
102 TUGboat, Volume 45 (2024), No. 1

Including PDF files

Hans Hagen

Rendering glyphs in a PDF happens based on infor-
mation in the page stream. In such a stream we find
font triggers that use identifiers like F1 and after-
wards placement operators inject shapes by referring
to an index in the font, say hexadecimal 0003, and
that index can refer to any shape. The identifier is
resolved via the Font entry in the Resources dictio-
nary of the page:

5 0 obj

<<

/Contents 3 0 R

/Resources << /Font << /F1 1 0 R >>

/ProcSet 2 0 R >>

...

/Type /Page

>>

endobj

Following the F1 reference we end up at:

1 0 obj

<<

/BaseFont /TNTUFI+LMRoman10-Regular

/DescendantFonts [11 0 R]

/Encoding /Identity-H

/Subtype /Type0

/ToUnicode 14 0 R

/Type /Font

>>

endobj

and when we then descend into the first entry in the
DescendantFonts array we come to:

11 0 obj

<<

/BaseFont /TNTUFI+LMRoman10-Regular

/CIDSystemInfo << /Ordering (Identity)

/Registry (Adobe)

/Supplement 0 >>

/FontDescriptor 9 0 R

/LMTXRegistry 8 0 R

/Subtype /CIDFontType0

/Type /Font

/W 10 0 R

>>

endobj

The W entry value, rather short relative to the
other keys, refers to an array object that holds the
widths of the glyphs so that the viewer knows how
much to advance; the FontDescriptor points to the
shapes; and LMTXRegistry will be discussed later.
These examples come from typesetting:

\starttext

\startTEXpage

test

\stopTEXpage

\stoptext

With LuaTEX we see this in the page stream:

BT

/F1 11.955168 Tf

1 0 0 1 0 0.11949 Tm [<0069003200620069>]TJ

ET

and also this in the mapping from index to Unicode,
which is object 14, defined by the ToUnicode value
shown above (I added the characters as comments):

3 beginbfchar

<0032> <0065> % e

<0062> <0073> % s

<0069> <0074> % t

endbfchar

When we use LuaMetaTEX instead we get:

BT

/F1 10 Tf

1.195517 0 0 1.195517 0 0.065717 Tm

[<0001000200030001>] TJ

ET

and:

3 beginbfchar

<0001> <0074> % t

<0002> <0065> % e

<0003> <0073> % s

endbfchar

Thus, where LuaTEX uses the original index in
the font (not to be confused with the character’s Uni-
code value, if it has one at all), in LuaMetaTEX, or
more accurately with the ConTEXt backend, we start
at one and number upwards. This gives smaller files.

The only way to find out what an index is ac-
tually referring to is to consult the abovementioned
ToUnicode vector in the font resource because there
we map from index to Unicode. That information is
used when you search in a PDF file or cut-and-paste
from it. Because glyphs can be unrelated to Unicode,
and because multiple glyphs can share the same Uni-
code slot, the index is what makes a glyph unique.

When a (page from) a PDF file is included in
a document LuaTEX will copy the relevant objects
to the main file. Of course the page itself is copied
(with the page stream making up the content). Copy-
ing is also driven by the Resources key in the page
dictionary. In addition to the Font list we’ve seen
above, there can also be an XObject array and its
entries need to be copied as well. This copying is
recursive because the resources themselves can point
to objects with resources. It is quite normal in a
PDF file to share resources. The rendered glyphs, for
instance, come from fonts that contain the shape defi-
nitions and basically these are the same, independent
of scaling.

doi.org/10.47397/tb/45-1/tb139hagen-pdfincl

Hans Hagen

https://doi.org/10.47397/tb/45-1/tb139hagen-pdfincl

TUGboat, Volume 45 (2024), No. 1 103

Table 1: Comparison of LuaTEX, LMTX, PDF compression, and advanced merging.

native compact=no compact=yes

LuaTEX MkIV compressed 839 KB / .20 sec 731 KB / 0.20 sec 231 KB / 0.22 sec
decompressed 1784 KB / .20 sec 943 KB / 0.22 sec 426 KB / 0.23 sec

LuaMetaTEX MkXL compressed 544 KB / 0.18 sec 147 KB / 0.24 sec
decompressed 783 KB / 0.16 sec 552 KB / 0.19 sec

The index can be the original glyph index in the
font but, because we subset, it can also be a differ-
ent one, depending on what gets included. This
is illustrated in the example above. By default
the LuaTEX engine just copies and doesn’t worry
about what gets copied. However, in MkIV we can
load some code that plugs into the LuaTEX backend
and is thereby capable of merging fonts from the
included PDF (page) with one used in the document.
This process is driven by setting the compact key in
\externalfigure to the value yes. Here we assume
that the references to glyphs in the page stream are
the original (or equivalent) indices but this is not
guaranteed to be true. We can check a little by
comparing the Unicode mapping as well as doing a
visual check afterwards, but neither are robust. It
still works ok as long we use exactly the same font;
essentially, we check the name and when it matches
we force the glyph into the current file and use the
font reference of main document for the embedded
reference instead.

In LuaMetaTEX we do it differently and there
are reasons for this. First of all, we have different
numbering in the main file and inserted file, so we
cannot use the indices directly. In addition, we have
to also take care of Type 3 fonts that refer to fonts
that we merge (we use these fonts in, for instance,
math delimiters). Finally we cannot simply look
at the name because we can have a variable font
instance that has different axis properties. So we
have to be more clever: we need to parse the content
streams of the page, XObjects and charprocs to find
out what glyphs are referenced and replace indices
when applicable. In addition we consult some ex-
tra information that is included when ConTEXt did
typeset the (to be embedded) file. That information
contains a stream index to original index mapping,
and also has a variable font recipe if needed. There
is also some additional information so that we at
least check if we have the same font.

In Table 1 we compare three alternatives. The
native inclusion in LuaTEX leaves the work to the
engine. When the plugin is loaded, we will use the
Lua-based inclusion code which is a bit more clever
in sharing objects. In the LuaMetaTEX variant we

also copy objects into the main file but there we
have no plugin and sharing happens anyway. Here
with compact=yes we also merge fonts but this time
based on parsing the streams. This parsing is more
demanding and bumps runtime but is also more
rewarding in terms of file size. For completeness
we show the results with and without PDF object
stream (zip) compression. The need to decompress
and compress also has some impact on performance.

In case the slightly slower inclusion in LuaMeta-
TEX bothers you, there might be some comfort in
knowing that the 20 files accumulate to 564 KB and
a fresh run takes 49 seconds. When we use LuaTEX
the file size total bumps to 748 KB and the initial
runtime goes up to 94 seconds. So in the end the
LuaMetaTEX-based variant is more efficient.

So, in MkIV there are two reasons for having
the plugin. The first is that by sharing common
objects we can, for instance, include many pages
from the same document with little overhead. For
this, compact doesn’t need to be active. However
when for instance we include many documents we
can see that merging fonts does pay off handsomely.
In MkXL we already have the first benefit (sharing)
by default and here we can also do better by merging
fonts. Because that merging is more aggressive you
see better numbers in the table for MkXL.

A practical usage scenario is making manuals
where we process examples (using ConTEXt buffers)
in independent runs so that they are independent
from the main document. Of course there is only
a gain if these examples share fonts with the main
document or with each other. Here is the test case:

\startbuffer[common]

\usebodyfont [dejavu]

\usebodyfont [lucida]

\usebodyfont [bonum]

\setupbodyfont[modern]

\setupalign[tolerant,stretch]

\stopbuffer

We load four different font sets in a common
buffer but also use them in the main document:

\getbuffer[common]

We define two additional buffers that each cre-
ate a document with two pages. We use different

Including PDF files

104 TUGboat, Volume 45 (2024), No. 1

languages because otherwise there is little to merge,
as the sample texts use the regular Latin script:

\startbuffer[demo-1]

\start

\switchtobodyfont[dejavu]\samplefile{ward}

\stop \blank

\start

\switchtobodyfont[lucida]\samplefile{davis}

\stop \page

\start

\switchtobodyfont[bonum] \samplefile{knuth}

\stop \blank

\start

\switchtobodyfont[modern]\samplefile{tufte}

\stop \blank

\stopbuffer

\startbuffer[demo-2]

\start

\switchtobodyfont[dejavu]\mainlanguage[es]

\samplefile{cervantes-es.tex}

\stop \blank

\start

\switchtobodyfont[lucida]\mainlanguage[sv]

\samplefile{alfredsson-sv.tex}

\stop \page

\start

\switchtobodyfont[bonum] \mainlanguage[de]

\samplefile{aesop-de.tex}

\stop \blank

\start

\switchtobodyfont[modern]\mainlanguage[cz]

\samplefile{komensky-cz}

\stop \blank

\stopbuffer

Optionally we enable compact inclusion:

% \setupexternalfigures[compact=yes]

Here is the main document:

\starttext

\dorecurse{10}{

\startTEXpage[offset=1ex]

\start \switchtobodyfont[dejavu]

\samplefile{ward} \stop \blank

\start \switchtobodyfont[lucida]

\samplefile{davis} \stop \blank

\start \switchtobodyfont[bonum]

\samplefile{knuth} \stop \blank

\start \switchtobodyfont[modern]

\samplefile{tufte} \stop \blank

% #1 is the iterator:

\setbuffer[#1]#1\endbuffer

\hbox\bgroup

\typesetbuffer[common,demo-1,#1]

[width=10cm,page=1]

\typesetbuffer[common,demo-1,#1]

[width=10cm,page=2]

\egroup

\blank

\hbox\bgroup

% these are processed in separate runs:

\typesetbuffer[common,demo-2,#1]

[width=10cm,page=1]

\typesetbuffer[common,demo-2,#1]

[width=10cm,page=2]

\egroup

\stopTEXpage

}

\stoptext

In order to get ten times two unique documents
to be included, we smuggle an extra buffer into the
subsidiary runs. We need to do this because other-
wise the hashes of the content of these sub-documents
are the same and we’d end up with only two docu-
ments and successive inclusions would share these.
Of course the first run with fresh buffers will take
more runtime because the sub-documents need to be
processed (twice in order to get multi-pass activities
resolved).

There are a few pitfalls. First of all we have
to make sure that we only merge references to the
same font. This is often no problem as long as we
don’t update fonts with different shapes in the same
slots but we can assume that the version number is
different then. For the application we have in mind,
buffered sub-runs or inclusion in related documents
that get processed in a short time span, we are prob-
ably ok. We can make the check more tolerant or
more clever, and might do that in the future. On
the average the inclusion is already rather efficient
when a few pages from a few documents are used.

A second pitfall is that when we improve the
ConTEXt (font) backend we can have better shapes
or more precise metrics but because metrics are un-
likely to change much in the glyph programs we’re
probably okay. Even mixing the more efficient so-
called compact font mode with normal font mode
(not to be confused with compact inclusion) should
work out well enough. In case of doubt: trust your
eyes or just regenerate the documents involved in
the inclusion.

Finally it is worth mentioning that there is a
noticeable overhead but if becomes necessary I can
optimize the handling of the stream a bit by replacing
the more general stream parser by a dedicated one
for this purpose.

Let’s stress one thing again. Because shared
font usage will never be (guaranteed) watertight you
do need to check visually. A bad merge will immedi-
ately show up by the included image rendering with
garbled text. There are some extra safeguards in
the MkXL approach that are absent in the MkIV

Hans Hagen

TUGboat, Volume 45 (2024), No. 1 105

solution which is why the latter is considered an
experiment and not loaded by default. I could spend
time on it but as we moved on to LMTX (the MkXL

LuaMetaTEX combination) it makes little sense.
Does the story end here? Not entirely. Occa-

sional validation requirements have a side effect that
some users have to fix old PDF files to suit demands.
Let’s mention a few issues users run into:

• Embedded so-called Type 0 fonts can lack a
/CIDSet and/or CIDToGIDMap entry that needs
to be added.

• A document can refer to external files that are
not embedded. Normally these are in WinAnsi

encoding and page stream indices match encod-
ing indices so we can smuggle these files into the
document.

• Font resources can be embedded multiple times
with different subsets, likely per page. Different
names are used, which complicates matters, but
it makes sense to try to merge them.

• Fonts with the same name but in Type 1 as well
as TrueType format, both using the original
indices, occur in the same document so they can
be merged.

We can deal with this quite well if we have
the original fonts available. Failures to do this well
immediately show up so we can again trust our eyes.
In an automatic large scale fix operation we can built
in some safeguards.

Then, as we’re fixing included pages anyway, we
may as well try to conform to standard even better,
for instance:

• Instead of gray scales CMYK and RGB colors are
used, or one of these color spaces is not handled
right and we need to remap colors. It can be
a side effect of lazy programming in producer
software.

• Extended graphic states are used, for instance
for transparencies while there is no transparency
actually being used. These can be side effects
of producers just emitting as much as they can.

• Irrelevant grouping can be applied to pages and
/XObjects. In fact, when a validator complains
we can just as well get rid of them.

For such things we need to fix the /Resources
as well as the page content streams so it adds a little
more overhead but when we just convert documents
it is a one-time effort so a few more milliseconds
won’t be a big burden.

But discussing these details doesn’t really fit in
this font discussion so we end by mentioning that we
have a framework in place for plugging in fixers of any
kind. The approach is to configure what standard
to use and what fixes to apply. Only time will tell if
this is sufficient. Most users probably never have to
worry about it anyway.

⋄ Hans Hagen
Pragma ADE

Including PDF files

