(cg-contents-info-set-title! current-contents-info

)]

(normalize-space title-s))))

;;; What is launched: processing all the main source files, in turn.

(writeln/return (cg-make-toc cg-source-jobname-list
"issue-58-toc-contents.tex"))

;s List of main source file pathnames.
; Pathname for the result.

Figure 1: How the table of contents of Cahiers GUTenberg #58 has been built.

class for the Cahiers GUTenberg would have been
possible,® but we think that this is misusing TEX,
because these additional tasks are related to ‘ac-
tual’ programming more than typesetting. As we ex-
plained in [13], we think that TEX should not be
viewed as a universal multi-task program. TEX’s
language has the same expressive power as a Turing
machine, so theoretically any function can be pro-
grammed using TEX’s primitives,® but as with any
specialised language, using it for a purpose other
than its intended one may be tedious. The program
described in [13], written using the Scheme program-
ming language,” aims to do this kind of task: it al-
lows a (I&)TEX source file to be parsed, with partic-
ular focus on commands of interest (the rest is just
skipped). As an example, extracting the accurate
information in order to build the successive items
of the table of contents of [2] is sketched in Fig. 1.
More details about configuring our (IA)TEX parser
in Scheme can be found in [13]. Going back to build-
ing a table of contents’ successive items, the title is
of course given by means of the \title command:

5 Besides, an option of the previous version of the class
used for the Cahiers GUTenberg allowed metadata for Web
search engines to be generated. The present version does not.

6 Interested readers can consult [3] about this subject.

7 A good introductory book to this functional program-
ming language is [30].

Jean-Michel HUFFLEN

\title{\foreignlanguage{english}{Donald
Knuth} : des mathématiques & la
typographie}
The cedram-cg-8 class, designed for Cahiers GUTen-
berg, uses INTEX’s predefined command \author,
but each author among several co-authors must be
specified by a separate command:

\author{\firstname{Sandrine}
\lastname{Chenevezl}}
\author{\firstname{...} \lastname{...}}

Of course, getting the first and last names of an
author is a bit more complicated than getting a title,
considered as a whole. We do not detail our method
in Fig. 1, but in reality, it is quite long but not
very difficult, either. Likewise, getting the first page
number is easy. If we are interested in checking the
succession of page ranges, the last page number of an
article can be got by means of the lastpage package
[23], which puts a new label LastPage: our program
is able to parse an auxiliary (.aux) file to catch the
information associated with it.

We have just sketched what we are doing, but
not when. Gathering several articles does not mean
that they have been finalised w.r.t. the order of ap-
pearance; some last minute change may occur, and
in some cases, performing all the check procedures

TUGDboat, Volume 45 (2024), No. 2

259

\hbsettitleinenglish | specify a title’s
tters: . 1 to BTEX’ defined d \titl
Setters \hbsettitleinpolish versions analogous to s predefined command \title
hbgettitlei lish 1 S f th .
Getters: \hbge 1 e}neng'ls prace a version o the the internal command \@title
\hbgettitleinpolish title within a text

Table 1: Getters and setters for a title.

again might not be needed. In other words, a pro-
gram able to determine which procedures are to be
run again or have not been run yet is welcome. His-
torically, the UNIX system’s make command was the
first to automate a sequence of tasks, launching them
only if need be [8]. Roughly speaking, a command
controlled by make is launched if one of its sources is
more recent than its target: in other words, such a
command is run if its target does not exist or must
be built again. The most frequent case is the pro-
duction of an executable file from source files. The
information concerning sources and targets of such
commands is given in a configuration file so-called
Makefile:
target: source; sources
command

Such a command is useful in software development,
especially if a huge number of source files are han-
dled. In truth, these configuration files’ syntax may
be considered old-fashioned and more recent pro-
grams, more user-friendly, have appeared, but they
are devoted to particular programming languages,
most often object-oriented. A ‘make-like’ command,
specialised for engines and formats built out of TEX
is latexmk [7]. However, we did not use if because
it does not work with ConTEXt; it does not allow a
Scheme program to be launched, either.

In addition, let us mention that according to
make’s terminology, a target may be a generated
file’s name—e.g., the result of compiling a source
file— or just denote a set of actions. ‘Traditionally’,
some particular targets are used to remove useless
files, as soon as the installation is performed (make
clean) or to revert to the state at the installation’s
beginning (make distclean). So such tasks can be
integrated into our framework.

When we ended up with these programs, the
company in charge of printing and binding this first
issue [2] was given:

e the contents (an additional final page was for
the company’s brand), using the A4 paper size
with cropmarks;®

e the complete cover, including the spine, rightly
dimensioned;

8 Cahiers GUTenberg’s first issues used A4. More recent
issues’ paper size is 165 mm X 225 mm.

as two .pdf files. Generating online or additional
versions of separate articles is done by Ruby pro-
grams [14], based on regular expressions.”

2 FEzxodus

In 2018, 2019 and 2023, BachoTEX conferences, or-
ganised by the Polish GUST'Y group, did not pro-
vide proceedings, unlike what was practised before.
Given our experience (cf. §1), we volunteered for this
task at BachoTEX 2023’s end. Here are the differ-
ences, in comparison to Cahiers GUTenberg #58:

e we planned a 3-part volume, each part for a
conference;

e two tables of contents are to be put: a Polish
one at the beginning, an English one at the end;

e some authors provide two abstracts, in English
and Polish: we personally wish to homogenise
the layout of such 2-language abstracts;

e authors writing in Polish use different methods
for that: the packages babel [4] or polyglossia
[6], or an ad hoc package polski [24]; as a con-
sequence, the definitions applied to fragments
written in Polish should be adaptable;

e here also, typesetting systems depend on arti-
cles: an article showing graphical features was
based on the PostScript language, other articles

use ConTEXt [12].

We have considered that processing ConTEXt source
texts is a worthwhile exercise, allowing us to be able
to accept such texts for the Cahiers GUTenberg in
the future. Let us also notice that processing the
whole of proceedings by means of ConTEXt is pos-
sible, but only if all the articles have been typeset
with ConTEXt.

When an article for the Cahiers GUTenberg is
written in French, the cedram-cg-8 class provides two
commands for English and German versions of the
title, but only the title in French is included into
the table of contents. On the contrary, the articles

9 Regular expressions can be viewed as an advanced lan-
guage for describing patterns —a good introductory book
is [9]—: they are implemented in many programming lan-
guages, including Ruby [19]. However, they have not been
included into the present standard of Scheme [29].

10 pPolska Grupa Uszytkownikéw Systemu TgX, that is, the
Polish-speaking TEX user group.

Making BachoTEX proceedings — extended version

260

of BachoTEX conferences may be in English or Pol-
ish. The commands we introduce for titles are given
in Table 1, they are grouped into setters and get-
ters, using object-oriented terminology. Such new
commands are prefixed by ‘hb’ and have been put
within a package so-called hbachotex. The follow-
ing example illustrates how these commands can be
used:

\hbsettitleinenglish{%

Making an Issue of the \cgut}
\hbsettitleinpolish{Sktad biuletynu \cgut}
\title{\hbgettitleinenglish\thanks{/,

Title in Polish:
\foreignlanguage{polish}{%
\emph{\hbgettitleinpolish}}.}}
and it shows that the \cgut command should be
known when a table of contents is processed, that
is, if such a title—in English or Polish—is pro-
cessed by IWTEX again. That has been solved by the
following convention within the source .tex file:
%¥hth--smlbibtex-plus--[
\newcommand{\cgut}{%

\foreignlanguage{french}{%

\emph{Cahiers GUTenbergl}l}}
Tohth--1

\hbsettitleinenglish{...}

When a output file is open by our Scheme program,
all the fragments surrounded by a starting line:

%%%--smlbibtex-plus--[
and an ending line:
Thh--1

can be inserted into this output file.

3 Leviticus

We have given an overview of the programs we devel-
oped and sketched how they have been written. Now
we describe how successive stages are chained. Of
course, some errors may cause backtracking within
the complete process.

3.1 Creating a master file

First you have to write a master file, as sketched
in Fig. 2. It is a I¥TEX source file, but the most
important decision, at this step, concerns the arti-
cles’ succession, as shown in Fig. 2. Such a master
file should be located at the root of the directory
containing subdirectories for articles; it also loads
the hbachotex package, but with a complete option,
which gets access to more commands used for final-
isation.

When such a file is processed by KTEX, let
us notice that some arguments are useless: for ex-

Jean-Michel HUFFLEN

TUGboat, Volume 45 (2024), No. 2

\documentclass [onecolumn,a4paper]{ltugproc}

\setcounter{page}{3}
\begin{document}
\hbinputtoc{polish}{polish-toc}

\hbincludearticleplus{%
pdflatex}{editorial}{editoriall}

\hbpart{Bacho\TeX\ 2018}{}

\hbincludearticleplus{%
xelatex}{B-2018/hufflen}{hb-greg}

\hbpart{Bacho\TeX\ 2023}{}

\hbincludearticleplus{%
lualatex}{B-2023/bolek/foto}{foto}

\hbincludearticleplus{context}{B-2023/egger}{/
Pocketdiary-modul-2023-tugboatstyle}

\hbinputtoc{english}{english-toc}

\end{document}

Figure 2: Successive articles for BachoTEX
conferences in 2018, 2019, and 2023

ample, the first arguments of the two commands
\hbinputtoc and \hbincludearticleplus:'! the
former is the language of the table of contents, the
latter is the typesetting system to be used.!? These
commands themselves will just process a source file
or insert a .pdf file, but the information given by its
first arguments will be caught by a Scheme program
and used to generate tables of contents or separate
articles.

1 Concerning the \hbinputtoc command, its second argu-
ment is the file name for the corresponding table of contents.
The last two arguments of the \hbincludearticleplus com-
mand are the directory where source files are located and the
job name.

12 In reality, this \hbincludearticleplus command’s first
argument may be any executable program, provided that it’s
available in your path.

TUGDboat, Volume 45 (2024), No. 2

polish-toc ...: $(all-source-files)

261

$ (SCHEME) $(CHECK_MAKE_TOCS) $(all-source-files)

editorial/editorial.pdf: editorial/editorial.tex
cd editorial ; pdflatex editorial.tex

B-2018/hufflen/hb-greg.pdf: B-2018/hufflen/hb-greg.tex

cd B-2018/hufflen ; xelatex hb-greg.tex

Figure 3: Generation of dependencies.

3.2 Playing with a skeleton Makefile

1. Our toolbox provides a skeleton file you can use
to create your Makefile, in which only basic
targets—e.g., clean, clean-deps, realclean,
distclean, ... —and general definitions:

SCHEME = ...

are specified. Within this configuration file, you
can notice an input order for another configu-
ration file, deps, not yet existing:
+include deps

(the deps file’s contents is to be inserted, but
‘+” prevents errors if this file does not exist);

2. Run the program hb-makedepend.scm— or,
better, the deps target:

make deps

—to compute the dependencies from the mas-
ter file’s \hbincludearticleplus commands:
the result is the deps file. Fig. 3 sketches the
result corresponding to Fig. 2’s example.

3.3 Generating .pdf files

1. Now you can generate the separate articles by
means of suitable targets, as soon as you make
precise starting page numbers.

2. An extended version of Fig. 1’s program:
hb-maketoc-plus.scm

allows all the page ranges of successive parts
and articles to be checked. Then the two tables
of contents are generated as files input within
our master file.

3. The complete file can be built, either by a suit-
able target of the Makefile configuration file:

make all

or by compiling your master file with pdfI4TEX.

3.4 Post-process

Some targets allow a cover to be built, possibly with
a spine, correctly dimensioned. Then you can delete
files that have become unnecessary. You could build
online versions of separate articles, as we did for the
Cahiers GUTenberyg.

4 Numbers
4.1 Requirements

To use our toolbox, you will need, in addition to a
working distribution of KTEX & Co:

e a Scheme compiler (preferred) or interpreter,
R7RS-compliant [29]: a good example is Racket
[18], but other programs exist;

e a make utility recognising GNU!3 features [31];

e a Ruby interpreter if you are interested in gen-
erating variants.

4.2 Discussion

When we work on an article to be included into the
Cahiers GUTenberg or BachoTEX proceedings, we
put or check commands for titles and specify the first
page number. Sometimes we also check or adapt
multi-language abstracts. Of course, we make sure
that an article’s source files are compiled correctly;*
we also allow ourselves to make some slight adjust-
ment if we can avoid errors or warning issued by
typesetting systems. At this step, we deal with bib-
liographies: sometimes a .bbl file is provided, some-
times we have to run BIBTEX [25] or biber [17].

The dependency relations we generate, as shown
in Fig. 3, do not include the production of bibliogra-
phies. They do not consider the source files handled
by the \input command or the graphic files pro-
cessed by the graphicx package’s \includegraphics
command [5]. Roughly speaking, our dependency
relations are sufficient for the operations we perform,
but should not be used to make ready articles un-
finished.

4.3 Going further

When we adapted our toolbox to the BachoTEX pro-
ceedings, the most time-consuming operation was
the implementation of a new module for ConTEXt,
so-called s-tugboat-hbachotex.mkxl, more or less
equivalent to the ltugproc ATEX class. In other con-
texts, the \author command’s taxonomy depends

13 Recursive acronym: GNuU’s Not UNIX.
14 We also ask authors to provide the .pdf file they got
with their installation, if possible.

Making BachoTEX proceedings — extended version

262

on classes, as mentioned in §2. However, we would
be confident if we had to apply our method in other
analogous situations.

In future versions, we plan to study the use
of the latexmk command. Of course, we will have
to propose an alternative for source texts processed
with ConTEXt. We could also be able to automate
the generation of metadata using the .bib format
for complete proceedings, as well as for separate ar-
ticles.

5 Conclusion

After some last minor details, we expect Cahiers
GUTenberg #59 and BachoTEX proceedings to be
ready before fall 2024. The future will confirm that
or not. Then our programs will be hosted at the
servers of the French and Polish groups, as agreed.
We think that our system is open, because some
typesetting systems can coexist, some natural lan-
guages, too. We recognise that it is limited be-
cause some operations require some experience in
programming, especially in Scheme. But we hope
that some additional experience will allow us to pro-
vide turnkey programs.

Acknowledgements

I thank Karl Berry and Barbara Beeton, who proof-
read this article. Last but not least, Hans Hagen
helped us a lot about aspects related to ConTEXt.

A Additional packages

In this appendix, we briefly mention two packages
included in our toolbox.

A.1 The antispam package

This first package allows the definition of commands
changing the occurrences of the characters ‘@’ and .’
within an electronic address. Most often these two
characters are substituted respectively by ¢ (at) ’
and ¢ (dot) ’, in which case the \antispamemail
command of this package may be used. Otherwise,
you can put other conventions into action. Notice
that if the electronic address is parsed by another
command C, we have to define a robust command in
order for the electronic address to be pre-processed
before C'is applied. For example, we introduced our
electronic address as follows at this article’s begin-
ning;:

\asnetaddress{jmhuffle@femto-st.fr}
the \asnetaddress command being defined by:

\DeclareRobustCommand{\asnetaddress}[1]1{%
\netaddress{\antispamemail{#1}}}

Jean-Michel HUFFLEN

TUGDboat, Volume 45 (2024), No. 2

A.2 The more-abstracts package

This second package allows the definition of addi-
tional environments for several abstracts, in suc-
cession and written using different languages. The
abstract environment is for the English language;
other environments are provided for Polish, Spanish,
Portuguese. Creating new environments for other
languages is possible, too.

References

[1] Jacques ANDRE, Patrick BIDEAULT,

Denis B1TOUZE, Thierry BOUCHE, Michel
BovaNi, Maxime CHUPIN, Daniel FLIPO

and Yvon HENEL: “The Last Decade at
GUTenberg”. TUGboat, vol. 43, no. 1, pp. 7-9.
10.47397/tb/43-1/tb133andre-gut. 2022.

[2] AssOcIATION GUTENBERG : Iis sont de
retour !, Vol. 58 de Cahiers GUTenberg.
10.60028/cahiers.v2021i58. Septembre
2021.

[3] Pieter BELMANS: A Turing Machine in IATEX:
the Follow-Up. 12 December 2010. Universiteit
Antwerpen.
pbelmans.ncag.info/blog/2010/12/12/
a-turing-machine-in-latex-follow-u.

[4] Javier BEzos and Johannes L. BRAAMS:
babel. User Guide. Version 24.7. 26 June
2024. mirror.ctan.org/macros/latex/
required/babel/base/babel.pdf.

[5] David L. CARLISLE and THE IXTEX PROJECT:
Packages in the ‘Graphics’ Bundle. 22 May
2024. mirror.ctan.org/macros/latex/
required/graphics/grfguide.pdf.

[6] Francois CHARETTE, Arthur REUTENAUER,
Bastien ROUCARIES and Jiirgen
SPITZMULLER: polyglossia: Modern
Multilingual Typesetting with XqEXTEX and
LuaATEX. 15 July 2024. mirror.ctan.org/
macros/unicodetex/latex/polyglossia/
polyglossia.pdf.

[7] John CoLLiNs, Evan MCLEAN and David J.
MUSTLINER: latexmk — Fully Automated
IATEX Document Generation. 7 April 2024.
ctan.org/pkg/latexmk.

[8] Stuart I. FELDMAN: “Make — A Program
for Maintaining Computer Programs”.
Software: Practice and FExperience, vol. 9,
no. 1, pp. 255-265. April 1979.

[9] Jeffrey E. F. FRIEDL: Mastering Regular
Expressions. 3rd edition. O’Reilly. August
2006.

[10] Alexander GRAHN: The animate Package.
18 June 2023. gitlab.com/agrahn/animate.

https://doi.org/10.47397/tb/43-1/tb133andre-gut
https://doi.org/10.60028/cahiers.v2021i58
https://pbelmans.ncag.info/blog/2010/12/12/a-turing-machine-in-latex-follow-u
https://pbelmans.ncag.info/blog/2010/12/12/a-turing-machine-in-latex-follow-u
https://mirror.ctan.org/macros/latex/required/babel/base/babel.pdf
https://mirror.ctan.org/macros/latex/required/babel/base/babel.pdf
https://mirror.ctan.org/macros/latex/required/graphics/grfguide.pdf
https://mirror.ctan.org/macros/latex/required/graphics/grfguide.pdf
https://mirror.ctan.org/macros/unicodetex/latex/polyglossia/polyglossia.pdf
https://mirror.ctan.org/macros/unicodetex/latex/polyglossia/polyglossia.pdf
https://mirror.ctan.org/macros/unicodetex/latex/polyglossia/polyglossia.pdf
https://ctan.org/pkg/latexmk
https://gitlab.com/agrahn/animate

TUGDboat, Volume 45 (2024), No. 2

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Hans HAGEN: “LuaTgX: Howling to the
Moon”. Biuletyn Polskiej Grupy Uzytkownikéw
Systemu TEX, vol. 23, pp. 63—68. April 2006.
Tom HOTTEN and Hans HAGEN: ConTEXt,

an Excursion. Version 990527. 27 May 1999.
PRAGMA. wuw.pragma-ade.com/general/
manuals/ms-cb-en.pdf.

Jean-Michel HUFFLEN: “Extracting
Information from KTEX Source Files”.
TUGboat, vol. 43, no. 2, pp. 136-141.
10.47397/tb/43-2/tb134hufflen-extract.
2022.

Jean-Michel HUFFLEN: “Making an Issue

of Cahiers GUTenberg”. In: A Model

Kit. Modelling and Implementing Text
Typesetting in TEX and Other Systems.

Proc. BachoTEX 2023. April 2023.

Jean-Michel HUFFLEN: “Making BachoTEX
Proceedings”. In: Composed Thoughts.
Proc. BachoTgX 2023. May 2023.

Jérémy JusT: “Year 2020 at GUTenberg”.
TUGboat, vol. 42, no. 1, pp. 12-13.
10.47397/tb/42-1/tb130just-gut. 2021.

Philip KIME and Francois CHARETTE: biber.
A Backend Bibliography Processor for biblatex.
Version biber 2.20 (biblatex 3.20). 21 March
2024. ctan.org/pkg/biber.

Alexis KING: An Implementation of RTRS
in Racket. 2015. github.com/lexi-lambda/
racket-r7rs.

Yukihiro MATSUMOTO: Ruby in a Nutshell.
O’Reilly. English translation by David L.
Reynolds, Jr. November 2001.

Andreas MATTHIAS: The pdfpages Package.
29 May 2024. ctan.org/pkg/pdfpages.
Frank MITTELBACH and Michel GOOSSENS,
with Johannes BRAAMS, David CARLISLE,
Chris A. ROWLEY, Christine DETIG and
Joachim SCHROD: The IMTEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts. August
2004.

Frank MITTELBACH et Michel GOOSSENS,
avec Joannes BRAAMS, David CARLISLE,
Chris A. ROwWLEY, Christine DETIG et
Joachim SCHROD : MTEX Companion,

2¢ édition. Pearson Education France.
Traduction francaise de [21] par Jacques
ANDRE, Benoit BELLET, Jean-Come
CHARPENTIER, Jean-Michel HUFFLEN et
Yves SOULET. Octobre 2005.

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

263

H.-Martin MUONCH and Jeffrey P. GOLDBERG:
The lastpage Package. 3 July 2024.
ctan.org/pkg/lastpage.

Mariusz OLKO and Marcin WOLINSKI:

Pakiet polski, wersja 1.3.6. 25 August 2021.
ctan.org/pkg/polski.

Oren PATASHNIK: BIBTEXing. February
1988. Part of the BIBTEX distribution.
ctan.org/pkg/bibtex.

Eric PICHERAL : « Compte-rendu de lecture ».
La Lettre GUTenberg, Vol. 31, p. 13-14.
Janvier 2006. www.gutenberg-asso.fr/
Lettre-GUTenberg-31.

Sebastian RAHTZ, Heiko OBERDIEK and
THE B TEX PROJECT: Hypertext Marks in
KTEX: a Manual for hyperref. 10 July 2024.
mirror.ctan.org/macros/latex/contrib/
hyperref/doc/hyperref-doc.pdf.

Will RoBERTSON, Khaled HOsNY and Karl
BERRY: The XHTEX Reference Guide. 1 March
2024. ctan.org/pkg/xetexref.

Alex SHINN, John COWAN, and Arthur A.
GLECKLER, with Steven GANZ, Aaron W.
Hsu, Bradley LUCIER, Emmanuel
MEDERNACH, Alexey RADUL, Jeffrey T.
READ, David RusH, Benjamin L. RUSSEL,
Olin SHIVERS, Alaric SNELL-PYM and
Gerald Jay SUSSMAN: Revised” Report on the
Algorithmic Language Scheme. 6 July 2013.
trac.sacrideo.us/wg/raw-attachment/
wiki/WikiStart/r7rs.pdf.

George SPRINGER and Daniel P. FRIEDMAN:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

Richard M. STALLMAN, Roland MCcGRATH
and Paul D. SMITH: GNU Make. A Program
for Directing Recompilations. Version 4.4.1.
February 2023. www.gnu.org/software/
make/manual /make . pdf.

o Jean-Michel HUFFLEN

FEMTO-ST (UMR CNRS 6174)
& University of Bourgogne
Franche-Comté

16, route de Gray

25030 BESANGCON CEDEX

FRANCE

jmhuffle (at) femto-st (dot) fr

https://members.femto-st.fr/
Hufflen-Jean-Michel/en

Making BachoTEX proceedings — extended version

https://www.pragma-ade.com/general/manuals/ms-cb-en.pdf
https://www.pragma-ade.com/general/manuals/ms-cb-en.pdf
https://doi.org/10.47397/tb/43-2/tb134hufflen-extract
https://doi.org/10.47397/tb/42-1/tb130just-gut
https://ctan.org/pkg/biber
https://github.com/lexi-lambda/racket-r7rs
https://github.com/lexi-lambda/racket-r7rs
https://ctan.org/pkg/pdfpages
https://ctan.org/pkg/lastpage
https://ctan.org/pkg/polski
https://ctan.org/pkg/bibtex
https://www.gutenberg-asso.fr/Lettre-GUTenberg-31
https://www.gutenberg-asso.fr/Lettre-GUTenberg-31
https://mirror.ctan.org/macros/latex/contrib/hyperref/doc/hyperref-doc.pdf
https://mirror.ctan.org/macros/latex/contrib/hyperref/doc/hyperref-doc.pdf
https://ctan.org/pkg/xetexref
http://trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf
http://trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf
https://www.gnu.org/software/make/manual/make.pdf
https://www.gnu.org/software/make/manual/make.pdf

264

Full spectrum litigator: A TEX-themed
workflow for a small litigation law firm

Andrew G. Watters

1 Introduction

I am a lawyer in California, USA, with my own small
law firm. I’ve been in practice for just under 19
years, with my own law firm for 8 years. I am also
a self-taught web application programmer with 24
years of experience in the LAMP stack. In that time,
I've learned a lot about the challenges facing any
small law firm in the area of document generation
and management. These challenges include, but are
not limited to:

1. Disorganized, ad-hoc workflows that are not at
all planned in advance.

2. Proprietary applications that are Windows-only,
or even Mac-only.

3. Formatting issues between platforms (Mac and
Windows for employees, RHEL for me).

4. Use of ancient templates, usually Microsoft Word,
as well as Word macros.

5. Vendor lock-in and subscriptions.

6. Coordinating multiple people on tasks and cases.

7. Integration of various information systems, many
of them Windows-only.

8. Email and calendaring when people are used
to the convenience and ease of Gmail or the
equivalent.

The solution I've come up with (still a work in
progress) is one integrated system for handling tasks,
time, files, billing, email, calendaring, and reporting.
It came about because I was using a Mac and my
paralegal was using Windows, and we both needed
to access our Samba file server. Because accessing a
Samba file server from macOS corrupts files (at least
as of 2017), I had to come up with a cross-platform
solution for file access, and it was convenient to make
it a LAMP web application given my experience in
that field.

So the current system is a LAMP web application
running PHP and PostgreSQL, formerly with the
FPDF library in PHP to generate PDFs (we now
use IXTEX, as I will show). Email and calendaring
are handled by Postfix and Radical, respectively,
with access to end users via Thunderbird. The next-
generation system we’re working on has everything
on one screen, and TEX has become indispensable
for this new application.

The current system suffers from a number of
shortcomings, starting with the fact that FPDF is
not very configurable and certainly cannot be edited

Andrew G. Watters

doi.org/10.47397/tb/45-2/tbl40watters-1litigator

TUGDboat, Volume 45 (2024), No. 2

in the same fashion as a normal TEX file, i.e., from
the command line. FPDF is also trial and error with
creating cells in documents and outputting them to
the browser. Iterating over and over with trial and
error is inconsistent with the firm’s needs and is also
inefficient when the structure of the documents needs
to be exact and specified in advance. Enter TEX.

The current operational use of TEX in our por-
tal features (1) task orders created from TEX tem-
plates using a custom PHP script that reads the
TEX templates and inserts data from our database,
(2) pre-bills and bills using the same method, and
(3) Outlook-style email formatting and printing.

2 The TEX templates

The templates feature a custom, null command,
\php{}, which is intended to hold variables with-
out being processed. The following (abridged) TEX
template example is from the task order module in
our next-generation portal:

\documentclass[12pt,letterpaper] {letter}
\usepackage [utf8] {inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{lastpage}
\usepackage{underscore}
\usepackage{mlmodern}
\usepackage{colortbl}
\usepackage [svgnames] {xcolor}
\usepackage{soul}
\usepackage{setspace}
\hypersetup{
colorlinks=true,linkcolor=blue,
filecolor=magenta,urlcolor=blue,
pdftitle={Task Order},
pdfpagemode=, }
\usepackage [margin=1.0in] {geometry}
\usepackage{fancyhdr}
\fancypagestyle{specialfooter}{}
\fancyhf{}
\renewcommand\headrulewidth{Opt}
\fancyfoot [L]{\hrule \vspace{2.0mm} \vfill
\href{\php{varurl}}{\php{varurl}} \hfill
\href{mailto:andrewQwatters.law}{Andrew} /
\href{mailto:lindsey@watters.law}{Lindsey} /
L r
\fancypagestyle{normalfooter}{J
\fancyhf{}
\renewcommand\headrulewidth{Opt}
\fancyfoot [C]{\thepage}
}

https://doi.org/10.47397/tb/45-2/tb140watters-litigator

TUGboat, Volume 45 (2024), No. 2

% Custom highlight colors
\DeclareRobustCommand{\hlpurple}[1]
{{\sethlcolor{orange}\h1{#1}}}

\pagestyle{normalfooter}

\newcommand\tab[1] [8.0mm] {\hspace*x{#1}}

\newcommand{\php} [1]{}

%\renewcommand*\familydefault{\ttdefault}
%% Only if the base font of the document
%% is to be typewriter style

\author{Andrew G. Watters}

\title{Letterhead}

\begin{document}

\thispagestyle{specialfooter}

\textbf{\php{varname}} \hfill\ 555 Twin ...\\

\hrule

\begin{spacing}{1.5}

\begin{flushleft}

\colorbox{\php{varprecedencecolor}}
{\makebox (\textwidth,40)

{\textcolor{white}
{\php{vartaskprecedence}}}}\\

TASK ORDER\\

Assigned: \php{vartaskassigneddate}\\

Due: \php{vartaskduedate}\\

Headline: \php{vartaskheadline}\\

Assignment: \php{vartaskassignment}\\

Body: \php{vartaskbody}\\

Tags: \colorbox{teall}...

Meta: \php{vartaskmeta}\\

“\\

Printed on: \today

\end{flushleft}

\end{spacing}

\end{document}

As you can see, I've simply started every variable
with “var” followed by what I would call the variable
in a normal PHP script.

3 The PHP script

Here is the main PHP script (abridged); some discus-
sion follows.

<7php

// read .tex template from file system

$file = file_get_contents("task.tex")
or die("Could not read file.");

// put all \php-tagged variables into an array

// with offset position indicated

preg_match("/\\\php{.+7}/",$file, $matches,
PREG_OFFSET_CAPTURE) ;

265

// replace variables with data from input,

// lookup table, or database

$taskid = stripslashes(
strip_tags($_GET[’taskid’]));

// query database for task info
$connection = new PDO
(’pgsql:user=web dbname=watters password=web’);
$query = "select distinct tasks.idx as taskid...
$result = $connection->query($query);
foreach ($result as $row) {
$supervisor = $row[’supervisor’];
$handler = $row[’handler’];
$casename = $row[’name’];

$caseid = $row[’caseid’];

// precedence color
switch($precedence) {

case "O":

$color = "violet";
$precedence = "CRITIC";
break;

case "1":

$color = "red";

$precedence = "URGENT";

}
// get staff list
$staff = "";
$staff_query = "select idx as staffid ...";
$staff_result = $connection->query($staff_query);
foreach($staff_result as $user_row) {

$staff

. $user_row[’handle’] . ":"

.= $user_row[’staffid’] . ":"

. $user_row[’email’] . ","; }
$tagged_staff = explode(",",$staff);
$vartags = ""; $tagemails = "";

foreach ($tagged_staff as $key => $value) {
$tags = explode(":",$value);
if (preg_match("/\b" . $tags[0] "\b/",
$row[’tagged_staff’])
and (strlen($tags[0] > 0))) {
$tags[1] . " ";
.= $tags[2] LI

$vartags .=
$tagemails

// lookup table for variables
$name = stripslashes(strip_tags($_GET[’name’]));
if ($name == "") {

$name = "Andrew G. Watters, Esq."; }
$url = stripslashes(strip_tags($_GET[’url’]));
if ($url == "") {

$url = "https://wuw.watters.law"; }

Full spectrum litigator: A TEX-themed workflow for a small litigation law firm

266

// arrays of patterns and replacements

$prefix = "/\\\php{"; $suffix = "}/";

$search = array($prefix . "varname" . $suffix,
$prefix . "varurl" $suffix, ...);

$replace = array($name, $url, ...);

$newfile = preg_replace($search,$replace,$file);

// create new .tex file

file_put_contents("./tasks/taskorder_" . $taskid
".tex", $newfile)

or die("Could not write taskorder_$taskid.tex.");

// process bar.tex file

$bin = "/home/texlive/2024/bin/x86_64-1linux/"
"pdflatex";

$opt = "-interaction nonstopmode";

$file = "taskorder_$taskid.tex";

exec("cd tasks; $bin $opt $file")

or die("Could not render PDF.");

// if asked to mail to user, send email
$email = stripslashes
(strip_tags($_GET[’email’]));
if ($email == "true") {
$uid = md5(uniqid(time()));
$attachment = baseb64_encode
(file_get_contents
("./tasks/taskorder_$taskid.pdf"))
or die("Could not load PDF attachment.");
// get tagged users’ emails
$emails = explode(",",$tagemails);
foreach($emails as $key => $value) {
if ($value != "") {
echo "mailto: $value\n";
mail ($value,
"Task Order - Andrew G. Watters, Esq.",
"--$uid\r\nContent-type:text/plain...");

}
}
}
else {
// display PDF in browser
$filename = "./tasks/taskorder_$taskid.pdf";

header (’Content-type:application/pdf’);
header(’Content-disposition: inline; filename="’
)ll));

header (’Content-Transfer-Encoding:binary’) ;

$filename .

header(’Accept-Ranges:bytes’);
@readfile($filename) or die("File not found.");

}

>

Andrew G. Watters

TUGDboat, Volume 45 (2024), No. 2

In my PHP code, I read the TEX template file
into a string. I then specify arrays of patterns and
replacements using the built-in preg match function
in PHP. As long as the arrays of patterns and re-
placements are the same length, the patterns will be
replaced in the order they appear in the arrays. In
other words, the first element of the pattern array
is replaced with the first element of the replacement
array, and so on.

Once the replacements are made, I write a new
TeX file with the correct data. I then render the
TEX file with the pdflatex command and display
the results in the browser, or else email the PDF to
the user, depending on user preference.

4 Task orders

Tasks in the law firm are assigned on the home page
of the portal. The problem is that the portal is a
static web page and there is no easy way to print
out particular tasks with all the correct fields and
have it be user-friendly. So I implemented the task
order feature that emails users a PDF with all the
key information that they can print out, if desired:

Andrew G. Watters, Esq.
Litigation and Trial Law Firm
+1 (415) 261-8527

555 Twin Dolphin Dr., Ste. 135
Redwood City, CA 94065
andrew@watters.law

TASK ORDER
Case: McMillin v. Yorkpro

Assigned: 2024-07-06 09:50:57

Due: 2024-07-13 09:49:16

Assignment: AGW—JSS

Headline: Prepare motion to enforce settlement 664.6

Body: Client’s former counsel stipulated to judgment and it was never paid. Prepare
motion to enforce under 664.6.

Estimate: 8.0 hours

by AGW JSS

Meta:

Printed on: August 10, 2024

https://www.watters.law Andrew / Lindsey / Susanna / Jeramy

Of course, I can also print the task orders to my
office copier from the command line as part of this
system with an additional command. In this way,
I can assign and print a task from anywhere with
Internet access, which is helpful when I'm working

TUGboat, Volume 45 (2024), No. 2

267

Andrew G. Watters, Esg.

555 Twin Dolphin Dr., Ste. 135
Redwood City, CA 94065
+1(415) 261-8527
andrew@andrewwatters.com

Date: 2024-08-10

Pre-bill for: Ganapuram, Jessica
on: In re Ganapuram

Date: 2023-11-12 06:24:41

Staff: AGW

Task: Respond in depth to client's email with list of detailed questions about strategy and other
matters.

Time: 0.8 @ $500.00/hr. = $400

Date: 2023-11-20 07:39:51
Staff: AGW

Task: Email from client with questions, and reply.
Time: 0.3 @ $500.00/hr. = $150

Date: 2024-04-22 02:14:45

Staff: AGW

Task: Lengthy email from client, and detailed reply.
Time: 0.6 @ $500.00/hr. = $300

Date: 2024-05-27 17:26:04

Staff: LJ

Task: Review correspondence with client and draft of Request for Domestic Violence
Restraining Order from 2023. Email to client.

Time: 0.4 @ $400.00/hr. = $160

Date: 2024-05-27 17:27:31

Staff: LJ

Task: Text messages to and from client. Receive, review, and process Emergency Protective
Order. Prepare Petition, Dispute Resolution Options, and Declaration
Under Uniform Child Custody Jurisdiction and Enforcement Act. Emails to client, with
attachments.

Time: 1.8 @ $400.00/hr. = $720

Date: 2024-05-28 11:19:37

Staff: AGW

Task: Host Zoom call with client regarding divorce and domestic violence petition.
Time: 0.5 @ $500.00/hr. = $250

Date: 2024-05-29 17:28:05
Staff: LJ
Task: Email from client. Revisions to Petition and Declaration Under Uniform Child Custody

Andrew G. Watters, Esq.
Litigation and Trial Law Firm
+1 (415) 261-8527

555 Twin Dolphin Dr., Ste. 135
Redwood City, CA 94065
andrew@watters.law

August 10, 2024
Ganapuram, Jessica
Pre-bill for the matter of: In re Ganapuram

Date: 2023-11-12 06:24:41 Staft: AGW

Task: Respond in depth to client’s email with list of detailed questions about strategy and
other matters.

Time: 0.8 @ $500.00/br. = $400.00

Date: 2023-11-20 07:39:51 Staft: AGW
Task: Email from client with questions, and reply.
Time: 0.3 @ $500.00/hr. = $150.00

Date: 2024-04-22 02:14:45 Stafl: AGW
Task: Lengthy email from client, and detailed reply.
Time: 0.6 @ $500.00/hr. = $300.00

Date: 2024-05-27 17:26:04 Staff: LJ

Task: Review correspondence with client and draft of Request for Domestic Violence
Restraining Order from 2023. Email to client.

Time: 0.4 @ $400.00/hr. = $160.00

Date: 2024-05-27 17:27:31 Staff: LJ

Task: Text messages to and from client. Receive, review, and process Emergency
Protective Order. Prepare Petition, Summons, Alternative Dispute Resolution Options,
and Declaration Under Uniform Child Custody Jurisdiction and Enforcement Act. Emails
to client, with attachments.

Time: 1.8 @ $400.00/hr. = $720.00

Date: 2024-05-28 11:19:37 Staff: AGW
Task: Host Zoom call with client regarding divorce and domestic violence petition.
Time: 0.5 @ $500.00/hr. = $250.00

Date: 2024-05-29 17:28:05 Staff: LJ

Task: Email from client. Revisions to Petition and Declaration Under Uniform Child
Custody Jurisdiction and Enforcement Act. Email to client, with attachments.
Time: 0.3 @ $400.00/hr. = $120.00

Date: 2024-05-29 17:28:41 Staff: LJ
Task: Emails and texts to and from client. Receive and process attachments. Prepare final
copies and file Petition, Summons, Alternative Dispute Resolution Options, and

htps:/ /www.watters.law Andrew / Lindsey / Susanna / Jeramy

Figure 1: FPDF (left) and TEX (right) output of a pre-bill.

from home or in the event I ever decide to become a
digital nomad.

5 Pre-bills and bills

Pre-bills are an opportunity for the clients to see
where they stand with their accounts and what they
will owe when the bill is issued. This is a commonly
used feature and is critically important in a law firm.
I'll display the FDPF result and the TEX result side-
by-side in figure 1.

Although FPDF is faster than TEX, the TEX
result is much more professional-looking and more
easily formatted.

6 Outlook-style email printing

On this module, I integrate IMAP commands and
data with TEX to retrieve data from my email server
and print it to a PDF using the same method as
above (figure 2). It still requires some work to get
the formatting correct, which is in progress.

7 Future work

Future uses that we’re working on include (1) generat-
ing actual pleadings and other legal documents from
templates using existing data in our database, and
(2) printable calendars and reports showing deadlines
and similar information. This is an ideal use case
for TEX for several reasons, including that it’s free

Andrew G. Watters, Esq. 555 Twin Dolphin Dr.,
Litigation and Trial Law Firm Redwood City,
+1 (415) 261-8527 andrew@watters.law

Fri, 9 Aug 2024 16:41:50 -0700 / Jeramy Stone jjeramy@andrewwatters.com;, /
”S)@asaplegal.com” [SJ@asaplegal.com; / Santa Clara 23FL003885 Petitioner’s FL-320
Responsive Declaration To Request For Order /1 /0 /1 /MIXED /0/0/0/0/1/
Array / Array / Hi,

Can you please file this for us today? Opposing counsel has been served a copy.
Best regards, Jeramy

~ Jeramy Stone Associate Attorney jeramy@andrewwatters.com

https://www.andrewwatters.com/law/ (415) 340-0762

Printed on: August 10, 2024

https:/ /www.watters law Andrew / Lindsey / Susanna / Jeramy

Figure 2: Sample email PDF.

Full spectrum litigator: A TEX-themed workflow for a small litigation law firm

268

and open source. A sample of what may be possible
follow:

Andrew G. Watters (#237990)
Susanna L. Chenette (#257914)
555 Twin Dolphin Dr., Ste. 135
Redwood City, CA 94065

+1 (415) 261-8527
andrewQandrewwatters.com

1

2

3

4

5 || Attorneys for Plaintiffs Hanich Sigari and Qyral, LLC
6

7

8 UNITED STATES DISTRICT COURT
9

FOR THE NORTHERN DISTRICT OF CALIFORNIA

11 || HANIEH SIGARL, an individual;
QYRAL, LLC, a California Limited
Liability Company,

13 Plaintiffs,

Case No: 5:24-CV-01816-EJD

PLAINTIFF’'S REPLY ON PLAIN-
TIFF’S ORDER TO SHOW CAUSE RE
PRELIMINARY INJUNCTION

14 v.

Date: August 21, 2024

Time: 1:30 p.m.

Place: Courtroom 4

DARIUSZ BANASIK, an individual;
16 || Does 1-10,

17 Defendants; The Honorable Edward J. Davila

19 || Corporation; GOOGLE LLC, a Delaware
Limited Liability Company;

20 || GODADDY.COM, LLC, a Delaware
Limited Liability Company; METRICS
GLOBAL, INC., a Nevada Corporation;
29 || RECHARGE INC,, a Delaware
Corporation,

Nominal Defendants.

)
)
)
)
)
)
)
)
)
)
)
)
SHOPIFY (USA) INC., a Delaware %
)
)
)
)
)
)
)
)
)
)

-1- REPLY ON OSC RE PRELIMINARY INJUNCTION

8 Conclusion

TEX is the greatest free software of all time for us, and
it integrates nicely with the LAMP web application

stack that we have been using for nearly ten years.

I find it straightforward to integrate into my web
application because it’s editable in Vim and can
process relatively quickly.

Challenges include that rendering speed is not
optimal for a web-based user interface. However, as
pointed out during the Q&A for my presentation
at TUG 2024, it may be possible to pre-render the
most time-consuming sections of the template in
advance in order to accelerate the responsiveness of
the application. I intend to explore that in the near
future.

¢ Andrew G. Watters
555 Twin Dolphin Dr., Ste. 135
Litigation and Trial Law Firm
Redwood City, CA 94065
+1 (415) 261-8527
andrew (at) andrewwatters dot com
https://andrewwatters.com

TUGDboat, Volume 45 (2024), No. 2

Expanding hyphenation patterns across
Slavic languages

Ondrej Sojka

Abstract

So far, TEX hyphenation patterns, even for related
languages, have been developed separately for each
language, splitting scarce human resources. As lan-
guages develop and (especially) English terms creep
into formerly monolingual texts, hyphenation pat-
terns, especially for medium- and low-resource lan-
guages which often lack quality generated patterns,
are due for an update. In this article, we explore
the possibilities for transfer learning of hyphenation
rules between related Slavic languages.

We present new hyphenation patterns for multi-
ple Slavic languages, developed using transfer learn-
ing from various sources.

1 Motivation

Hyphenation patterns play a crucial role in typeset-
ting and text layout, particularly for languages with
long words or narrow text columns. They ensure
proper word breaks at line ends, improving readabil-
ity and aesthetics of printed or digital text. Good
hyphenation patterns contribute to more uniform
text distribution, reducing the occurrence of large
gaps between words or excessive hyphenation, mak-
ing reading more pleasant.

The quality of available hyphenation patterns
across Slavic languages varies, with low- and medium-
resource languages being impacted the most. Often,
the only patterns available are ones made by hand,
without the pattern generation program Patgen [2],
more than a decade ago. These are insufficient, es-
pecially considering the mediocre generalization ca-
pabilities of Patgen.

Hyphenation patterns in Slavic languages are,
however, syllabic and syllabification is very similar
across languages.

Pattern generation is also a niche topic and the
associated know-how is fairly sparsely distributed.

But since syllabification rules and patterns do
not vary across languages from the same family, why
do we have to develop patterns for each language
separately? After all, native speakers of one Slavic
language, upon hearing a spoken word from a dif-
ferent Slavic language and being provided with the
written form, can hyphenate it correctly.

If we can acquire text data that express the spo-
ken form of the word, we should be able to generate
patterns that hyphenate as well as such a native
speaker.

doi.org/10.47397/tb/45-2/tb140sojka-slavic

TUGboat, Volume 45 (2024), No. 2

269

Algorithm 1 Transfer hyphenations between word forms

Require: hyphenated (hyphenated word in source script), target (unhyphenated word in target script)
Ensure: best result (hyphenated word in target script)

1: function TRANSFERHYPHENS(hyphenated, target)

2: num_hyphens < COUNTHYPHENS(hyphenated)

3: possible positions < {1,..., len(target) —1}

4: best _result < ""

5: min_distance - oo

6: for hyphen positions in COMBINATIONS(possible positions, num__hyphens) do
7: if FIrRsT(hyphen positions) # 0 and LasT(hyphen positions) # len(target) —1 then
8: candidate <— INSERTHYPHENS(target, hyphen positions)

9: current_ distance <— LEVENSHTEINDISTANCE(hyphenated, candidate)

10: if current distance < min_distance then

11: best result <— candidate

12: min distance < current distance

13: end if

14: end if

15: end for

16: return best result

17: end function

2 International Phonetic Alphabet

The International Phonetic Alphabet (IPA) [1] is a
standardized system for representing the sounds of
human speech. Created by the International Pho-
netic Association, it uses Latin-based symbols to
uniquely represent phonemes, stress, and intonation
across all languages. In our project, IPA serves as
a crucial intermediary, providing a common pho-
netic representation that bridges orthographic dif-
ferences between Slavic languages. This allows us to
capture phonological similarities that might be ob-
scured by orthographic differences and varied scripts
(Latin vs. Cyrillic), enabling effective cross-lingual
transfer of hyphenation patterns.

3 Joint IPA-form data preparation
3.1 Data acquisition

To start, we need a dataset of words used in each
of the target languages' with frequency data. Given
the importance of replicability and licensing restric-
tions often placed on proprietary datasets, we settled
with a cleaned wordlist of all words from the Wiki-
pedia of each language. We strip the XML tags and
clean words that occur relatively more frequently on
Wikipedia as part of common article layouts, such

1 Target languages are all Slavic languages for which some
hyphenation patterns currently exist and which have their own
mutation of Wikipedia. Only languages which pass evaluation
will be proposed for inclusion in hyph-ut£8 [3].

as Table, References, External links and similar, ac-
quiring a replicable, relatively clean, wordlist.

3.2 Hyphenation of original word forms

We apply the best available hyphenation patterns
for each target language to hyphenate all the words
in our frequency word list with a frequency higher
than 50 and generate the file (lang).wlh, containing
the word list hyphenated.

3.3 Transfer of hyphenations to IPA
word form

We use espeak-ng [4] to convert from the written
word form (in either Latin or Cyrillic script) to the
form in IPA [1].

The next step is to acquire hyphenated words
in IPA by transferring the hyphenations from the
written (Latin or Cyrillic) form to IPA. We use
Algorithm 1 to transfer the hyphenations.

This approach is computationally expensive, but
is highly parallelizable and therefore not a problem
on modern hardware.

4 Joint IPA-form pattern generation

To generate patterns that hyphenate across languages
in IPA, we first need to decide what data to use. If
we were to weigh data from each language in the
training set equally, considering that any machine
learning model generally can be only as good as its
training data, we would get mediocre patterns.

Expanding hyphenation patterns across Slavic languages

270

Patterns are indeed able to learn the IPA data-
set, as shown by the results of a run with correct
optimized parameters: good: 99.84%, bad: 0.13%,
missed: 0.16%.

4.1 Ground truth data for evaluation of
data mixes

To decide on the mix, we need data to evaluate the
quality of a given language-specific pattern set. To
do this, we acquire ground truth data from various
sources —in order of preference: language institutes,
dictionaries, wiktionaries, human labelers, etc. It is
disappointingly rare to find hyphenations in ortho-
graphic dictionaries.

4.2 Mixing training data for joint
IPA-form pattern generation

To generate high-quality patterns that effectively
hyphenate across Slavic languages in IPA form, we
employ a strategic approach to mixing training data.
Our process involves the following steps:

1. Initial sampling: We randomly sample five
sets of weights from the possible weight set.
Each weight corresponds to the importance given
to a specific language’s training data.

2. Model fitting: Using these initial weight sets,
we fit a random forest model. This model learns
the relationship between the weight combina-
tions and the quality of the resulting patterns.

3. Guided sampling: The random forest model
is then used to guide further sampling of weight
combinations. This approach allows us to ex-
plore the weight space more efficiently, focusing
on areas that are likely to yield better results.

4. Evaluation: For each set of weights, we gen-
erate patterns and evaluate them using a cus-
tom scoring function. The score is calculated as
good —bad x 5, where ‘good’ represents correctly
placed hyphenation points and ‘bad’ represents
incorrectly placed ones. This scoring method
heavily penalizes incorrect hyphenations while
rewarding correct ones.

5. Selection: After exploring a predetermined
number of weight combinations, we select the
set that produces the highest score.

This method allows us to efficiently search the space
of possible weight combinations and find an optimal
mix of training data from different Slavic languages.

Ondfej Sojka

TUGDboat, Volume 45 (2024), No. 2

5 Final language-specific pattern
generation

As the final step, we convert each of the target lan-
guage frequency datasets to IPA, hyphenate them
with the joint patterns and use algorithm 1 on the
previous page to transfer the hyphens to the target
language. Having a well-hyphenated wordlist, we
run Patgen with a custom parameter set inspired by
previously published correct-optimized patterns [5].
and generate the final language-specific patterns.

6 Evaluation

To evaluate the quality of the resulting patterns,
we turn from machines back to humans. Native
speakers of every target language will be presented
with sets of 100 randomly shuffled hyphenations and
will be asked to decide which hyphenation they find
better. For languages in which the improvement
has cleared the threshold of statistical significance,
we will propose their inclusion into tex-hyphen [3],
the de facto canonical repository of hyphenation
patterns.

References

[1] International Phonetic Association. Handbook
of the International Phonetic Association:

A Guide to the Use of the International
Phonetic Alphabet. Cambridge University Press,
Cambridge, 1999.

[2] F.M. Liang. Word Hy-phen-a-tion by
Com-put-er. Ph.D. thesis, Dept. of Computer
Science, Stanford University, Aug. 1983.
tug.org/docs/liang/liang-thesis.pdf

[3] A. Reutenauer, M. Miklavec. TEX hyphenation
patterns. hyphenation.org/

[4] J. Reynolds. eSpeak NG, 2016.
github.com/espeak-ng/espeak-ng

[5] P. Sojka, O. Sojka. New Czechoslovak
hyphenation patterns, word lists, and workflow.
TUGboat 42(2):152-158, 2021. doi.org/10.
47397/tb/42-2/tb131sojka-czech

©o Ondrej Sojka
Faculty of Informatics, Masaryk Univ.,
Brno, Czech Republic
454904 (at) mail dot muni dot cz
ORCID 0000-0003-2048-9977

https://tug.org/docs/liang/liang-thesis.pdf
https://hyphenation.org/
https://github.com/espeak-ng/espeak-ng
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.47397/tb/42-2/tb131sojka-czech

TUGboat, Volume 45 (2024), No. 2

Packaging Arsenal fonts for (Xe /Lua)lATEX

Boris Veytsman

Typography is an art, and as any art, reflects peoples’ lives, tastes,
convictions, and views. An important part of the reality today is
the process of decolonization, when groups previously not heard
acquire voices. This process inspires an interest in the artistic
traditions of formerly underrepresented groups, including their
writing traditions. The interplay of politics, social movement, and
typography in the decolonization era was among the most dis-
cussed topics at the recent Face/Interface conference at Stanford
(a report on this conference can be found in Veytsman (2024a)).

It is not surprising that Ukraine, which was one of the first
conquests of Russia, and now struggles to defend its indepen-
dence, tries to rethink its traditions as different from those of the
oppressors. A good illustration of this process may be the recent
change of signage for Kyiv metro stations. In Figure 1is shown
the old station name (Leo Tolstoy Place) and the new name (The
Place of Ukrainian Heroes). The change does not just involve the
transition from the Russian realities (Leo Tolstoy, while being a
great writer, has little to do with Ukraine), but also the transition
to a quite distinctive Ukrainian typography, proudly showing off
its “Ukraineness”.

The decolonization of art is important not just for the decol-
onized people, but for the rest of us as well, making our common
inheritance richer. | wanted to participate in this process by in-
cluding in TeX distributions a distinctively Ukrainian font. While

The old signage (Wikimedia Commons, 2024)

The new signage and its author Bohdan Hdal (fikoBeHko, 2024)

Figure 1: Signage for a Kyiv metro station

doi.org/10.47397/tb/45-2/tb140veytsman-arsenal

27

Figure 2: Andrij Shevchenko, from
www.ukrainian-type.com/fontarsenal/

there is a number of such fonts today, most of them are com-
mercial. Free Ukrainian fonts are often released under licenses
incompatible with TeXLive. Fortunately there was a high quality
font recently released under Open Font License (OFL). It has a
quite interesting history, which we will briefly touch here.

One of the influential cultural establishments of Ukraine
is Mystetskyi Arsenal, “The Arsenal of Arts” (artarsenal.in.
ua/en/), amuseum and art exhibition complex in Kyiv. By the
way, the word “Arsenal” itself has a multicultural history, having
the origin in Arabic dar-as-sinata, “the house of art/industry”,
and probably introduced into modern European languages due
to the “Venetian Arsenal”, a complex of shipyards and armories
dating to early 12th century (I am grateful to Enrico Gregorio
who explained this etymology to me). In 2011 Mystetskyi Arsenal
and STAIRSFOR studio conducted a competition for a modern,
business-like font in Ukrainian traditions (www.ukrainian-
type.com/about/) (the idea of the competition belongs to
Mykhaylo II'ko). The first prize was 2100 000 (about €10 000 at
that time). According to the competition rules, the winner ought
to change the title of the font to Arsenal and release it under the
OFL.

The competition was won by Andrij Shevchenko (Figure 2).
His font has narrow proportions, moderate aperture, and observ-
able contrast. It is clear, neutral and easy to read.

Since the font was released under the OFL, the magic of
free software did its work: several people took efforts to extend it.
Additional letters were added by Alexei Vanyashin, Marc Foley &
cyreal.org, and Vietnamese support was provided by Nhung
Nguyen. Now it is quite a mature font, with 715 glyphs (github.
com/alexeiva/Arsenal).

Packaging Arsenal fonts for (Xe /Lua)lATEX

http://www.ukrainian-type.com/fontarsenal/
https://artarsenal.in.ua/en/
https://artarsenal.in.ua/en/
http://www.ukrainian-type.com/about/
http://www.ukrainian-type.com/about/
http://cyreal.org
https://github.com/alexeiva/Arsenal
https://github.com/alexeiva/Arsenal
https://doi.org/10.47397/tb/45-2/tb140veytsman-arsenal

272

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a;, @, ...

TUGboat, Volume 45 (2024), No. 2

, Q. Iy is

a closed rectifiable curve in G which does not pass through any of the points ay and if ¥ ~ 0 in G then

sz Lf = ; n(y; ay)Res(f; ay).

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a continuous function on G~

which is analytic in G. Then

max{|f(z)| : z€ G} = max{|f(z)| : z € IG}.

(a) math=arsenal+kpsans option

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a,, a,, ...

yam. Ify

is a closed rectifiable curve in G which does not pass through any of the points a, and if = O in G then

1 m
5o J;f = Z n(y; ax)Res(f; ax).

k=1

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a continuous function on G~

which is analytic in G. Then

max{|f(z)| : z € G7} = max{|f(z)| : z € AC}.

(b) math=kpsans option

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a1, as, . .

ap fy

is a closed rectifiable curve in G which does not pass through any of the points a; and if y = 0 in G then

1

27i v

— | = Zn(y; a)Res(f; ay).
k=1

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a continuous function on G~

which is analytic in G. Then

max{|f(z)| : z € G~} = max{|f(2)| : z € 0C}.

(c) math=iwona option

Figure 3: Mathematical typesetting. The sample text is taken from (Mittelbach and Fischer, 2023).

IATEX support (Veytsman, 2024b) was almost embarrass-
ingly easy to write due to the great fontspec package (Robert-
son and The IATEX Project Team, 2024). Arsenal IATEX has usual
the options default and sfdefault to specify the roman or
sans serif font as the default, respectively. The option Scale
allows to select the scaling of the font. The package provides
the usual commands to select the normal font, italic, bold, and
bold italic versions. The font does not have small caps, but
its swash version has all four variants: NORMAL, TTALIC,
BOLD, and BOLD TTALIC. These variants are selected by
the declaration \swfamily or the command \textsw. The
font has relatively rare currency symbols, \texthryvnia 2,
\texttugrik ¥, \texttenge T, \textruble P, as well
as printer's devices \textaldine &, \textsmilewhite ©,
\textsmileblack ®. The package provides commands for
them.

Mathematical support currently is rather experimental (see
Figure 3) The package provides four variants of math support.
The option math=arsenal+kpsans uses letters from Arse-

Boris Veytsman

nal fonts, adding missing symbols from KpMath Sans font (Flipo,
2024) (Figure 3a). This is the default when LualATEX is used. Un-
fortunately, due to a bug in X3TEX, the spacing seems to be off
under X3TgX. The option math=kpsans uses KpMath Sans for
all math (Figure 3b). The option math=iwona uses the con-
densed light Iwona mathematical font (Nowacki, 2010) with the
interface (Veytsman, 2024c) (Figure 3c). This is the default for
XeTeX. The fourth option, math=none is intended for those who
want to experiment with their own approaches to math support.

The package is written in the expl3 language to take advan-
tage of the IATEX3 option handling.

Of course, this article is typeset with Arsenal. To give some
impression of how Ukrainian looks when typeset with this font,
we show a poem by the modern Ukrainian poet Serhiy Zhadan
(Figure 4).

Recently Arsenal was chosen as the font of the month for
the November 2023 issue of La Lettre GUTenberg (Chupin, 2023)
(Figure 5). It is both an honor and an opportunity to see the font
used in “real life”. Arsenal seems to pass this test rather well. This

TUGboat, Volume 45 (2024), No. 2

1)

lonoc i3 Toro 6oky piku.

PaHHbOI OCEHI TUXMIA LOJEHHWK.

CnadTh, NOKNABLUK HA CTiN KYNAKM,
CiNbCbKNIA YYUTEb | CiNbCbKNIA CBALLEHHMK.

Tenno 6araToAiTHUX POAMH.

JI0BMTbLCS NPUCMaK YOroch ripKoro.

— CbOrofHi HiKoro, — KaXke oJuH.

— | B MeHe, — iHLIW rOBOPUTb, — HIKOTO.

linKa 3HaABOPY XMANTHCA Bpas.

TWCHe rosika Yy»ol KpuBaW.

— Mgy, — KaXxe nepnii, — Nporpito Knac.
lMouekato, Moxe XToCb npuine.

— [laBaii, — roBOpUTH iHWNIA, — ign.

Jlowi Haf piuniiem, Haye KBiTu.
Monepeay Bedip i xonoau.

MoTpibHO vekaty.

MoTpibHo rpiTn.

Cepeiit 7KagaH, 07.08.21

Figure 4: A poem by Serhiy Zhadan (Xapgan, 2023)

Numéro 51 - novembre 2023

Compte rendu de la réunion du conseil dadministration du 13 juin 2023
Compte rendu de la réunion du conseil d administration du 10 septembre 2023
présentiel 7

Journée GUTenberg
Bilan moral :ja

osition de cotisation 1

Acronymes 66
Adhésion lassociation 67

Chers adhérents,

la Lettre précédente est parue le 14 uin dernier. Nous y annoncions les exposés mensuels.lls ont désormais
trouvé leur public et pris leur place dans lactualité Texnologique francophone. Ces deriers mois, ils
constituérent [a plus visible des activités de votre association. Qui furent nombreuses, et e présent numéro
en rend compte. Maxime Chupin y a largement contribué, tant par sa traduction dun artile indispensable
aux débutants quen abondant les nouveautés ou en éditant un grand nombre de textes. Dens Bitouzé a
de son coté beaucoup travaillé sur la nouvelle ¢a0. Celle-ci est désormais préte; il vous la présentera le 18
novembre lors de la prochaine journée GUTenberg

Peut-étre vous souvenez-vous quil y atrois ans, nous parlions déja de la nouvelle faq. Trois ans, Cest donc
le temps quil nous aura fallu pour voir abouti ce projet, qui rendra de grands services & la communauté
francophone. Ainsi va factivité associative, fondée sur le bénévolat. Certaines idées, trop ambitieuses, sont
délaissees : Cest le cas de la traduction francaise de la nouvelle édition du e Companion, évoquée dans
le numéro précédent . D'autres projets suivent leur cours : dans la précédente Lettre, nous annoncions

1. Voirhttps

Avez-vous pensé a régler votre cotisation?

Si vous avez oublié, ce west ni trop tard ni difficile :
https://www.gutenberg-asso. fr/?Adherer-en-1ligne

Figure 5: La Lettre GUTenberg, 51, novembre 2023

273

again proves that national traditions in art have meaning outside
the nation’s borders, being the legacy of us all.

Bibliography
Maxime Chupin. La fonte de ce numéro : Arsenal.
La Lettre GUTenberg, 51:59-62, 2023. publications.

gutenberg-asso.fr/lettre/article/view/
142/151.

Daniel Flipo. The kpfonts-otf package. OTF version of the
Kp-fonts, 2024. ctan.org/pkg/kpfonts-otf.

Frank Mittelbach and Ulrike Fischer. The IATEX Companion:
Parts I & II. Addison-Wesley, third edition, 2023.

Janusz Marian Nowacki. The iwona package. A two-element
sans-serif font, 2010. ctan.org/pkg/iwona.

Will Robertson and The IATEX Project Team. The fontspec
package. Advanced font selection in XeLaTeX and LualaTeX,
2024. ctan.org/pkg/fontspec.

Boris Veytsman. Face/Interface 2023 conference:
Global type design and human-computer interaction.
TUGboat, 45(1):7-10, 2024a. 1SSN 0896-3207.
doi.org/10.47397/tb/45-1/tb139veytsman-
face.

Boris Veytsman. The arsenal package. Open Type font by
Andrij Shevchenko, 2024b. ctan.org/pkg/arsenal.

Boris Veytsman. The iwonamath package. IATEX support
for scaled Iwona math fonts, 2024c. ctan.org/pkg/
iwonamath.

Wikimedia Commons. File:Mnowa J1bBa ToncTtoro Ha3ea.jpg
— wikimedia commons, the free media repository, 2024.
commons .wikimedia.org/w/index.php?title=
File:%D0%9F%D0%BB}%D0%BE.D1%89%D0%BO_%D0%
9B7D1%8C%D0%B2%D0%B0_%D0%A2%D0%BE%.DO%BBY
D1%81%D1%82%D0%BE}%D0%B3%D0%BE_%D0%BD%D0%
B0%DO0%B7%D0%B2%D0%B0 . jpg&oldid=859561010.

Cepriit XagaH. Ckpunuukiska. Meridian Czernowitz, 2023.

IprHa koBeHKo. Ha ctaHuii MeTpo «[liowa YKpaiHCbKux
lepoiB» BCTAHOBWAW NiTepyn 415 HOBOI Haseu. The Village
YkpaiHa, April 2024. www.village.com.ua/
village/city/city-news/349665-na-
stantsiyi-metro-ploscha-ukrayinskih-
geroyiv-vstanovili-novu-nazvu.

¢ Boris Veytsman
TeX Users Group
borisv (at) 1k dot net
https://borisv.lk.net

Packaging Arsenal fonts for (Xe /Lua)lATEX

https://publications.gutenberg-asso.fr/lettre/article/view/142/151
https://publications.gutenberg-asso.fr/lettre/article/view/142/151
https://publications.gutenberg-asso.fr/lettre/article/view/142/151
https://ctan.org/pkg/kpfonts-otf
https://ctan.org/pkg/iwona
https://ctan.org/pkg/fontspec
https://doi.org/10.47397/tb/45-1/tb139veytsman-face
https://doi.org/10.47397/tb/45-1/tb139veytsman-face
https://ctan.org/pkg/arsenal
https://ctan.org/pkg/iwonamath
https://ctan.org/pkg/iwonamath
https://commons.wikimedia.org/w/index.php?title=File:%D0%9F%D0%BB%D0%BE%D1%89%D0%B0_%D0%9B%D1%8C%D0%B2%D0%B0_%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B3%D0%BE_%D0%BD%D0%B0%D0%B7%D0%B2%D0%B0.jpg&oldid=859561010
https://commons.wikimedia.org/w/index.php?title=File:%D0%9F%D0%BB%D0%BE%D1%89%D0%B0_%D0%9B%D1%8C%D0%B2%D0%B0_%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B3%D0%BE_%D0%BD%D0%B0%D0%B7%D0%B2%D0%B0.jpg&oldid=859561010
https://commons.wikimedia.org/w/index.php?title=File:%D0%9F%D0%BB%D0%BE%D1%89%D0%B0_%D0%9B%D1%8C%D0%B2%D0%B0_%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B3%D0%BE_%D0%BD%D0%B0%D0%B7%D0%B2%D0%B0.jpg&oldid=859561010
https://commons.wikimedia.org/w/index.php?title=File:%D0%9F%D0%BB%D0%BE%D1%89%D0%B0_%D0%9B%D1%8C%D0%B2%D0%B0_%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B3%D0%BE_%D0%BD%D0%B0%D0%B7%D0%B2%D0%B0.jpg&oldid=859561010
https://commons.wikimedia.org/w/index.php?title=File:%D0%9F%D0%BB%D0%BE%D1%89%D0%B0_%D0%9B%D1%8C%D0%B2%D0%B0_%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B3%D0%BE_%D0%BD%D0%B0%D0%B7%D0%B2%D0%B0.jpg&oldid=859561010
https://www.village.com.ua/village/city/city-news/349665-na-stantsiyi-metro-ploscha-ukrayinskih-geroyiv-vstanovili-novu-nazvu
https://www.village.com.ua/village/city/city-news/349665-na-stantsiyi-metro-ploscha-ukrayinskih-geroyiv-vstanovili-novu-nazvu
https://www.village.com.ua/village/city/city-news/349665-na-stantsiyi-metro-ploscha-ukrayinskih-geroyiv-vstanovili-novu-nazvu
https://www.village.com.ua/village/city/city-news/349665-na-stantsiyi-metro-ploscha-ukrayinskih-geroyiv-vstanovili-novu-nazvu

274

dynMath: Underlying principles of the design
Abdelouahad Bayar

Abstract

This article presents the basic principles underlying
the design and development of dynMath, a package
that supports dynamic mathematical symbols. The
focus is on the interaction between I4TEX and Post-
Script via the TEX \special primitive, and in par-
ticular the direct use of a dynamic PostScript Type 3
font in the KTEX source.

1 Introduction

Electronic documents, especially scientific ones, are
typeset using static and/or dynamic characters. The
mathematical formula is always the most suitable
example for highlighting the subject. Mathematical
variable-sized symbols, such as delimiters (parenthe-
ses, braces, radicals, etc.), are a good way to make
the subject concrete.

When we talk about scientific document pro-
cessing, we think first and foremost of (I#)TEX in its
various implementations: TEX [5], BTEX [6], Lua-
TEX [7], etc. Dynamic symbols such as delimiters
and others are supported by (IA)TEX but in some
cases the properties of optical scaling, uniformity of
shape, right-sizing and metal likeness are not re-
spected. The dynMath package [4] has been devel-
oped with the aim of supporting such characteristics
and thus enhancing and improving the typesetting
quality of (IM)TEX.

(I8)TEX offers the possibility of interacting with
PostScript [1] via the TEX \special primitive. The
latter makes it possible to insert and manipulate
PostScript code in (I#)TEX through the dvips driver
[8] while generating PostScript from the dvi files.
We have used this mechanism to handle a dynamic
Type 3 [1] font in TEX, thus enabling dynamic math-
ematical symbols to be supported by the dynMath
system. The way in which this approach of interac-
tion is used is unusual in the development of (I&)TEX
packages. For this reason, we believe it will be in-
teresting to present details of the implementation
process. We note that the same work was done when
the development of dynMath was launched in 2016
[2]. The resumption of such work is justified by the
change that has taken place in the implementation.

This paper is organized as follows. In Section 2,
the overall layout of the dynMath system is given. In
Section 3, some details of dynMath in terms of the
Type 3 font are presented. In Section 4, the way
in which dynMath supports dynamic mathematical
symbols in terms of TEX programming and interac-

Abdelouahad Bayar

doi.org/10.47397/tb/45-2/tb140bayar-dynmath-design

TUGDboat, Volume 45 (2024), No. 2

tion with the dynamic font Type 3 is studied. The
paper ends with some conclusions and perspectives.

2 dynMath: The layout

The dynMath system is now in its basic state. It con-
tains the minimum necessary files to operate, namely
dynMath.sty and dynMath. tps.

e dynMath.sty: this is the ITEX package itself.
It contains the definition of the macros required

to support the mathematical variable-sized sym-
bols.

e dynMath.tps: this is the specification of a Post-
Script Type 3 font parameterized to draw math-
ematical symbols with dimensions and shapes
satisfying given contexts.

Some details of the two files will be seen below to
give an idea on how they work. A part highlights the
interaction between IXTEX and PostScript Type 3.

3 dynMath: The font
3.1 PostScript inside BTEX

The requirements for supporting dynamic mathe-
matical symbols are identified in [2]. The PostScript
language and PostScript Type 3 fonts are recognized
as suitable to provide a solution.

Natively, (I#)TEX has an interface to fonts spec-
ified in METAFONT. This is achieved through tfm
files. These communicate information about the di-
mensions, in a definitive static way, of the characters
which will appear in the document to be printed.
METAFONT is a compiled language and does not al-
low for manipulating the characteristics of charac-
ters at printing time.

It is also possible to use a Type 3 font as a
virtual font. Even if a Type 3 font fully uses the
PostScript language and can be parameterized in a
flexible way, it will not be able to offer support for
dynamism via virtual fonts because the latter are
seen by TEX as if they were METAFONT fonts.

(I4)TEX supports handling the PostScript code
as a literal in the \spacial command in different
ways, depending on the scope of the code in the gen-
erated PostScript document. The most important
thing is that the PostScript variables, in these liter-
als, can be evaluated based on TEX variables whose
values are determined at a given time and in a given
context. This PostScript code can in particular be
a dynamic (parameterized) PostScript Type 3 font.

The PostScript Type 3 font is specified in the
file dynMath.tps. It is a font which respects the
Type 3 specification but it is included in the macro
primitive \special and having a global PostScript
scope:

https://doi.org/10.47397/tb/45-2/tb140bayar-dynmath-design

TUGDboat, Volume 45 (2024), No. 2

% Content of ¢‘dynMath.tps’’

\special{!

(PostScript Type 3 specification of dynmath font)
}

This is an interaction between IATEX and Post-
Script in which the Type 3 font is inserted and seen
throughout the document generated by KTEX via
the dvips driver.

3.2 Symbols in table and encoding

Any font (PostScript in particular) defines a table of
its character layout: graphics and code. The Type 3
font in dynMath.tps is called dynMath. We used
cmex10 (see Table 1) to build the layout of dynMath
symbols. The dynMath layout is shown in Table 2.
Because dynMath is dynamic, the symbol appears
only once in the table. However, the symbol is pa-
rameterized to meet the required dimensions in a
given context.

The symbols coded from 70 to 97 in the cmex10
layout table come in two graphic versions (one for
the mathematical mode \scriptstyle and the other
for \displaystyle). We think that these signs, of
TEX math class one (large operators), will remain in
these two size cases (obviously referenced by their
relative (I&)TEX commands). They will not be sup-
ported in dynMath except for the integral signs ¢
and [. This is because an integral sign with a height
greater than or equal to the mathematical quantity
to be integrated looks better than the opposite case.

In [5], four fonts are mainly identified by the
values \textfont0, \textfontl, \textfont2 and
\textfont3 as the METAFONT fonts cmr10.mf (fam-
ily 0), cmmi10.mf (family 1), cmsy10.mf (family 2)
and cmex10.mf (family 3) respectively. We are inter-
ested in dynamic (extensible) symbols. In (I4)TEX,
dynamism is managed by using different fonts de-
pending on the context. To explain the concept, we
will use the symbols “(”, “(”, “ /” and “~”. We con-
sider the contents of the file plain.tex as reference.

e \delcode‘\(="028300: This means that the
parenthesis “(” is a delimiter, of which the small-
est variant is taken from family 0 at position
28x (40 in decimal) and the wide variant is in
family 3 at position 00x.

e \def\langle{\delimiter"426830A }: This
defines the symbol “(” as a delimiter of class 4
(opening delimiter), accessible via the \langle
macro. The smallest variant is in family 2 at
position 68x (104 decimal) and the largest is in
family 3 at position 0Ax (10 decimal).

e \def\sqrt{\radical"270370 }: This defines
the radical symbol “,/” as a variable symbol
whose smallest variant is in family 2 at position

275

70x (112 decimal) and the large variant is in
family 3 at position 70x, accessed as the \sqrt
macro.

e \def\widehat{\mathaccent"0362 }: This
defines the wide hat symbol “~” by means of the
command \widehat, of class 0 (ordinary) and
of which the smallest variant is in the family 3
at position 62x (98 decimal).

For the left parenthesis symbol, the smallest variant
is encoded in the font cmr10.mf at position 40. The
large variant with its various standalone instances is
encoded in the font cmex10.mf at positions 0, 16, 18
and 32. The compound version is built from charac-
ters in the same font cmex10.mf at positions 48, 64
and 66 (repetitive character). The font dynMath is
dynamic and so any symbol, such as the parenthe-
sis, must appear only once in the layout table. The
code is that of the first occurrence of the symbol in
cmex10.mf, i.e., position 0 (see Table 2). To param-
eterize the parenthesis and thus support dynamism,
we consider the encoding of the smallest variant,
that in cmr10.mf which is relative to family 0.

There are other symbols whose parameteriza-
tion is based on their appearances in the cmr10.mf
font such as “)”, “[”, “]”, etc. Concerning the symbols
“(” and “\/” for example, they are in positions 10 and
112 respectively in dynMath (see Table 2) and their
parametrizations are taken from the font cmsy10.mf
relative to family 2. As for the sign “” 7, its position
in dynMath is that in cmex10.mf and its parameteri-
zation base is of the smallest variant and taken from
the same font, namely cmex10.mf.

Roughly speaking, it’s the encoding bases of the
small symbol variants that are parameterized to sup-
port dynamism. Consider a symbol S. Its appear-
ance in dynMath in Table 2, is of the form 5% with
¢ designating the layout order number and f repre-
senting the family used as a basis for parameteriza-
tion. Specifically, the opening bracket, the opening
angle bracket and the wide hat are shown in Table 2
as [3, (3V and " 8.

We transformed the fonts cmr10.mf, cmsy10.mf
and cmex10.mf using METAPOST to PostScript code
at a body size of 1000 units, serving as a basis for
parameterization of dynamic mathematical symbol
encoding, via the following commands:
mpost ’&mfplain \mode=localfont; \
mag=100.375; input cmrlO.mf’
mpost ’&mfplain \mode=localfont; \
mag=100.375; input cmsyl0.mf’
mpost ’&mfplain \mode=localfont; \
mag=100.375; input cmex10.mf’

dynMath: Underlying principles of the design

276

TUGDboat, Volume 45 (2024), No. 2

Table 1: Math extension font layout showing cmex10

| | 0 |1 | 2 |3 | 4 E | 6 |7 |
/OOZ‘ 0 1 2 3 4 5 6 7
! 8 9 10 11 12 13 14 15
ooy e | “ /|
/02$ 16 17 18 19 20 21 22 23
/03$ 24 25 26 27 28 29 30 31
/04$ 32 33 34 35 36 37 38 39
/05$ 40 41 42 43 44 45 46 47
/063? 48 49 50 51 52 53 54 55
(1Y]] I | | |
/07$ 56 57 58 59 60 61 62 63
()| \) { } ! !
/ 64 65 66 67 68 69 70 71
IO e e
/ 1 11, 72 73 74 75 76 77 78 79
¢ 74 © O G |® &
/].QSU 80 81 82 83 84 85 86 87
> I1 S U N O] A V
/131, 88 89 90 91 92 93 94 95
> |11 / U N O, A V
/141‘ 96 97 -~ 98 - 99 — 100 ~ 101 —~ 102 —— 103
I 1T
/]_5(E 104 105 106 107 108 109 110 111
/].6"E 112 113 114 115 116 117 118 119
\/ \/ \/ \/ \J | I [l
/]_7(E " 120 . 121 ~ 122 - 123 - 124 _ 125 o 126 v 127

There’s a special case (as there may be more
to come) for the opening and closing brace symbols.
These are not based on existing fonts for parame-
terizing, but have been newly designed to meet the

metal-likeness concept.

Abdelouahad Bayar

3.3 Parameterizing

Dynamic symbols are parameterized in the font to
meet extension requirements. Two categories of char-
acters are identified, depending on whether the dy-
namic parts are delimited by straight lines or curved
lines. Two types of stretching are identified:

TUGDboat, Volume 45 (2024), No. 2

277

Table 2: dynMath font layout

o v J2 |3 [4 |5 |6 |7 |
/ 0 1 2 3 4 5 6 7
00z | (0 |) ol o l1l 5T 5]1 511 5 || 2
/ 8 9 10 11 12 13 14 15
Olz | | | (3) 3 | 3 I 3 / o \ 3
1022 16 17 18 19 20 21 22 23
032 24 25 26 27 28 29 30 31
04z 32 33 34 35 36 37 38 39
052 40 41 42 43 44 45 46 47
06 48 49 50 51 52 53 54 55
07 56 57 58 59 60 61 62 1 63
102 64 65 66 67 68 69 70 71
"l f 32 73 74 75 76 77 78 79
"2 80 81 f 333)2 83 84 85 86 87
"3z 88 89 90 91 92 93 94 95
/ 96 97 | ~ 98 99 100 | ~ 101 102 103
14z 3 3
"5z 104 105 106 107 108 109 110 111
"6z | / %12 113 114 115 116 117 118 1 %19
N7 | 420 [12 122 123 124 125 | g 126 | %27

1. Line-based extension: this type of extension is
easy and straightforward to support. Examples
include the bracket symbol “[”, the up arrow
symbol “17”, etc.

2. Curve-based extension: this extension concerns
symbols whose dynamic parts have curved lines.
Here, support for dynamism has necessitated
the development of a mathematical stretching
model (to be published) and an interpolation
method that respects obliquity and convexity
[3]. Examples include the parenthesis “(”, the
brace “|”, etc.

A dynamic symbol is characterized by three param-
eters: height (including depth), width and thickness.
The thickness is in some way linked to the charac-
teristics of the writing instrument (pen) or drawing
instrument (brush).

The stretching undergone by a dynamic sym-
bol is partly supported by the dynMath.sty pack-
age and partly by the dynMath.tps font. Consider
the dynamic symbol S. Let Hg, Ws and Eg be
its height, width and thickness respectively. If the
symbol is to be stretched by the amount h vertically
and w horizontally, then the features in the stretched
state will be Hg + h, Wg + w and Eg as its height,
width and thickness respectively. Thickness is not
affected by the extension. It should be noted that
the stretching supported by the font is not linear.

We'll call it semi-optical because the thickness re-
mains unchanged. Globally speaking, the thickness
also changes, but this is the work of IXTEX and the
PostScript interpreter.

The concept is clarified in Figure 1. This is the
case of the opening parenthesis but we have consid-
ered just the upper half, to show how the font takes
care of the stretching on its side. Note that the ex-
ample is computed at 10 font size in TEX points but
scaled linearly 20 times for greater clarity. It is as
if the parenthesis at size 200 in TEX points under-
goes stretching of the amounts w horizontally and h
vertically.

The thickness was not affected by the stretch-
ing. To highlight this, we have considered landmarks
with different colors. The upper half of the parenthe-
sis is delimited by two sequences of curves, one on
the left and the other on the right. Each sequence is
made up of 7 cubic Bézier curves (how we get these
sequences is a separate work from the current one).
The points shown are the boundary control points of
the Bézier curves. Points of the same order in both
sequences are of the same color and linked by a seg-
ment also of this color. Our mathematical stretching
model preserves the same convexity sense, obliquity
and thickness. This is expressed by the fact that
segments of the same color are of the same length
and direction (in the vector sense) in Figure la and
Figure 1b.

dynMath: Underlying principles of the design

278

h

//

1]

W wooow
(a) Top left part (b) Top left part
of left parenthesis of left parenthesis
without stretching with stretching of
h vertically and w
horizontally

Figure 1: Example of stretching in height h and
width w while keeping the same thickness

4 dynMath: the style package
4.1 Useful macros and conventions

The dynMath.sty style package defines all the vari-
ables useful for internal operations, as well as others
used as an interface for interaction with the Post-
Script Type 3 font dynMath. It also defines macros
for managing mathematical formulas based on exten-
sible symbols. We have followed a particular way of
naming the macros relating to the dynamic symbols
in BTEX. In KTEX, without doubt, the most in-
teresting commands, in term of dynamism, are the
primitive \left and its counterpart \right. The
package dynMath defines a macro which essentially
does the same job as \left but operates with the
dynamic symbols defined in the PostScript Type 3
font. The general syntax of this macro is:

\meLeft(delimy) (formula) \meRight(delims)

We referred to the normal IATEX commands
when naming the dynMath ones in order to make it
easier to use for users accustomed to using (I&)TEX.
The same names are used, beginning with a capital
letter and preceded by “me” meaning “metal” . An-
other example is \overbrace, to which corresponds
\meOverBrace in dynMath.

Abdelouahad Bayar

TUGDboat, Volume 45 (2024), No. 2

5 Determining extension parameters

The most characteristic stretching parameters are
the amount of vertical stretching h, the amount of
horizontal stretching w and the size of the font Post-
Script fs in which we will typeset the symbol to be
stretched. In the case of the \meLeft macro, that
is, in the case of the delimiters, these three param-
eters are functions of the mathematical height of a
formula, which we will always call h,,. First, we
give the idea of calculating h,,. Figure 2 and Fig-
ure 3 explain the approach. This concerns the case
of two abstract mathematical formulas (just a rec-
tangle with a height, depth and width) one of which
is high and the other is deep. A description of the
parameters in the figures are as follows:

h
math axis m | fn

hy ¢ baseline

Figure 2: Abstract high mathematical formula

math axis

baseline

Figure 3: Abstract deep mathematical formula

fn: height of formula from the baseline.

fa: depth of formula from the baseline.

e y;: mathematical height of the formula. It is
measured from the mathematical axis to the top
of the formula.

e y5: mathematical depth of the formula. It is
measured from the mathematical axis to the
bottom of the formula.

e h,,: mathematical balanced height (depth) of
the (balanced) formula. We have that h,, =
Sup (y1, y2)-

An important point to note is that the handling of
stretchable mathematical symbols differs from one
category to another. For example, the parameter
hpm, which makes sense in the case of delimiters, will
not make sense when it comes to the radical (square

TUGDboat, Volume 45 (2024), No. 2 279
Table 3: Characteristics of left parenthesis in PostScript at a 10 unit body size
Parenthesis Width Close Height Thickness Left Right Math
width bearing bearing axis
Normal 3.8688232 | 2.3218745 | 5.0000024 | 0.5833423 | 0.9942598 | 0.5526889
big 4.5632816 | 2.6121009 | 5.9900241 | 0.6944529 | 1.5242052 | 0.4269755
Big 5.9521679 | 3.7974070 | 8.9900563 | 0.7638956 | 1.8027775 | 0.3519834 | 5 560014
bigg 7.3410694 | 4.9213804 | 11.9900885 | 0.8333385 | 2.081079 0.33861
Bigg 7.8966266 | 5.2128642 | 14.9901202 | 0.972224 | 2.3589455 | 0.3248169
Compound | 8.7299554 | 5.5043343 | 17.9801222 | 1.1111097 | 2.9145983 | 0.3110228

root) symbol. For the radical, the amount of verti-
cal stretching, for example, depends on the overall
height including depth, i.e., f5 + fq.

We only consider the case of the macro meLeft,
since the aim is to illuminate the interaction between
(I)TEX and PostScript Type 3. The value of pa-
rameter h,, is half the overall height of the exten-
sible delimiter. To clarify the idea, we take one of
the previous figures, Figure 3 for this example, and
display on it the left parenthesis useful for delimit-
ing the abstract formula. The result is in Figure 4.
The parenthesis delimiter is positioned correctly ver-
tically. However, it has been shifted a little horizon-
tally to the left to give the figure more legibility.

math axis

baseline

Figure 4: Abstract deep mathematical formula with
left parenthesis delimiter

The opening (and closing) parenthesis in TEX
comes in five standalone versions, as shown in Fig-
ure 5. One or the other is used to delimit a for-
mula, depending on the situation of its mathemat-
ical height in comparison with those of the paren-
theses. When the mathematical height of a formula
exceeds that of the standalone parentheses, a three-

character compound parenthesis is used. This is
made up of the three characters [, and I, ver-

tically superposed, with the third repeated between
the two first as many times as necessary.

<(((<

Figure 5: (I2)TEX standalone left parentheses

Let’s adopt a numbered designation for the paren-
theses, Py, ..., Ps, in the order given in Figure 5.
The last, Ps, is the smallest compound parenthesis,
i.e., the compound when the number of occurrences
of the repeated character is zero. The parenthesis P,
represents the smallest variant in standalone paren-
theses (as we saw before). It is none other than
parenthesis number 40 in cmr10.mf. It’s this paren-
thesis that we’ve set in the PostScript Type 3 font
dynMath to support dynamic parenthesis. Its encod-
ing in PostScript is developed as a function of the
two variables w and h (among others) representing
horizontal and vertical stretching respectively.

Table 3 shows the most important characteris-
tics of the six parentheses used in (I%)TEX. One
notable parameter of the state of a parenthesis is
the thickness e,,. How is this value calculated? In
the case of a delimiter to be stretched relative to
\meLeft, it’s the stretching in the vertical direction
that attracts attention. This shows that h,, is a key
parameter in handling the dynamism of delimiters.
For this purpose, thickness is defined as a function
of the mathematical height h,,. Let (h,mv)f:0 de-
note the sequence of mathematical heights of the
parentheses Py,..., Ps. Similarly, (em,¢)§:O is the
sequence of the thicknesses of Py, ..., Ps. The 10pt
size is taken as a basis for handling the stretching of
the parenthesis symbol. We have the following cases
and constraints:

o If hyy =hp i, 1 =0,...,5 then e, = ey, ;.
o If hy, € [0, hyn o], then e, is linearly increasing

between 0 and ey, .

o If hyy € [y, Bmyit1], @ = 0,...,4 then e, is

increasing affinely between e, ; and e, 1.

o If hyy € [Mm5, hmax], then ey, is increasing
affinely between e,, 5 and epax.

The value of the maximum mathematical height
taken is hpa.x = 1685pt. This value represents ap-
proximately half the height of an A0 page. As for
the thickness corresponding to hpax, determined by
experiments based on a certain formulation, it is
emax = 6.292214230pt.

dynMath: Underlying principles of the design

280

>

>
3
N

Figure 6: Thickness

@

A summary of the cases is shown in Figure 6.
Remember that it’s the parenthesis Py, but with a
1000 unit body size, that is implemented and pa-
rameterized in the PostScript Type 3 font. What
counts first when typesetting a mathematical sym-
bol, such as the opening parenthesis, is the size fs of
the font. Assuming that for a mathematical height
hm, the thickness is e,,, knowing the thickness e1qgg
of the parenthesis at size 1000 in the PostScript font
dynMath, then we can determine the size value f;
of the font corresponding to this thickness e,,, i.e.,
fs = (emx1000)/c; 0.

Let a font size f; correspond to a thickness e,
which we calculated as a function of h,,. Let us de-
note by hy, the height of the parenthesis in the font
PostScript Type 3 dynMath relative to fs, without
any extension (w = 0, and h = 0). So we have:

1. If Ay < By o then hy, = hypy
2. If Ry > hupn o then hy, < hy,.

We assume that h represents the amount of vertical
stretching the parenthesis in dynMath must undergo
to delimit the mathematical formula. For Item 1,
the parenthesis obtained has the necessary height
to cover the formula. There’s no need to stretch
this parenthesis, so h = 0. On the other hand, in
Item 2, we need a vertical extension h = h,, —hy, for
the parenthesis to have the height needed to cover
the formula. The horizontal stretching amount w
needed will be explained later.

Just like the thickness e,,, other functions are
useful and defined according to h.,: the width w,,,
the strict or close width (width of the symbol with-
out the left and right bearings) cw,, the left bearing
lb,, and right bearing rb,,.

The function cw,, is important for calculating
the amount of horizontal stretching w. For this,
we give some detail on its definition. The sequence

Abdelouahad Bayar

VWQ{

TUGDboat, Volume 45 (2024), No. 2

hom (x10)

‘u
@ty

em as a function of h,,

5

(CWm,i);_, consists of the close widths of the paren-
theses Py to Ps. We have:

o If hyy, =h;,1=0,...,5 then cw,, = cwp, ;.

If hyp € [0, 0], then the function is of no
interest (see further).

him € [Rm,ishmi+1], @ = 0,...,4 then cw, is
increasing affinely between cw,, ; and cwp, j41.

o If hyy, € [y 5, Amax], then cw,, is of no interest.

If we reconsider the font size f, and denote by cwy,
the close width of the parenthesis in the Type 3
font dynMath at size fs, we get the following result:
cwy, < cwy,. The horizontal stretching variable w
takes on the following values:

1. If hyy < hipo then w = 0 (in this case h = 0,

see Item 1 above).

2. If hino < hm < hpns then cwy, < cw,, and
W = CWy, — CWy, .
If hyy, > Ry 5 then w = %. This is a relationship
obtained by experimentation. It differs from
one symbol to another. For the brace, for ex-
ample, it’s w =

3.

16°

For further clarification, two illustrations of the last
two cases of the above enumeration are in Figures 7
and 8. These figures present information other than
that relating to the stretching, vertical A and hori-
zontal w. The meanings of the various parts were
given in Figure 2 and Figure 3.

Processing of the left and right bearings is re-
quired to correctly position the dynamic symbols
around the mathematical formula to be delimited.
We need to be aware that the mathematical axis of
the symbol written in the dynMath font is different
from that of the mathematical formula, and so an
alignment is necessary. We won'’t go into the details
of these functions here, so as not to overload the ar-
ticle. In a future project, we’ll write a book on the
detailed implementation of dynMath.

TUGboat, Volume 45 (2024), No. 2

Wy,

bl 100

o]

Figure 7: Stretching details, Hy < h,, < H5

>
3
>

fu

=
~
v
—

1
|
N
|
1
|

fa

Q

&1 mgI _— I41;I N

Figure 8: Stretching details, h,, > Hs

5.1 Dynamism management steps

In this section, the important steps in dynamism
management are presented. It should be noted that
each macro relating to the extension phenomenon
is respomnsible for managing the relative extension
parameters. The need may differ from one macro to
another. Consideration of one of them highlights the
general concept. The macro used as an example is
\meLeft. One of the steps in the extension process is
interaction with the Type 3 font. We are not going
to talk about the \meLeft macro in programming
terms, but only in an algorithmic sense and in a
language as natural and abstract as possible. The
definition of this macro is:
\def\meLeft#1#2\meRight#3{(macro definition)}
Where:
#1: left delimiter,
#2: formula to be delimited,
#3: right delimiter.

Let’s assume that:
1ldel: represents #1,
formula: represents #2,
rdel: represents #3.
Before presenting the steps of the \meLeft macro,
the meanings of some keywords used are given in
Table 4.

281

Table 4: Useful tokens and meaning for dynamism
steps presentation

| Keyword | Meaning |

ldel left delimiter
rdel right delimiter
mAxis mathematical Axis
fbox formula box

fh formula height

fd formula depth

fw formula width

hm height mathematical

1th left thickness

fs font size

symWidth symbol Width

fdelb formula delimiter box

The main steps of \meLeft are:
1. Determine the current math style: style
2. In style:
e Determine the height of the mathematical
axis: mAxis.
e Put formula in fbox.
3. Determine the dimensions of fbox:
e Height: fh
e Depth: fd
e Width: fw
4. Determine the mathematical height hm: hm =
sup (fh — mAxis, fd + mAxis)
5. Based on hm, determine the thickness of the left
dynamic symbol 1del: 1th.

6. Based on 1th, determine the size fs of the Post-
Script font dynMath to write the delimiter 1del.

7. In terms of fs and hm determine:
e The vertical stretching amount h.
e The horizontal stretching amount w.
e The delimiter width symWidth.
8. Process the box fdelb which will contain the
extensible PostScript delimiter:
e Write in fdelb the special:
\special{" (leftSpecial)}.
o In (leftSpecial):

— Align the mathematical axis of
the symbol 1del according to
the font dynMath at size fs with
the mathematical axis mAxis of
formula.

— Write 1del with respect to the
font dynMath at size fs from the
coordinates (0,0).

dynMath: Underlying principles of the design

282

10.

11.
12.
13.
14.

6
We

Set the dimensions of fdelb:
o Width at symWidth.
e Height at (hm + mAxis).
e Depth at (hm — mAxis).
Adjust the position of fdelb by kerning in order
to adjust the left bearing of 1del.
Insert the contents of the fdelb.
Adjust the right bearing of 1del by kerning.
Insert formula.
Repeat steps 5 to 12 for the rdel delimiter.

Conclusions

have given an idea on the principles of interac-

tion between (I4)TEX and a PostScript Type 3 font.

Thi

s is the basis for the support of dynamic math-

ematical symbols. The idea is presented in special
cases and not completely detailed. In the near fu-
ture, we will publish a book detailing the basics and
all the implementation cases of dynMath.

References

(1]

2]

Adobe Systems Incorporated. PostScript
Language Reference Manual. Adobe Systems
Incorporated, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1999.
https://adobe.com/jp/print/postscript/
pdfs/PLRM. pdf.

A. Bayar. Towards an operational (I4)TEX
package supporting optical scaling of
dynamic mathematical symbols. TUGboat
37(2):171-179, 2016. https://tug.org/
TUGboat/tb37-2/tbl16bayar . pdf

Abdelouahad Bayar

13l

4]

[5]

[6]
17l

18]

TUGDboat, Volume 45 (2024), No. 2

A. Bayar. C! interpolation of sequences of
points preserving convexity and obliquity based
on oblique convex two-dimensional cubic bézier
splines. In 2024 IEEFE International Conference
on Signal, Image, Video and Communications
(ISIVC 2024), pp. 1-6, Marrakech, Morocco,
May 2024.

A. Bayar. dynMath: A PostScript Type 3-based
KTEX package to support extensible
mathematical symbols. TUGboat 45(1):18-24,
2024. https://tug.org/TUGboat/tb45-1/
tbl139bayar-dynmath.pdf

D.E. Knuth. The TgXbook, vol. A of Computers
and Typesetting. Addison-Wesley, Reading,
Massachusetts, 1st ed., 1984.

L. Lamport. IATEX: A Document Preparation
System. Addison-Wesley, USA, 1994.

LuaTgX development team. LuaTgX Reference
Manual, Feb. 2024.
https://ctan.org/pkg/luatex.

T. Rokicki. Dvips: A DVI-to-PostScript
Translator, Feb. 2024.
https://ctan.org/pkg/dvips.

¢ Abdelouahad Bayar

Cadi Ayyad University — Higher
School of Technology of Safi,
PSSII Lab

Sidi Aissa Road, PB 89

Safi, 46000

Morocco

a.bayar (at) uca dot ma

ORCID 0000-0002-3496-505X

https://adobe.com/jp/print/postscript/pdfs/PLRM.pdf
https://adobe.com/jp/print/postscript/pdfs/PLRM.pdf
https://tug.org/TUGboat/tb37-2/tb116bayar.pdf
https://tug.org/TUGboat/tb37-2/tb116bayar.pdf
https://tug.org/TUGboat/tb45-1/tb139bayar-dynmath.pdf
https://tug.org/TUGboat/tb45-1/tb139bayar-dynmath.pdf
https://ctan.org/pkg/luatex
https://ctan.org/pkg/dvips

TUGDboat, Volume 45 (2024), No. 2

TUG 2024 abstracts

Editor’s note: Links to videos and other informa-
tion are posted at tug.org/tug2024.

— — %k — —

Vincent Goulet

A journey through the design of (yet another)
journal class

Many scientific journals rely on document classes
provided by large publishers. Yet, some journals
still prefer to maintain their own class. The Cana-
dian Journal of Statistics | La revue canadienne de
statistique is one of them. In late 2022, I was commis-
sioned to develop a class and bibliography styles that
would update not only the production underpinnings,
but also the visuals of the CJS. This presentation
will provide a journey through the choices that I
had to make along the way, the functionality that I
imported from various sources, and the (hopefully)
novel solutions I implemented.

Vincent Goulet

You (S)wove? Well, (S)tangle now!

The concept of literate programming, pioneered for
TEX by Donald Knuth in the late 1970s, should be
familiar to many in the (IA)TEX community. Very
briefly stated, it consists of a programming para-
digm where a program and its documentation are
interspersed in a single file. Source code and docu-
mentation are extracted respectively by tangle and
weave procedures. Literate programming plays a
central role nowadays in scientific computing for re-
producible research purposes: instead of being hard
coded into a report, results and graphics are woven in
place using the computer code. In the R ecosystem,
Sweave and knitr are widely used to build documents
this way from R code. The aim of this presentation
is to shed some light on the perhaps lesser-known
component of literate programming, at least in sci-
entific computing: the tangle step. I will describe a
use case where a clever combination of weaving and
tangling allows for efficiently maintaining a set of
exercises and solutions.

Sarah Lang

BTEX in the Digital Humanities

This talk explores the intersection of KTEX typeset-
ting and the digital humanities. More specifically, it
asks why IMTEX typesetting is used so infrequently in
the digital humanities, despite its clear advantages
and applications. This talk, on the one hand, aims to
understand the reasons why I4TEX isn’t more widely
used in the digital humanities and, on the other
hand, presents three examples of relevant use cases
to illustrate its value for the (Digital) Humanities.

doi.org/10.47397/tb/45-2/tbl40abstracts

283

Conference proceedings that require full paper
submissions, exemplified by the Computational Hu-
manities Conference, are becoming more prevalent
in the Digital Humanities and thus, present a good
reason to get acquainted with the necessary KTEX
skills. This talk challenges the notion suggested by
Quinn Dombrowski that learning KTEX is too much
to ask of humanities scholars. Humanities scholars,
even those with minimal technical background, can
learn ATEX at the necessary level to format their
submissions effectively, by using it essentially as a
markup language.

The second and most important use case for
ETEX in the Digital Humanities is in digital scholarly
editing. There is a sizable digital scholarly editing
community within the field. One could even say that
digital scholarly editing is one of the core fields of
work for digital humanists. Digital scholarly editing
is a domain where the field initially flourished and
continues to thrive, despite recent developments in-
volving deep learning driven approaches and Large
Language Model rendering the subfield of the “Com-
putational Humanities” more and more dominant.
Digital scholarly editing will continue to be a core
task and technology within Digital Humanities; thus,
IMTEX will continue to remain relevant to the Digi-
tal Humanities.

Despite some early predictions that digital me-
dia would make physical books obsolete, we observe
in 2024 that this transformation has not yet materi-
alized and seems unlikely to occur in the near future.
On the contrary, the value of the book as a material
object and a symbol of cultural capital has surged,
especially among younger audiences on platforms like
BookTok. While this trend might seem irrelevant to
academia per se, it underscores an important point:
physical books retain their importance to this day
and continue to be favored by textual scholars for
various tasks, such as in-depth reading. This endur-
ing preference for printed materials highlights the
need of ensuring that digital humanities resources,
such as digital scholarly editions, can be effectively
translated into print when necessary. Transforming
digital scholarly editions in TEI-XML format to KTEX
allows us to produce print versions from digital edi-
tions, even when the primary intent of the edition is
not to publish in print.

Through the transformation of TEI data using
XSLT, potentially even employing large language
models to generate IXTEX code, scholars can create
high-quality printed materials with little effort. This
functionality is crucial for the digital humanities com-
munity, as it responds to the frequent preference for
accessible, printable formats, which are particularly

TUG 2024 abstracts

https://tug.org/tug2024
https://doi.org/10.47397/tb/45-2/tb140abstracts

284

useful in teaching settings. While digital editions
offer unique benefits, like showcasing multiple wit-
nesses or versions without prioritizing a single one,
there remains a substantial demand for printed copies
invaluable for detailed study, annotation, or instruc-
tional use. The reledmac package is a particularly
useful tool for Digital Humanists.

The presentation also highlights the utility of
IXTEX in managing complex documents within the
humanities, such as archaeological catalogs. In fields
like archaeology, it is commonplace to compile ex-
tensive catalogs of objects or findings as integral
components of larger research projects, such as Ph.D.
dissertations. Such catalogs often contain numerous
images and can become unwieldy when managed
with standard word processing software like Micro-
soft Word due to their size. Although this application
is not exclusively within the digital humanities, it
underscores the relevance of INTEX across broader hu-
manities disciplines, as has been discussed previously
on the BTEX Ninja blog.

Frank Mittelbach

Hooks, sockets and plugs

Driven by the need to support tagging, a number
of ideas are being introduced into the IATEX kernel
to allow more flexible changes to code paths, design
aspects and document command creation. Hooks
were introduced a few releases ago, and provide a
way to manage the interaction between packages in a
flexible and powerful way. More recently, we brought
in sockets and plugs: places where exactly one code
path is needed, but what that code path is needs to
be swappable. In this talk, we’ll look at why we need
both sockets and hooks, and which to use when.

Wim Obbels, Bart Snapp, Jim Fowler
Ximera interactive math educational resources

for all: From EXTEX source code to PDF, HTML
and beyond

Ximera is an open-source platform to create online
interactive STEM courses using I4TEX as the source
code. Initially developed at the Ohio State Uni-
versity (OSU), now around a dozen institutions are
using Ximera materials. Backend development of
the project has extended from just OSU to now in-
clude educators at the University of Florida and KU
Leuven.

In this talk we will explain the basic ideas of
how Ximera works and demonstrate how the cur-
rently available courses easily implement interactive
questions, integrate applets from youtube, desmos
or geogebra, hyperlinks, etc., and how this, based on
TEX4ht, rather smoothly translates between HTML
and PDF.

TUG 2024 abstracts

TUGboat, Volume 45 (2024), No. 2

After installing the Ximera package from CTAN,
one can immediately generate PDF versions. To pub-
lish an online version an extra build environment
(xake) is needed which enables publishing courses to
a public server at ximera.osu.edu or optionally to
a self-hosted server. Ximera can be integrated with
learning management systems, collects useful learn-
ing analytics, and can return results to a gradebook.

It is currently under active development, getting
extra functionality, more examples and tutorials, op-
tions for styling courses both online and in PDF, and
integrated gradebook functionality. A docker setup
will soon be available for easy deployment, and even
a serverless setup with compilation-in-the-browser.

The CI/CD integration currently used at KU
Leuven will be explained, which automatically up-
dates the online content and all the corresponding
PDFs whenever authorized authors git-push changes.

Interested users can learn more at github.com/
ximeraProject/ximeraFirstSteps.

Martin Ruckert
The color concept of HiTEX
One of the first feature requests for HiITEX was col-
ored text. Looking at the existing packages support-
ing colored text, it appears that their design was
influenced if not limited significantly by the features
provided by the TEX engine, like \special, and the
features provided by the output format, namely PDF.

Since HiTEX has its own engine, its own out-
put format, and its own viewing applications, it was
possible to start a new design from scratch without
such limitations, but not without conflicting design
objectives. The new design should be simple, flexi-
ble, and powerful; it should be easy to understand
and easy to implement; and it should be possible
to support the existing color packages with only a
limited implementation effort for a driver file.

It is planned to include the color support for
HiTEX in the 2025 edition of TEX Live. I welcome
feedback and suggestions for changes.

samcarter

The moloch beamer theme

The moloch beamer theme (ctan.org/pkg/moloch)
by Johan Larsson is an updated fork of the well-
known metropolis theme, which was originally writ-
ten by Matthias Vogelgesang. In this short talk, I'm
going to quickly introduce the theme and then show,
from the perspective of a user, how to switch from
the metropolis theme to the new moloch theme.

Tyge Tiessen
Rewriting TEX today

TEX82 was written forty years ago. The constrained
memory resources as well as portability concerns

https://ximera.osu.edu
https://github.com/ximeraProject/ximeraFirstSteps
https://github.com/ximeraProject/ximeraFirstSteps
https://ctan.org/pkg/moloch

TUGDboat, Volume 45 (2024), No. 2

and compiler limitations of that time have set strict
bounds to the original implementation. As some
consequences of these bounds TEX82 features hand-
written dynamic memory management, ubiquitous
use of global variables, and manual string manage-
ment.

In this talk, I will discuss the joys and challenges
of rewriting TEX82 today without these limitations.

Jan Vansk, Han Thé Thanh

Exploring Primo: A developer’s perspective

In this session, we’ll take a practical look at Primo
from the viewpoint of developers. We’ll examine
its technology stack, code structure, and document
model, providing insights into its implementation for
collaboration.

We'll delve into the front-end development as-
pects, covering the usage of the VDL JavaScript
library for UI components and the related CSS code.
Additionally, we’ll discuss the deployment process
and touch upon the importance of TEX compilation
and XML validation in the Primo system.

Didier Verna

A couple of extensions to the Knuth-Plass algorithm
In this talk, we will present our implementation of a
couple of extensions to the Knuth-Plass algorithm
in ETAP, our experimental typesetting algorithms
platform.

Joseph Wright

siunitx development continues: 2024

The siunitx package was first released in 2008, and
has been through three major revisions; v3.0.0 was
released in May 2021. Since then, development of
new ideas has continued, with new features in num-
bers, tables and units. Here, I will pick out some
highlights from the past three years of work, and
look at where we might see additional ideas in the
future.

Joseph Wright
Templates: Prototype document elements
Controlling design is something that has been chal-
lenging in KTEX to date. While the IXTEX Team
developed experimental ideas in the mid-1990s for
creating flexible design elements, they were not vi-
able for real documents then. These ideas, based
around ‘templates’, have now reached maturity and
are included in the Summer 2024 IXTEX kernel re-
lease.

In this talk, I will look at what a template is,
why we’d want to use them and the flexibility and
power they will bring to controlling document design.

285

Die TgXnische Komddie 2/2024

Die TEXnische Komdédie is the journal of DANTE e. V.,
the German-language TEX user group (dante.de).

Die TEXnische Komdédie 2/2024

MARTIN SIEVERS, Grufiwort [Greeting]; pp.4-5
Introductory words from the DANTE president.

VOLKER RW ScHAA, Protokoll der 66.
Mitgliederversammlung von DANTE e.V. im
Goethe-Nationalmuseum in Weimar [Minutes of
the 66th general meeting of DANTE e.V. in the
Goethe National Museum in Weimar]; pp.6-12
The official minutes of the general meeting.

HENRIK GAsMUS, Die diesjahrige Frithjahrstagung
von DANTE e.V. vom 4.—6. April 2024 im
Goethe-Nationalmuseum in Weimar [This year’s
spring conference of DANTE e.V. from 4th to 6th
April 2024 in the Goethe National Museum in
Weimar]|; pp.13-24

A report on the spring convention in the Goethe-
museum in Weimar.

TEAM STAND DANTE E.V., Chemnitzer
Linux-Tage 24 [Chemnitz Linux-Days 24];
pp. 24-25

Some impressions of the DANTE booth at the
Chemnitz Linux days.

KENO WEHR, IXTEX und Schulphysik 6:
Feldlinienbilder [BMTEX and School Physics 6:
Field line images|; pp.27-51

A new article in the school physics series, this

time on how to draw images of lines of force in a
field.

RALF MISPELHORN, Umgang mit Bildern
[Handling images]; pp.51-58

A comprehensive summary on how to handle
images in INTEX.

RoLr NIEPRASCHK, Von Markdown zu PDF
[From Markdown to PDF]; pp.59-64
On the conversion of Markdown to PDF.

HENNING HRABAN RAMM, ConTEXt kurz notiert
[ConTEXt short notes|; pp.64-68
Some news from the ConTEXt world.

JURGEN FENN, Neue Pakete auf CTAN [New
packages on CTAN]; pp.69-73

[Received from Uwe Ziegenhagen.]

286

La Lettre GUTenberg 52, 2024

La Lettre GUTenberg is a publication of
GUTenberg, the French-language TEX user group
(gutenberg-asso.org)

La Lettre GUTenberg #52

Published April 30, 2024.
doi.org/10.60028/lettre.vib2

PATRICK BIDEAULT, Editorial [Editorial]; pp.1-4

MAXIME CHUPIN & BASTIEN DUMONT, Compte
rendu de la Journée GUTenberg du 18 novembre
2023 [Report of GUTenberg Day 2023|; pp.5-9

MaxiME CHUPIN, Compte rendu de ’assemblée
générale du 18 novembre 2023 [Report of the
General Assembly 2023]; pp.9-11

PATRICK BIDEAULT & DENIS BiTouzE, Compte
rendu de la réunion du conseil d’administration
du dimanche 4 février 2024 [Report of the board’s
meetings]; pp.12-15

MaxiME CHUPIN & PATRICK BIDEAULT, Exposés
mensuels sur (I8)TEX et autres logiciels [Monthly
conferences|; pp.16-19

Short reports about the monthly online confer-
ences that GUTenberg offers.

DENIS BITOUZE, Petite histoire de la FAQ ITEX
GUTenberg [A short history of IXTEX GUTenberg’s
FAQ); pp.20-32

History of the French FAQ, by Denis Bitouzé.

DENIS BITOUZE, Fonctionnement de la FAQ IATEX
GUTenberg [Detailed presentation of GUTenberg’s
BTEX FAQJ; pp.33-46

The French FAQ has recently been renewed. It is
now an online collaborative service that’s constantly
updated.

PATRICK BIDEAULT, MAXIME CHUPIN & BASTIEN
DumonT, Et maintenant, une bonne wieille veille
technologique ! [Technology watch]; pp.46-57

November 2023-March 2024: 80 new CTAN
packages, including 12 from French-speaking coun-
tries.

doi.org/10.47397/tb/45-2/tbl40lettre

TUGDboat, Volume 45 (2024), No. 2

MAXIME CHUPIN, Lual4TEX & MetaPost au
service de la vulgarisation [LualATEX & MetaPost
at the service of popularisation]; pp.58-68

How the above-mentioned software helped the
author explain his scientific activity to secondary
school pupils.

MAREI PEISCHL, \dante_tutorial:nn{expl3}
{2022} [An introduction to expl3]; pp.69-83

A translation of the article published in Die
TrXnische Komddie 2022/4 and in TUGboat 44:1,
2023.

MAXIME CHUPIN, Pas & pas : installation, via le
réseau, de la TEX Live 2024 [Step by step: Net
install of TEX Live 2024]; pp.84-89

JACQUES ANDRE, Feuille aldine ou... grappe ?
[Floral heart or... grapes?]; pp.90-100

Aldus Manutius’ floral heart or Erhard Ratdolt’s
bunch of grapes?

JACQUES ANDRE, PATRICK BIDEAULT & MAXIME
CHUPIN, La fonte de ce numéro : Luciole [This
issue’s font: Luciole]; pp.100-107

The Luciole font has been designed specifically
for visually impaired people. This publicly funded
project is the result of more than two years of scien-
tific collaboration between scientists and designers.

PATRICK BIDEAULT & JACQUES ANDRE, Comptes
rendus de lecture [Book reviews]; pp.107-109
About Graphisme en France #29, now
published also in English (www.cnap.fr/en/
publishing/graphisme-en-france-issue-29)
and about Marc Smith’s True Story of the At Sign.

PATRICK BIDEAULT & MAXIME CHUPIN, En bref
[At a glance]; pp.109-111

Short news about Glenn Fleishman’s “London
Kerning” and GUTenberg at the Open Educational
Software Day.

YvoN HENEL, Rébus [A rebus]; p.111
Prochaines rencontres [The next TEX-related

meetings in Europe]; pp.111-112

[Received from Patrick Bideault.]

https://gutenberg-asso.org
https://doi.org/10.60028/lettre.vi52
https://www.cnap.fr/en/publishing/graphisme-en-france-issue-29
https://www.cnap.fr/en/publishing/graphisme-en-france-issue-29
https://doi.org/10.47397/tb/45-2/tb140lettre

TUGboat, Volume 45 (2024), No. 2

MAPS 53-54 (2023-2024)

MAPS is the publication of NTG, the Dutch language
TEX user group (https://ntg.nl).

MAPS 53 (Spring 2023)

REDACTIONEEL, Editorial; pp.1-2

This is a special edition of MAPS containing five
articles by Taco Hoekwater about various fundamental
matters in MetaPost.

TAcO HOEKWATER, Introduction; pp.3—4

What you have here is a series of articles about
details of the MetaPost programming language.

The target audience of these articles are users that
are already somewhat familiar with simple graphics in
MetaPost but want to have a clearer understanding of
the language to make better use of its possibilities.

Each of the articles discusses a specific subsystem
and together they should provide a solid base for improv-
ing the reader’s knowledge of MetaPost.

TAaco HOEKWATER, Variables: Sparks, tags, suffixes
and subscripts; pp.5-18

MetaPost variables are rather complicated things.
This article will attempt to explain the various uses of
type declarations, saves, and vardefs.

TAcoO HOEKWATER, Definitions; pp.19-34

Definitions in MetaPost are also a fairly complicated
subject. This article tries to cover everything you need to
know about writing your own definitions, but it assumes
a fair bit of familiarity with MetaPost’s data types and
general syntax. In particular, I assume you have read the
preceding “Sparks, tags, suffixes and subscripts” article.

TACO HOEKWATER, Paths, pairs, pens and transforms;
pp- 35-72

This article tries to explain everything related to
paths, pairs, pens and transforms in MetaPost. A fair
bit of familiarity with MetaPost’s data types and general
syntax is assumed. In particular, I assume you have read
the “Sparks, tags, suffixes and subscripts” article.

I will first discuss the creating of paths, followed
by the creating of pairs, and then the creating of pens.
Finally, I will discuss the operations on those items, for
instance, by using transformations.

TAaco HOEKWATER, Conditionals and loops; pp. 73-80
This article is about how to make your program
decide what to do next: conditions and loops.

TAaco HOEKWATER, Colors and pictures; pp.80-96

This article is about MetaPost output. MetaPost
produces graphics by means of picture variables that can
contain a few different object types. The most important
drawing object types can be colorized, so the first part
of this article will talk about color data structures.

doi.org/10.47397/tb/45-2/tb140maps

287

MAPS 54 (Spring 2024)
MAPS REDACTIE, Redactioneel [Editorial]; p.1

SANDER VAN GELOVEN, Afbreekpatronen [Hyphenation
patterns|; p.2

BoB WITMAN, Het eeuwige leven [Eternal life]; pp.3—4
‘Letterman’ Middendorp wrote the standard work
on Dutch typography, born from boundless curiosity.

WiLLI EGGER, Kaktovik nummers met basis 20
[Kaktovik numbers with base 20]; pp.5-8

We are used to navigating the Arabic number system
using base 10. However, it is also possible to choose a
different base. The Inuit, for example, use base 20 to
count. This article discusses the number system of these
Inuit.

Y. ROBBERS, Tante Lenie weet raad... [Aunt Lenie
knows advice. . .]; pp.9-14

Spring has begun, Valentine’s Day is over, and love
troubles make way for TEX problems. And for both,
you can always turn to your Aunt Lenie! This time she
helps Lisa G. create an attractive brochure for her cat
café using IWTEX, assists student Jenia G. with her font
problem using TEX3, helps Machteld K. with Greek
counters in KTEX, uses PGF/TikZ to help Hans M. with
new floats for his new syllabus, and addresses two new
problems from Herman R., who is still doing complicated
mathematical things in plain TEX.

ERIK NIJENHUIS, Documenten in YAML specificeren
en invullen met lua-placeholders in KTEX [Specifying
documents in YAML and filling them with
lua-placeholders in WTEX]; pp.15-27

[Published in English in TUGboat 45:1.]

DusTiN HENDRIKS, Verkenning van het automatiseren
van KTEX met programmatuur [Exploring the
automation of BTEX with software]; pp.28-30

In this article, I share my experiences and insights
in programming the software ELDYN. This tool enables
file manipulation by dynamically injecting variables and
templates. This can provide benefits in the automated
creation of strictly structured documents, particularly
through IXTEX. In this article, I share background infor-
mation about myself, share my insights in programming
the mentioned tool, and hope to inspire by sharing my
demonstration project WebTeX: a concrete application
of the developed software.

DENIS MAIER, Automatic suppression of unwanted
ligatures when typesetting German; pp.31-35

An approach using ConTEXt LMTX’s language op-
tions.

PIETER VAN OOSTRUM, Software Engineering;
pp. 36-44

This article describes some (software engineering)
practices that I used to develop the fancyhdr IBTEX
package. The practices are very general, however, and
certainly not exclusive for KTEX packages.

https://ntg.nl
https://doi.org/10.47397/tb/45-2/tb140maps

288

HAaNs HAGEN, Debugging; pp.45-56
Verbose logging and more visual features. The Con-
TEXt ‘lowlevel’ manuals have more details.

HANS HAGEN, Lua in TEX; pp.57-62

At the end of 2023 the Lua language celebrated
its 30th anniversary and in that perspective I offered to
wrap up our experiences with that language from the
perspective of TEX. This wrapup is not aimed at TEX
users, but can nevertheless give them some background
and a status overview.

HANS HAGEN, MIKAEL SUNDQVIST, Meaningful math;
pp. 63-74

In this article we’re going to discuss math from the
perspective of accessibility. Although ConTEXt has al-
ready supported tagging in PDF for quite a while, that
specific kind of accessibility never took off, if only because
very few viewers did anything useful with it. However,
with universities introducing (whatever) validating fea-
tures for documents pushed into the systems used for
teaching, there was no way to avoid picking up this
thread.

We start with some reflections about how we got
here and then move on to some examples of how we deal
with this in LMTX. This project is part of a larger effort
to get even better typeset math out of TEX so we could
benefit from some new features in the engine, even if
they were not added with accessibility in mind.

CLAUDIO BECCARI, Albanian hyphenation; pp.75-83

After a short historical review of the Albanian lan-
guage, the procedure used to create the Albanian hy-
phenation pattern file is described.

BENJAMIN WACHE, Writing a PhD thesis in BTEX;
pp- 84-86

In this article I explain the setup I used for editing
my PhD thesis using BTEX, including use of Overleaf
and ChatGPT.

MIKAEL SUNDQVIST, Making a simple photo book with
ConTEXt; pp.87-93

In Spring 2022 a question entitled “How to achieve
a few different page layouts for a photobook?” appeared
on Stack Exchange (https://tex.stackexchange.com/
q/643009). User ‘ana’ asked how one in KTEX could
setup a document with layout requirements for a typical
photobook. Since I am interested in both photography
and typesetting, I thought it would be fun to provide an
answer, even though it would involve using the “wrong”

tool, ConTEXt.

HaNs HAGEN, How not to install ConTEXt; p.94
An annotated review of ChatGPT’s procedure for
installing ConTEXt.

FABRICE LARRIBE, MetaFun for movies; pp.95-106

This article shows how MetaFun can be used to
make movies, by showing the construction of several
projects, step by step.

[Received from Wybo Dekker.]

TUGDboat, Volume 45 (2024), No. 2

TUG bursary committee report for 2024

Jim Hefferon

The TEX Users Group Bursary Fund provides grants
to help members of our community who would like to
attend the annual TUG Conference but who would
find it a financial hardship. This is the report of the
Bursary Committee’s 2024 results, along with some
general background on the bursary.

Background

We encourage everyone interested in attending the
annual conference but who is looking for financial
assistance to apply. In particular, we encourage ap-
plicants from traditionally underrepresented groups
and underrepresented areas. An applicant need not
be a TUG member.

This is our first annual report to appear in TUG-
boat (we intend to publish future reports here). Be-
cause of that, we will briefly describe our deliber-
ations. Of course, TUG has limited resources so
the amount available is limited and the committee
may need to judge among applications. We consider
whether the applicant will give a presentation or
be a panel participant, as well as whether they will
write an article for the conference’s TUGboat issue.
Other positive factors in an application are that the
person is able to attend the entire conference, includ-
ing being available for informal interactions, and is
a member of a TEX-related user group. That said,
however, the committee aims to help all applicants
wherever possible. We’ve found that in recent years
the number of applications is not large, so again we
encourage interested people to apply.

Note that while TUG provides administrative
support for these funds, the Bursary Committee op-
erates independently and the TUG Board is not given
individually identifying knowledge of applicants.

Finally, we ask all members of the community
to please consider making a donation to the Bur-
sary Fund. All monies are used for the stated pur-
pose; there are no administrative charges and if there
is a surplus remaining after disbursements then it is
carried over to the next year.

In 2024

The Bursary Committee this year was Jim Hefferon
(Chair), Carla Maggi, and Karl Berry (TUG Trea-
surer, ex officio). The application deadline was
May 1, 2024. There was a grant to one individual
for about $1400. (This is only an estimate because
there are sometimes small last-minute cost changes.)

For more information, see tug.org/bursary/.
That site has summary reports back to 2003 (there

doi.org/10.47397/tb/45-2/tb140bursary

TUGDboat, Volume 45 (2024), No. 2

was no bursary during the COVID years 2020-2022
as the conferences were online and free of charge).
The exact grant amount will be posted there after
the conference. In addition, every year we post a
link to the application for the next year’s conference,
once its details are settled.

¢ Jim Hefferon
Mathematics and Statistics
University of Vermont
tug-bursary (at) tug dot org
https://tug.org/bursary

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants. If you’d like to be listed,
please visit that page.

Boris Veytsman Consulting

132 Warbler Ln.

Brisbane, CA 94005

+1 703-915-2406

Email: borisv (at) lk.net

Web: www.borisv.lk.net
TEX and IATEX consulting, training, typesetting
and seminars. Integration with databases,
automated document preparation, custom IATEX
packages, conversions (Word, OpenOffice etc.) and
much more.

I have about two decades of experience in TEX
and three decades of experience in teaching &
training. I have authored more than forty packages
on CTAN as well as Perl packages on CPAN
and R packages on CRAN, published papers in
TrX-related journals, and conducted several
workshops on TEX and related subjects. Among
my customers have been Amnesty International,
Annals of Mathematics, ACM, FAO UN, Google,
Israel Journal of Mathematics, No Starch Press,
Philosophers’ Imprint, Res Philosophica, US Army
Corps of Engineers, US Treasury, and many others.

289

We recently expanded our staff and operations
to provide copy-editing, cleaning and
troubleshooting of TEX manuscripts as well as
typesetting of books, papers & journals, including
multilingual copy with non-Latin scripts, and more.

Dangerous Curve
Email: khargreaves (at) gmail.com

Typesetting for over 40 years, we have experience
in production typography, graphic design, font
design, and computer science, to name a few
things. One DC co-owner co-authored, designed,
and illustrated a TEX book (TgX for the
Impatient).

We can: = convert your documents to IATEX
from just about anything = type up your
handwritten pages = proofread, copyedit, and
structure documents in English = apply publishers’
specs m write custom packages and documentation
m resize and edit your images for a better aesthetic
effect m make your mathematics beautiful = produce
commercial-quality tables with optimal column
widths for headers and wrapped paragraphs
= modify bibliography styles = make images
using TEX-related graphic programs = design
programmable fonts using METAFONT m and more!
(Just ask.)

Our clients include high-end branding and
advertising agencies, academics at top universities,
leading publishers. We are a member of TUG, and
have supported the GNU Project for decades
(including working for them). All quote work is
complimentary.

Hendrickson, Amy

100 Centre Street #420

Brookline, MA 02446

+1 617-823-9938

Email: amyh (at) texnology.com

Web: www.texnology.com

Full time IATEX consultant for more than 30
years; have worked for major publishing
companies, leading universities, and scientific
journals. Our macro packages are distributed
on-line and used by thousands of authors. See our
site for many examples: texnology.com.

» JATEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and more;
Sophisticated documentation for users.

= Data Visualization, database publishing.

» Innovative uses for IATEX, creative solutions
our speciality.

» [ATEX Training, customized to your needs,
on-site or via Zoom. See

290

Henrickson, Amy (cont’d)
https://texnology.com/train.htm for sample of
course notes.

Call or send email: T’ll be glad to discuss your
project with you.

Latchman, David

2005 Eye St. Suite #6

Bakersfield, CA 93301

+1 518-951-8786

Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com
IATEX consultant specializing in the typesetting of
books, manuscripts, articles, Word document
conversions as well as creating the customized
IATEX packages and classes to meet your needs.
Contact us to discuss your project or visit the
website for further details.

IATEX Typesetting

Boston, MA

Email: enquiries (at) latextypesetting.com

Web: www.latextypesetting.com
IATEX Typesetting has been in business since
2013 and is run by Vel, the developer behind
LaTeXTemplates.com. The primary focus of
the service is on creating high quality INTEX
templates and typesetting for business purposes,
but individual clients are welcome too.

I pride myself on a strong attention to detail,
friendly communication, high code quality with
extensive commenting and an understanding of
your business needs. I can also help you with
automated document production using IATEX. I'm
a scientist, designer and software developer, so no
matter your field, I've got you covered.

I invite you to review the extensive collection of
past work at the showcase on my web site. Submit
an enquiry for a free quote!

TUGboat, Volume 45 (2024), No. 2

Monsurate, Rajiv

Web: www.rajivmonsurate.com

latexwithstyle.com

I offer: design of books and journals for print
and online layouts with IATEX and CSS;
production of books and journals for any layout
with publish-ready PDF, HTML and XML from
IATEX (bypassing any publishers’ processes);
custom development of IATEX packages with
documentation; copyediting and proofreading for
English; training in IATEX for authors, publishers
and typesetters.

I have over two decades of experience in
academic publishing, helping authors, publishers
and typesetters use IATEX. I've built typesetting
and conversion systems with IATEX and provided
TEX support for a major publisher.

Warde, Jake

90 Resaca Ave.

Box 452

Forest Knolls, CA 94933

+1 650-468-1393

Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com
I have been in academic publishing for 30+ years.
I was a linguistics major at Stanford in the
mid-1970s, then started a publishing career. 1
knew about TEX from editors at Addison-Wesley
who were using it to publish beautifully set math
and computer science books.

Long story short, I started using I#TEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a
strong developmental editing background in STEM
subjects. If you need assistance getting your
manuscript set in TEX, I can help. And if I cannot
help I'll let you know right away.

Uh-oh. This
could spell
disaster.

® Tohn Atkinson, Wrorg Hands . wronghands1.com

Fontains

© John Atkinson, Wrong Hands

WP
£

\Mq& \Mw

)
SEENY WP

Helvetica Futura Times Roman Gotham
Vi £
5” S < | RS ® g
=1l P
T %\M LS _«% >
Courier Impact Comic Sans Dingbats

© Tohn Atkinson, Wrong Hands . wronghandsd.com

Comics by John Atkinson, https://wronghandsl.com

https://wronghands1.com/
https://wronghands1.com/
https://wronghands1.com/

TUGboat, Volume 45 (2024), No. 2 291

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

o empowering authors to self-publish

t o assisted authoring
S m D O C S o TgXFolio — the complete journal
production in the cloud

NEPTUNE — proofing framework for
TEX authors

the confluence of art and science of text
processing in the cloud!

o

STM DOCUMENT ENGINEERING PVT LTD

Trivandrum © India 695571 © www.stmdocs.in ¢ info@stmdocs.in

Bverleaf

\begin{anything}

Write like a rocket scientist with Overleaf—
the collaborative, online LaTeX editor that
anyone can use.

www.overleaf.com

292 TUGDboat, Volume 45 (2024), No. 2
Calendar
2024 Dec 3-6 SIGGRAPH Asia 2024,
Aug 20-23 24t g . “Curious Minds”,
ug 20-23 ACM ymposium Tokyo International Forum,
on Document Engineering,
: ’ Tokyo, Japan.
Adobe, San Jose, California. . .
asia.siggraph.org/2024
doceng.org/doceng2024
Sep 3—-13 arXiv Accessibility Forum 2024
(fully remote). 2025
accessibility2024.arxiv.org Mar 1 TUG election:
Sep 10 Type Tuesday: My (favourite) Font, nominations due, 07:00 a.m. PST.
St Bride Foundation, tug.org/election
London, England. Mar 6—8 TypoDay2025,
sbf.org.uk/whats-on “Typography and Storytelling”,
Sep 15-20 XML Summer School, St Edmund Hall, IDC School of Design,
Oxford University, Oxford, UK. Indian Institute of Technology Bombay.
xmlsummerschool.com Bombay, India. www.typoday.in
Oct 4 TUGboat 45:3, submission deadline. Mar 21 TUGboat 46:1, submission deadline.
Oct 6 Ladies of Letterpress, Apr 22—-26 Association Typographique Internationale,
Letterpress Summit 2024, ATypl Copenhagen 2025
“State of the art and craft” (online), Copenhagen, Denmark.
ladiesofletterpress.com/conference atypi.org/conferences-events/
Oct 12 GulT Meeting 2024, atypi-copenhagen-2025
Brescia, Italy. Jun 25—-27 Twenty-third International Conference
www.guitex.org/home/en/meeting on New Directions in the Humanities,
Oct 17 The Beatrice Warde Memorial Lecture, “Oceanic Journeys: Multic.u.ltu:al
St Bride Foundation, Ap.proa(.:hes in the I:Iumamtles ,
London, England. U'nlversrcy ?f Hawaii, .
sbf . org.uk/whats-on Hilo, Hawaii (and online).
. L. thehumanities.com/2025-conference
Oct 23—-25 Grapholinguistics in the 21st century — o .]
From graphemes to knowledge, Jul 15-18 D%thal Human%ges 2025, /.ths.mce of
(Donald Knuth is listed as a presenter) Dlgltal Humamtws Orgar.nzatlons,
Universita Ca Foscari, Venice, Italy. U.nlversadade NOVA de Lisboa,
grafematik2024.sciencesconf .org Lisbon, Portugal. adho.org/conference
Oct 31 Tour of St Bride Foundation, Sep 5 The Updike Prize for Student Type Design,

London, England.
sbf.org.uk/whats-on

Status as of 20 August 2024

application deadline, 5:00 p.m. EST.
Providence Public Library,
Providence, Rhode Island.
prov.pub/updikeprize

For additional information on TUG-sponsored events listed here, contact the TUG office
by email: office@tug.org). For events sponsored by other organizations, please use the
contact address provided.
User group meeting announcements are posted at tug.org/meetings. Interested users
can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.

