
274 TUGboat, Volume 45 (2024), No. 2

dynMath: Underlying principles of the design

Abdelouahad Bayar

Abstract

This article presents the basic principles underlying
the design and development of dynMath, a package
that supports dynamic mathematical symbols. The
focus is on the interaction between LATEX and Post-
Script via the TEX \special primitive, and in par-
ticular the direct use of a dynamic PostScript Type 3
font in the LATEX source.

1 Introduction

Electronic documents, especially scientific ones, are
typeset using static and/or dynamic characters. The
mathematical formula is always the most suitable
example for highlighting the subject. Mathematical
variable-sized symbols, such as delimiters (parenthe-
ses, braces, radicals, etc.), are a good way to make
the subject concrete.

When we talk about scientific document pro-
cessing, we think first and foremost of (LA)TEX in its
various implementations: TEX [5], LATEX [6], Lua-
TEX [7], etc. Dynamic symbols such as delimiters
and others are supported by (LA)TEX but in some
cases the properties of optical scaling, uniformity of
shape, right-sizing and metal likeness are not re-
spected. The dynMath package [4] has been devel-
oped with the aim of supporting such characteristics
and thus enhancing and improving the typesetting
quality of (LA)TEX.

(LA)TEX offers the possibility of interacting with
PostScript [1] via the TEX \special primitive. The
latter makes it possible to insert and manipulate
PostScript code in (LA)TEX through the dvips driver
[8] while generating PostScript from the dvi files.
We have used this mechanism to handle a dynamic
Type 3 [1] font in TEX, thus enabling dynamic math-
ematical symbols to be supported by the dynMath

system. The way in which this approach of interac-
tion is used is unusual in the development of (LA)TEX
packages. For this reason, we believe it will be in-
teresting to present details of the implementation
process. We note that the same work was done when
the development of dynMath was launched in 2016
[2]. The resumption of such work is justified by the
change that has taken place in the implementation.

This paper is organized as follows. In Section 2,
the overall layout of the dynMath system is given. In
Section 3, some details of dynMath in terms of the
Type 3 font are presented. In Section 4, the way
in which dynMath supports dynamic mathematical
symbols in terms of TEX programming and interac-

tion with the dynamic font Type 3 is studied. The
paper ends with some conclusions and perspectives.

2 dynMath: The layout

The dynMath system is now in its basic state. It con-
tains the minimum necessary files to operate, namely
dynMath.sty and dynMath.tps.

• dynMath.sty: this is the LATEX package itself.
It contains the definition of the macros required
to support the mathematical variable-sized sym-
bols.

• dynMath.tps: this is the specification of a Post-
Script Type 3 font parameterized to draw math-
ematical symbols with dimensions and shapes
satisfying given contexts.

Some details of the two files will be seen below to
give an idea on how they work. A part highlights the
interaction between LATEX and PostScript Type 3.

3 dynMath: The font

3.1 PostScript inside LATEX

The requirements for supporting dynamic mathe-
matical symbols are identified in [2]. The PostScript
language and PostScript Type 3 fonts are recognized
as suitable to provide a solution.

Natively, (LA)TEX has an interface to fonts spec-
ified in METAFONT. This is achieved through tfm

files. These communicate information about the di-
mensions, in a definitive static way, of the characters
which will appear in the document to be printed.
METAFONT is a compiled language and does not al-
low for manipulating the characteristics of charac-
ters at printing time.

It is also possible to use a Type 3 font as a
virtual font. Even if a Type 3 font fully uses the
PostScript language and can be parameterized in a
flexible way, it will not be able to offer support for
dynamism via virtual fonts because the latter are
seen by TEX as if they were METAFONT fonts.

(LA)TEX supports handling the PostScript code
as a literal in the \spacial command in different
ways, depending on the scope of the code in the gen-
erated PostScript document. The most important
thing is that the PostScript variables, in these liter-
als, can be evaluated based on TEX variables whose
values are determined at a given time and in a given
context. This PostScript code can in particular be
a dynamic (parameterized) PostScript Type 3 font.

The PostScript Type 3 font is specified in the
file dynMath.tps. It is a font which respects the
Type 3 specification but it is included in the macro
primitive \special and having a global PostScript
scope:

doi.org/10.47397/tb/45-2/tb140bayar-dynmath-design

Abdelouahad Bayar

https://doi.org/10.47397/tb/45-2/tb140bayar-dynmath-design

TUGboat, Volume 45 (2024), No. 2 275

% Content of ‘‘dynMath.tps’’

\special{!

〈PostScript Type 3 specification of dynmath font〉
}

This is an interaction between LATEX and Post-
Script in which the Type 3 font is inserted and seen
throughout the document generated by LATEX via
the dvips driver.

3.2 Symbols in table and encoding

Any font (PostScript in particular) defines a table of
its character layout: graphics and code. The Type 3
font in dynMath.tps is called dynMath. We used
cmex10 (see Table 1) to build the layout of dynMath
symbols. The dynMath layout is shown in Table 2.
Because dynMath is dynamic, the symbol appears
only once in the table. However, the symbol is pa-
rameterized to meet the required dimensions in a
given context.

The symbols coded from 70 to 97 in the cmex10
layout table come in two graphic versions (one for
the mathematical mode \scriptstyle and the other
for \displaystyle). We think that these signs, of
TEX math class one (large operators), will remain in
these two size cases (obviously referenced by their
relative (LA)TEX commands). They will not be sup-
ported in dynMath except for the integral signs

¸

and
´

. This is because an integral sign with a height
greater than or equal to the mathematical quantity
to be integrated looks better than the opposite case.

In [5], four fonts are mainly identified by the
values \textfont0, \textfont1, \textfont2 and
\textfont3 as the METAFONT fonts cmr10.mf (fam-
ily 0), cmmi10.mf (family 1), cmsy10.mf (family 2)
and cmex10.mf (family 3) respectively. We are inter-
ested in dynamic (extensible) symbols. In (LA)TEX,
dynamism is managed by using different fonts de-
pending on the context. To explain the concept, we
will use the symbols “(”, “〈 ”, “

√
” and “̂ ”. We con-

sider the contents of the file plain.tex as reference.

• \delcode‘\(="028300: This means that the
parenthesis “(” is a delimiter, of which the small-
est variant is taken from family 0 at position
28x (40 in decimal) and the wide variant is in
family 3 at position 00x.

• \def\langle{\delimiter"426830A }: This
defines the symbol “〈” as a delimiter of class 4
(opening delimiter), accessible via the \langle

macro. The smallest variant is in family 2 at
position 68x (104 decimal) and the largest is in
family 3 at position 0Ax (10 decimal).

• \def\sqrt{\radical"270370 }: This defines
the radical symbol “

√
” as a variable symbol

whose smallest variant is in family 2 at position

70x (112 decimal) and the large variant is in
family 3 at position 70x, accessed as the \sqrt

macro.

• \def\widehat{\mathaccent"0362 }: This
defines the wide hat symbol “̂ ” by means of the
command \widehat, of class 0 (ordinary) and
of which the smallest variant is in the family 3
at position 62x (98 decimal).

For the left parenthesis symbol, the smallest variant
is encoded in the font cmr10.mf at position 40. The
large variant with its various standalone instances is
encoded in the font cmex10.mf at positions 0, 16, 18
and 32. The compound version is built from charac-
ters in the same font cmex10.mf at positions 48, 64
and 66 (repetitive character). The font dynMath is
dynamic and so any symbol, such as the parenthe-
sis, must appear only once in the layout table. The
code is that of the first occurrence of the symbol in
cmex10.mf, i.e., position 0 (see Table 2). To param-
eterize the parenthesis and thus support dynamism,
we consider the encoding of the smallest variant,
that in cmr10.mf which is relative to family 0.

There are other symbols whose parameteriza-
tion is based on their appearances in the cmr10.mf

font such as “)”, “[”, “]”, etc. Concerning the symbols
“〈” and “

√
” for example, they are in positions 10 and

112 respectively in dynMath (see Table 2) and their
parametrizations are taken from the font cmsy10.mf
relative to family 2. As for the sign “̂ ”, its position
in dynMath is that in cmex10.mf and its parameteri-
zation base is of the smallest variant and taken from
the same font, namely cmex10.mf.

Roughly speaking, it’s the encoding bases of the
small symbol variants that are parameterized to sup-
port dynamism. Consider a symbol S. Its appear-
ance in dynMath in Table 2, is of the form Sc

f with
c designating the layout order number and f repre-
senting the family used as a basis for parameteriza-
tion. Specifically, the opening bracket, the opening
angle bracket and the wide hat are shown in Table 2
as [2

0, 〈 10
2 and ̂ 98

3 .
We transformed the fonts cmr10.mf, cmsy10.mf

and cmex10.mf using METAPOST to PostScript code
at a body size of 1000 units, serving as a basis for
parameterization of dynamic mathematical symbol
encoding, via the following commands:
mpost ’&mfplain \mode=localfont; \

mag=100.375; input cmr10.mf’

mpost ’&mfplain \mode=localfont; \

mag=100.375; input cmsy10.mf’

mpost ’&mfplain \mode=localfont; \

mag=100.375; input cmex10.mf’

dynMath: Underlying principles of the design

276 TUGboat, Volume 45 (2024), No. 2

Table 1: Math extension font layout showing cmex10

0 1 2 3 4 5 6 7

′00x (0) 1 [2] 3 ⌊ 4 ⌋ 5 ⌈ 6 ⌉ 7

′01x { 8 } 9 〈 10 〉 11 ∣ 12 ∥ 13 / 14 ∖ 15

′02x (16) 17 (18) 19 [20] 21 ⌊ 22 ⌋ 23

′03x ⌈ 24 ⌉ 25 { 26 } 27 〈 28 〉 29 / 30 ∖ 31

′04x (32) 33 [34] 35 ⌊ 36 ⌋ 37 ⌈ 38 ⌉ 39

′05x { 40 } 41 〈 42 〉 43 / 44 ∖ 45 / 46 ∖ 47

′06x 48 49 50 51 52 53 54 55

′07x 56 57 58 59 60 61 62 63

′10x 64 65 66 67 〈 68 〉 69 ⊔ 70 ⊔ 71

′11x ∮ 72 ∮ 73 ⊙ 74 ⊙ 75 ⊕ 76 ⊕ 77 ⊗ 78 ⊗ 79

′12x ∑ 80 ∏ 81 ∫ 82 ⋃ 83 ⋂ 84 ⊎ 85 ∧ 86 ∨ 87

′13x ∑ 88 ∏ 89 ∫ 90 ⋃ 91 ⋂ 92 ⊎ 93 ∧ 94 ∨ 95

′14x ∐ 96 ∐ 97 ̂ 98 ̂ 99 ̂ 100 ˜ 101 ˜ 102 ˜ 103

′15x [104] 105 ⌊ 106 ⌋ 107 ⌈ 108 ⌉ 109 { 110 } 111

′16x √ 112 √ 113 √ 114 √ 115 √ 116 √ 117 √ 118 w 119

′17x x 120 y 121 ︷ 122 ︷ 123 ︸ 124 ︸ 125 ~ 126 � 127

There’s a special case (as there may be more
to come) for the opening and closing brace symbols.
These are not based on existing fonts for parame-
terizing, but have been newly designed to meet the
metal-likeness concept.

3.3 Parameterizing

Dynamic symbols are parameterized in the font to
meet extension requirements. Two categories of char-
acters are identified, depending on whether the dy-
namic parts are delimited by straight lines or curved
lines. Two types of stretching are identified:

Abdelouahad Bayar

TUGboat, Volume 45 (2024), No. 2 277

Table 2: dynMath font layout

0 1 2 3 4 5 6 7

′00x (0
0) 1

0 [2
0] 3

0 ⌈ 4
2 ⌉ 5

2 ⌊ 6
2 ⌋ 7

2
′01x � 8 	 9 〈 10

2 〉 11
2 | 12

2 ‖ 13
2 / 14

0 \ 15
2

′02x 16 17 18 19 20 21 22 23

′03x 24 25 26 27 28 29 30 31

′04x 32 33 34 35 36 37 38 39

′05x 40 41 42 43 44 45 46 47

′06x 48 49 50 51 52 53 54 55

′07x 56 57 58 59 60 61 62 l 63
2

′10x 64 65 66 67 68 69 70 71

′11x
∮

72
3

73 74 75 76 77 78 79

′12x 80 81
∫

82
3

83 84 85 86 87

′13x 88 89 90 91 92 93 94 95

′14x 96 97 ̂ 98
3

99 100 ˜ 101
3

102 103

′15x 104 105 106 107 108 109 110 111

′16x
√

112
2

113 114 115 116 117 118 m 119
2

′17x ↑ 120
2 ↓ 121

2
122 123 124 125 ⇑ 126

2 ⇓ 127
2

1. Line-based extension: this type of extension is
easy and straightforward to support. Examples
include the bracket symbol “ [”, the up arrow
symbol “↑ ”, etc.

2. Curve-based extension: this extension concerns
symbols whose dynamic parts have curved lines.
Here, support for dynamism has necessitated
the development of a mathematical stretching
model (to be published) and an interpolation
method that respects obliquity and convexity
[3]. Examples include the parenthesis “� ”, the
brace “ � ”, etc.

A dynamic symbol is characterized by three param-
eters: height (including depth), width and thickness.
The thickness is in some way linked to the charac-
teristics of the writing instrument (pen) or drawing
instrument (brush).

The stretching undergone by a dynamic sym-
bol is partly supported by the dynMath.sty pack-
age and partly by the dynMath.tps font. Consider
the dynamic symbol S. Let HS , WS and ES be
its height, width and thickness respectively. If the
symbol is to be stretched by the amount h vertically
and w horizontally, then the features in the stretched
state will be HS + h, WS + w and ES as its height,
width and thickness respectively. Thickness is not
affected by the extension. It should be noted that
the stretching supported by the font is not linear.

We’ll call it semi-optical because the thickness re-
mains unchanged. Globally speaking, the thickness
also changes, but this is the work of LATEX and the
PostScript interpreter.

The concept is clarified in Figure 1. This is the
case of the opening parenthesis but we have consid-
ered just the upper half, to show how the font takes
care of the stretching on its side. Note that the ex-
ample is computed at 10 font size in TEX points but
scaled linearly 20 times for greater clarity. It is as
if the parenthesis at size 200 in TEX points under-
goes stretching of the amounts w horizontally and h
vertically.

The thickness was not affected by the stretch-
ing. To highlight this, we have considered landmarks
with different colors. The upper half of the parenthe-
sis is delimited by two sequences of curves, one on
the left and the other on the right. Each sequence is
made up of 7 cubic Bézier curves (how we get these
sequences is a separate work from the current one).
The points shown are the boundary control points of
the Bézier curves. Points of the same order in both
sequences are of the same color and linked by a seg-
ment also of this color. Our mathematical stretching
model preserves the same convexity sense, obliquity
and thickness. This is expressed by the fact that
segments of the same color are of the same length
and direction (in the vector sense) in Figure 1a and
Figure 1b.

dynMath: Underlying principles of the design

278 TUGboat, Volume 45 (2024), No. 2

�H W
(a) Top left part
of left parenthesis
without stretching �H W

h

w

(b) Top left part
of left parenthesis
with stretching of
h vertically and w

horizontally

Figure 1: Example of stretching in height h and
width w while keeping the same thickness

4 dynMath: the style package

4.1 Useful macros and conventions

The dynMath.sty style package defines all the vari-
ables useful for internal operations, as well as others
used as an interface for interaction with the Post-
Script Type 3 font dynMath. It also defines macros
for managing mathematical formulas based on exten-
sible symbols. We have followed a particular way of
naming the macros relating to the dynamic symbols
in LATEX. In LATEX, without doubt, the most in-
teresting commands, in term of dynamism, are the
primitive \left and its counterpart \right. The
package dynMath defines a macro which essentially
does the same job as \left but operates with the
dynamic symbols defined in the PostScript Type 3
font. The general syntax of this macro is:

\meLeft〈delim1〉 〈formula〉 \meRight〈delim2〉
We referred to the normal LATEX commands

when naming the dynMath ones in order to make it
easier to use for users accustomed to using (LA)TEX.
The same names are used, beginning with a capital
letter and preceded by “me” meaning “metal” . An-
other example is \overbrace, to which corresponds
\meOverBrace in dynMath.

5 Determining extension parameters

The most characteristic stretching parameters are
the amount of vertical stretching h, the amount of
horizontal stretching w and the size of the font Post-
Script fs in which we will typeset the symbol to be
stretched. In the case of the \meLeft macro, that
is, in the case of the delimiters, these three param-
eters are functions of the mathematical height of a
formula, which we will always call hm. First, we
give the idea of calculating hm. Figure 2 and Fig-
ure 3 explain the approach. This concerns the case
of two abstract mathematical formulas (just a rec-
tangle with a height, depth and width) one of which
is high and the other is deep. A description of the
parameters in the figures are as follows:

math axis
y1

y2

hm

hm

fh

fd
baseline

Figure 2: Abstract high mathematical formula

math axis
y1

y2

hm

hm

fh

fd
baseline

Figure 3: Abstract deep mathematical formula

• fh: height of formula from the baseline.

• fd: depth of formula from the baseline.

• y1: mathematical height of the formula. It is
measured from the mathematical axis to the top
of the formula.

• y2: mathematical depth of the formula. It is
measured from the mathematical axis to the
bottom of the formula.

• hm: mathematical balanced height (depth) of
the (balanced) formula. We have that hm =
Sup (y1, y2).

An important point to note is that the handling of
stretchable mathematical symbols differs from one
category to another. For example, the parameter
hm, which makes sense in the case of delimiters, will
not make sense when it comes to the radical (square

Abdelouahad Bayar

TUGboat, Volume 45 (2024), No. 2 279

Table 3: Characteristics of left parenthesis in PostScript at a 10 unit body size

Parenthesis Width Close
width

Height Thickness Left
bearing

Right
bearing

Math
axis

Normal 3.8688232 2.3218745 5.0000024 0.5833423 0.9942598 0.5526889

2.5000014

big 4.5632816 2.6121009 5.9900241 0.6944529 1.5242052 0.4269755

Big 5.9521679 3.7974070 8.9900563 0.7638956 1.8027775 0.3519834

bigg 7.3410694 4.9213804 11.9900885 0.8333385 2.081079 0.33861

Bigg 7.8966266 5.2128642 14.9901202 0.972224 2.3589455 0.3248169

Compound 8.7299554 5.5043343 17.9801222 1.1111097 2.9145983 0.3110228

root) symbol. For the radical, the amount of verti-
cal stretching, for example, depends on the overall
height including depth, i.e., fh + fd.

We only consider the case of the macro meLeft,
since the aim is to illuminate the interaction between
(LA)TEX and PostScript Type 3. The value of pa-
rameter hm is half the overall height of the exten-
sible delimiter. To clarify the idea, we take one of
the previous figures, Figure 3 for this example, and
display on it the left parenthesis useful for delimit-
ing the abstract formula. The result is in Figure 4.
The parenthesis delimiter is positioned correctly ver-
tically. However, it has been shifted a little horizon-
tally to the left to give the figure more legibility.

�
math axis

y1

y2

hm

hm

fh

fd
baseline

Figure 4: Abstract deep mathematical formula with
left parenthesis delimiter

The opening (and closing) parenthesis in TEX
comes in five standalone versions, as shown in Fig-
ure 5. One or the other is used to delimit a for-
mula, depending on the situation of its mathemat-
ical height in comparison with those of the paren-
theses. When the mathematical height of a formula
exceeds that of the standalone parentheses, a three-
character compound parenthesis is used. This is

made up of the three characters

,

and

, ver-

tically superposed, with the third repeated between
the two first as many times as necessary.

(
((((

Figure 5: (LA)TEX standalone left parentheses

Let’s adopt a numbered designation for the paren-
theses, P0, . . ., P5, in the order given in Figure 5.
The last, P5, is the smallest compound parenthesis,
i.e., the compound when the number of occurrences
of the repeated character is zero. The parenthesis P0

represents the smallest variant in standalone paren-
theses (as we saw before). It is none other than
parenthesis number 40 in cmr10.mf. It’s this paren-
thesis that we’ve set in the PostScript Type 3 font
dynMath to support dynamic parenthesis. Its encod-
ing in PostScript is developed as a function of the
two variables w and h (among others) representing
horizontal and vertical stretching respectively.

Table 3 shows the most important characteris-
tics of the six parentheses used in (LA)TEX. One
notable parameter of the state of a parenthesis is
the thickness em. How is this value calculated? In
the case of a delimiter to be stretched relative to
\meLeft, it’s the stretching in the vertical direction
that attracts attention. This shows that hm is a key
parameter in handling the dynamism of delimiters.
For this purpose, thickness is defined as a function
of the mathematical height hm. Let (hm,i)

5
i=0 de-

note the sequence of mathematical heights of the
parentheses P0, . . . , P5. Similarly, (em,i)

5
i=0 is the

sequence of the thicknesses of P0, . . . , P5. The 10pt
size is taken as a basis for handling the stretching of
the parenthesis symbol. We have the following cases
and constraints:

• If hm = hm,i, i = 0, . . . , 5 then em = em,i.
• If hm ∈ [0, hm,0], then em is linearly increasing

between 0 and em,0.
• If hm ∈ [hm,i, hm,i+1], i = 0, . . . , 4 then em is

increasing affinely between em,i and em,i+1.
• If hm ∈ [hm,5, hmax], then em is increasing

affinely between em,5 and emax.

The value of the maximum mathematical height
taken is hmax = 1685pt. This value represents ap-
proximately half the height of an A0 page. As for
the thickness corresponding to hmax, determined by
experiments based on a certain formulation, it is
emax = 6.292214230pt.

dynMath: Underlying principles of the design

280 TUGboat, Volume 45 (2024), No. 2

1 2

1

hm (×10)

em (hm)

b

b

b

b

b

b

b

b b b b b b

b

b

b

b

b

b

h
m

,0

h
m

,1

h
m

,2

h
m

,3

h
m

,4

h
m

,5

em,0

em,1
em,2
em,3

em,4

em,5

Figure 6: Thickness em as a function of hm

A summary of the cases is shown in Figure 6.
Remember that it’s the parenthesis P0, but with a
1000 unit body size, that is implemented and pa-
rameterized in the PostScript Type 3 font. What
counts first when typesetting a mathematical sym-
bol, such as the opening parenthesis, is the size fs of
the font. Assuming that for a mathematical height
hm, the thickness is em, knowing the thickness e1000
of the parenthesis at size 1000 in the PostScript font
dynMath, then we can determine the size value fs
of the font corresponding to this thickness em, i.e.,
fs = (em×1000)/e1000.

Let a font size fs correspond to a thickness em
which we calculated as a function of hm. Let us de-
note by hfs the height of the parenthesis in the font
PostScript Type 3 dynMath relative to fs, without
any extension (w = 0, and h = 0). So we have:

1. If hm ≤ hm,0 then hfs = hm

2. If hm > hm,0 then hfs < hm.

We assume that h represents the amount of vertical
stretching the parenthesis in dynMath must undergo
to delimit the mathematical formula. For Item 1,
the parenthesis obtained has the necessary height
to cover the formula. There’s no need to stretch
this parenthesis, so h = 0. On the other hand, in
Item 2, we need a vertical extension h = hm−hfs for
the parenthesis to have the height needed to cover
the formula. The horizontal stretching amount w
needed will be explained later.

Just like the thickness em, other functions are
useful and defined according to hm: the width wm,
the strict or close width (width of the symbol with-
out the left and right bearings) cwm, the left bearing
lbm and right bearing rbm.

The function cwm is important for calculating
the amount of horizontal stretching w. For this,
we give some detail on its definition. The sequence

(cwm,i)
5
i=0 consists of the close widths of the paren-

theses P0 to P5. We have:

• If hm = hi, i = 0, . . . , 5 then cwm = cwm,i.

• If hm ∈ [0, hm,0], then the function is of no
interest (see further).

• hm ∈ [hm,i, hm,i+1], i = 0, . . . , 4 then cwm is
increasing affinely between cwm,i and cwm,i+1.

• If hm ∈ [hm,5, hmax], then cwm is of no interest.

If we reconsider the font size fs and denote by cwfs

the close width of the parenthesis in the Type 3
font dynMath at size fs, we get the following result:
cwfs < cwm. The horizontal stretching variable w
takes on the following values:

1. If hm ≤ hm,0 then w = 0 (in this case h = 0,
see Item 1 above).

2. If hm,0 < hm ≤ hm,5 then cwfs < cwm and
w = cwm − cwfs .

3. If hm > hm,5 then w = h
8 . This is a relationship

obtained by experimentation. It differs from
one symbol to another. For the brace, for ex-
ample, it’s w = h

16 .

For further clarification, two illustrations of the last
two cases of the above enumeration are in Figures 7
and 8. These figures present information other than
that relating to the stretching, vertical h and hori-
zontal w. The meanings of the various parts were
given in Figure 2 and Figure 3.

Processing of the left and right bearings is re-
quired to correctly position the dynamic symbols
around the mathematical formula to be delimited.
We need to be aware that the mathematical axis of
the symbol written in the dynMath font is different
from that of the mathematical formula, and so an
alignment is necessary. We won’t go into the details
of these functions here, so as not to overload the ar-
ticle. In a future project, we’ll write a book on the
detailed implementation of dynMath.

Abdelouahad Bayar

TUGboat, Volume 45 (2024), No. 2 281

hm

hm

hfs
h

cwm

cwfs

w

��
y1

y2

fh

fd

Figure 7: Stretching details, H4 < hm < H5

hm

hm

hfs

h

cwfs

w

��

y1

y2

fh

fd

Figure 8: Stretching details, hm > H5

5.1 Dynamism management steps

In this section, the important steps in dynamism
management are presented. It should be noted that
each macro relating to the extension phenomenon
is responsible for managing the relative extension
parameters. The need may differ from one macro to
another. Consideration of one of them highlights the
general concept. The macro used as an example is
\meLeft. One of the steps in the extension process is
interaction with the Type 3 font. We are not going
to talk about the \meLeft macro in programming
terms, but only in an algorithmic sense and in a
language as natural and abstract as possible. The
definition of this macro is:
\def\meLeft#1#2\meRight#3{〈 macro definition〉}
Where:
#1: left delimiter,
#2: formula to be delimited,
#3: right delimiter.

Let’s assume that:
ldel: represents #1,
formula: represents #2,
rdel: represents #3.
Before presenting the steps of the \meLeft macro,
the meanings of some keywords used are given in
Table 4.

Table 4: Useful tokens and meaning for dynamism
steps presentation

Keyword Meaning

ldel left delimiter
rdel right delimiter
mAxis mathematical Axis
fbox formula box

fh formula height
fd formula depth
fw formula width
hm height mathematical
lth left thickness
fs font size

symWidth symbol Width
fdelb formula delimiter box

The main steps of \meLeft are:

1. Determine the current math style: style

2. In style:

• Determine the height of the mathematical
axis: mAxis.

• Put formula in fbox.

3. Determine the dimensions of fbox:

• Height: fh

• Depth: fd

• Width: fw

4. Determine the mathematical height hm: hm =
sup (fh− mAxis, fd+ mAxis)

5. Based on hm, determine the thickness of the left
dynamic symbol ldel: lth.

6. Based on lth, determine the size fs of the Post-
Script font dynMath to write the delimiter ldel.

7. In terms of fs and hm determine:

• The vertical stretching amount h.

• The horizontal stretching amount w.

• The delimiter width symWidth.

8. Process the box fdelb which will contain the
extensible PostScript delimiter:

• Write in fdelb the special:
\special{" 〈leftSpecial〉}.

• In 〈leftSpecial〉:
– Align the mathematical axis of

the symbol ldel according to
the font dynMath at size fs with
the mathematical axis mAxis of
formula.

– Write ldel with respect to the
font dynMath at size fs from the
coordinates (0, 0).

dynMath: Underlying principles of the design

282 TUGboat, Volume 45 (2024), No. 2

9. Set the dimensions of fdelb:

• Width at symWidth.

• Height at (hm+ mAxis).

• Depth at (hm− mAxis).

10. Adjust the position of fdelb by kerning in order
to adjust the left bearing of ldel.

11. Insert the contents of the fdelb.

12. Adjust the right bearing of ldel by kerning.

13. Insert formula.

14. Repeat steps 5 to 12 for the rdel delimiter.

6 Conclusions

We have given an idea on the principles of interac-
tion between (LA)TEX and a PostScript Type 3 font.
This is the basis for the support of dynamic math-
ematical symbols. The idea is presented in special
cases and not completely detailed. In the near fu-
ture, we will publish a book detailing the basics and
all the implementation cases of dynMath.

References

[1] Adobe Systems Incorporated. PostScript
Language Reference Manual. Adobe Systems
Incorporated, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1999.
https://adobe.com/jp/print/postscript/

pdfs/PLRM.pdf.

[2] A. Bayar. Towards an operational (LA)TEX
package supporting optical scaling of
dynamic mathematical symbols. TUGboat
37(2):171–179, 2016. https://tug.org/

TUGboat/tb37-2/tb116bayar.pdf

[3] A. Bayar. C1 interpolation of sequences of
points preserving convexity and obliquity based
on oblique convex two-dimensional cubic bézier
splines. In 2024 IEEE International Conference
on Signal, Image, Video and Communications
(ISIVC 2024), pp. 1–6, Marrakech, Morocco,
May 2024.

[4] A. Bayar. dynMath: A PostScript Type 3-based
LATEX package to support extensible
mathematical symbols. TUGboat 45(1):18–24,
2024. https://tug.org/TUGboat/tb45-1/

tb139bayar-dynmath.pdf

[5] D.E. Knuth. The TEXbook, vol. A of Computers
and Typesetting. Addison-Wesley, Reading,
Massachusetts, 1st ed., 1984.

[6] L. Lamport. LATEX: A Document Preparation
System. Addison-Wesley, USA, 1994.

[7] LuaTEX development team. LuaTEX Reference
Manual, Feb. 2024.
https://ctan.org/pkg/luatex.

[8] T. Rokicki. Dvips: A DVI-to-PostScript
Translator, Feb. 2024.
https://ctan.org/pkg/dvips.

⋄ Abdelouahad Bayar

Cadi Ayyad University — Higher

School of Technology of Safi,

PSSII Lab

Sidi Aissa Road, PB 89

Safi, 46000

Morocco

a.bayar (at) uca dot ma

ORCID 0000-0002-3496-505X

Abdelouahad Bayar

https://adobe.com/jp/print/postscript/pdfs/PLRM.pdf
https://adobe.com/jp/print/postscript/pdfs/PLRM.pdf
https://tug.org/TUGboat/tb37-2/tb116bayar.pdf
https://tug.org/TUGboat/tb37-2/tb116bayar.pdf
https://tug.org/TUGboat/tb45-1/tb139bayar-dynmath.pdf
https://tug.org/TUGboat/tb45-1/tb139bayar-dynmath.pdf
https://ctan.org/pkg/luatex
https://ctan.org/pkg/dvips

	Introduction
	dynMath: The layout
	dynMath: The font
	PostScript inside LaTeX
	Symbols in table and encoding
	Parameterizing

	dynMath: the style package
	Useful macros and conventions

	Determining extension parameters
	Dynamism management steps

	Conclusions

