
TUGboat, Volume 45 (2024), No. 1 117

Nodes and edges with METAPOST: The
MetaGraph environment

Federico García De Castro

1 Introduction
The aim of this article is to present MetaGraph, a set
of METAPOST macros and utilities developed over
the last couple of months as an open-ended environ-
ment for drawing graphs (in the sense of “nodes and
edges”), and intended to complement external graph
analysis engines with the versatility of programmatic
formatting.

After a quick glance at MetaGraph’s capabilities
through three demo graphs, the sections below offer
a general description of the system, highlighting the
data vs. procedure approach that makes it different
from the plotting routines typically available in those
external engines — with a special mention of TikZ —
and offering a general ‘feel’ for what this approach
entails and permits.

All graph-related techniques and terms men-
tioned here are used simply for illustration purposes,
and the details of what they mean in graph theory
or analysis do not matter much. What the ‘degree’
of a node illustrates in this or that example could
just as well have been illustrated by its ‘k-core num-
ber’, its various ‘centrality’ measures, or any such
node attribute — I will therefore not be discussing
these concepts in any depth. Similarly, I will not
go into much detail regarding METAPOST’s general
syntax — knowledge of METAPOST is surely a good
asset for using MetaGraph, but I don’t think it’s a
pre-requisite: the operations shown here should be
good base analogs for anyone potentially interested
in using the system, even without prior METAPOST

experience. I am happy to share the source code.

1.1 Three demo graphs
The graph in Figure 1 is a so-called ‘random geomet-
ric’ graph with 200 nodes and 860 edges, drawn with
a) two kinds of node marker (• and ◦) and b) “las-
sos”, that highlight two particular features of the
graph (resulting from two particular graph analysis
techniques).1

Figure 2 is a graph made from a much larger
set of data, but from an abstract point of view it is

1 For graph theory folks: The •-nodes are nodes with
‘revcore dependency’ equal to 0 (meaning that they are local
centers of density according to ‘reverse core decomposition’);
the groups of nodes lassoed in the figure are the node commu-
nities yielded by the ‘Louvain community detection’ algorithm.
Both things were computed in a graph-analysis engine, and
fed to MetaGraph in a ‘data file’, as will be explained in more
detail below.

Figure 1: A random geometric graph, 200 nodes and
860 edges

Figure 2: A region of Facebook, 4,039 nodes and 88,234
edges

essentially the same kind of object: a set of name-less
nodes and direction-less edges.2 The figure itself is a
much plainer representation of the graph — just black
node markers and grey edges — but there is nothing
to prevent the kind of lassoing, conditional format-
ting, or other graphic treatment that was done on
the first graph. The main reason to include Figure 2
here was to test the limits of MetaGraph; as it turns

2 These two graphs come from the documentation of the
Python library ‘Networkx’ at networkx.org/nx-guides/
content/exploratory_notebooks/facebook_notebook.html
and networkx.org/documentation/stable/auto_examples/
drawing/plot_random_geometric_graph.html.

doi.org/10.47397/tb/45-1/tb139garcia-metagraph

Nodes and edges with METAPOST: The MetaGraph environment

https://networkx.org/nx-guides/content/exploratory_notebooks/facebook_notebook.html
https://networkx.org/nx-guides/content/exploratory_notebooks/facebook_notebook.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_random_geometric_graph.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_random_geometric_graph.html
https://doi.org/10.47397/tb/45-1/tb139garcia-metagraph


118 TUGboat, Volume 45 (2024), No. 1

out, even its 88,234 edges are far from exhausting
METAPOST’s capacity (see section 3). The limit on
how large a graph MetaGraph can deal with is likely
to be practical rather than computational.

vii◦4
3/ii

IV

vii◦4
3/V

vii◦4
3

V2

ii2

V6
5

V
IIV6

4

IV4
7

vii◦7 /V
V

vii◦2

vii◦7/V

Vsus
7

IV4
2

ii7

I6

I6
4

ii6

V7/IV
I

V7

Figure 3: A directed graph of the harmonies of the first
prelude in J.S. Bach’s The Well-Tempered Clavier

The third demo graph is different in a couple of
deeper senses. It is a ‘directed’ graph — hence the ar-
rows in Figure 3 — and its nodes have names — hence
the node labels instead of markers. The visualization
in the figure features a) both a lasso and a shaded
region — for METAPOST the two things are not too
different, the former resulting from ‘draw dashed
evenly’, the latter from ‘fill’ — and b) conditional
formatting on the nodes and edges, according to node
‘degree’ and edge ‘weight’ (details in section 2.4).

It is this kind of graph that I have been working
on in the context of music-theory research, and it

is the need for chord-ciphers such as vii◦7/V
V , annoy-

ing outside of TEX, that led me to a) explore the
possibility of writing some useful macros; b) realize
how adequate METAPOST is for these matters; and
c) share the news. I imagine the truly easy han-
dling of nodes as LATEX expressions has wider appeal
(‘H2SO4’, etc.).

1.2 MetaGraph, TikZ, etc.
To be sure, most relevant external environments can
handle LATEX, ‘importing’ it or its output into their
workflow. In particular, TikZ (which handles TEX
natively, of course) has a truly sophisticated library
for graphs, which includes even algorithms that are
not present in all graph analysis engines — as well
as facilities to implement new ones. TikZ offers
options for the style, placement, coloring, and even
animation of nodes, as well as for (several) ways of

connecting them with edges. In addition, TikZ is
well integrated in the graph-analysis landscape, and
most engines have a backend to export their graphs
as TikZ code, just as they can typically export them
as matplotlib plots.

There is, however, little overlap between TikZ
and MetaGraph — in fact, just as little as there is
between MetaGraph and matplotlib. MetaGraph is
not intended to be a self-contained unit implement-
ing a comprehensive syntax for every possible node-
and edge-drawing need and option. If anything, it
pursues the opposite: as open-ended an environment
as possible, where the graph (its data, essentially)
is little more than ‘set up’ for later straightforward
drawing through METAPOST. The exact nature of
this approach, its possible benefits and utility, and
its difference with TikZ, will perhaps be clearer after
reading or even only surveying the sections below.

1.3 What is MetaGraph?
1.3.1 A set of METAPOST macros
In the strictest sense, MetaGraph is simply a set
of METAPOST macros: high-level shortcuts that ex-
pand into the plain METAPOST constructions that
draw edges, add node labels, etc.

For example, the allnodes macro expands to ‘0
upto last_node’, which one can use freely to loop,
‘for node = allnodes’. Another macro, addlabel,
expands to

addto currentpicture also label〈node-id〉
where label in turn stands for ‘nlabels〈node-id〉
shifted pos〈node-id〉’ — and so on: pos is itself a
macro (more on this in section 2.1).

There are also more complicated routines. When
drawing an edge (arrowedge or lineedge), the sys-
tem checks on the labels of the two nodes involved,
so that the edge is drawn starting and ending on the
corresponding intersection points, depending on var-
ious values such as labelpadding, edgeangle, etc.
There is a family of utilities — leftoflabel〈node〉,
belowrightoflabel〈node〉, abovelabel〈node〉, and
others — that return the coordinates of the requested
point, so that they can be used, for example, in the
drawing of lassos.

1.3.2 A graph-drawing system
Through macros like these — collected in the META-
POST file metagraph.mp — MetaGraph acts as an
interface between the actual node and edge data and
the METAPOST operations that are most commonly
useful to draw the actual graph out of those data.
In other words: given the node and edge data, there
are macros in MetaGraph that provide high-level,

Federico García De Castro



TUGboat, Volume 45 (2024), No. 1 119

graph-oriented utilities to have METAPOST produce
the images.

But these ‘node and edge data’ are expected
to come from somewhere else — typically an exter-
nal graph analysis engine — and they must follow
certain conventions in order to be understood by
metagraph.mp. In this wider sense, MetaGraph is
actually a system for drawing graphs, consisting, at
the time of writing, of a) the macros, and b) the con-
ventions that need to be followed to provide the raw
data of the graph. Eventually, MetaGraph should/
will also include c) documentation, and d) backends
for the most common graph-analysis engines.3

1.3.3 Dependencies and work flow
One of the good things about METAPOST (over its
inspiration, METAFONT) is that it handles TEX na-
tively. It may still give some installation/configu-
ration trouble, since it needs to be pointed to the
actual TEX engine used (plain? LATEX? other?); but
it is a primitive feature of METAPOST.

One needs also communication in the other direc-
tion: from METAPOST into TEX. Since METAPOST

produces generic image files (PNG or SVG in addi-
tion to PostScript), this is covered by the existing
methods to import images into TEX documents.

Of note in this connection is also LuaTEX/Lua-
LATEX, and its METAPOST library/package luamplib,
that takes full care of the communication in both
directions (with luamplib, a METAPOST picture is
just a TEX box). If one uses Overleaf, then there
is no hassle in ensuring that the different tools and
formats are well installed, mutually aware, etc.

1.3.4 Under construction
It must be said that MetaGraph is under construc-
tion. It is fairly operational — the graphs in these
pages were all created with its existing routines —
but there are points of syntax still undergoing im-
provement, a lingering low-levelness, and a chance
that further routines may be identified and imple-
mented as I myself become familiar with its capa-
bilities. (The lassoing routines, for example, were
entirely developed during and because of the writing
of this article — they were only an intuition before I
ran into the actual occasion to develop them.) More
damaging yet, I have yet to compile a complete, even
complete enough, reference manual.

MetaGraph will sooner or later make its way to
CTAN, and, in the form of backends, to Networkx
and other external graph tools. In the meantime,

3 At present, there exists the one I wrote for the combina-
tion of Networkx and pandas that I use for graph analysis in
Python.

I

IV

IV6
4

IV4
7

IV4
2

I6
4

V7/IV

I6

V
I

Vsus
7

V6
5V7

V2

ii7

ii2

ii6

vii◦4
3

vii◦2

vii◦4
3/V

vii◦7/V

vii◦7 /V
V

vii◦4
3/ii

I

IV

IV6
4

IV4
7

IV4
2

I6
4

V7/IV

I6

V
I

Vsus
7

V6
5V7

V2

ii7

ii2

ii6
vii◦4

3

vii◦2

vii◦4
3/V

vii◦7/V

vii◦7 /V
V

vii◦4
3/ii

Figure 4: Tweaking of the Figure 3 graph of Bach’s
prelude

if there is any interest, I am happy to share both
the macro definitions and the source code for the
illustrations here.

2 Data vs. drawing
The key fact about MetaGraph as a system is that it
keeps a complete separation between the graph data
and the drawing operations. The first line of code in
a MetaGraph graph is usually

input metagraph;
(the library of METAPOST macros), while the second
is, for example,

input rgdata;
(the data file for the random graph of Figure 1).

The two files are completely independent; they
are each useless by themselves, but they know exactly
nothing about each other.

This way of proceeding preserves two things:
a) a general programming environment, where the
data is assigned for its own sake, and can be used in
any way by any METAPOST routine; and, as a result,
b) direct access to individual graph nodes and edges,
for manual or programmatic manipulation, inside or
outside other procedures, in the same figure or in a
different one.

Figure 4, for example, shows the graph of Bach’s
prelude (the one in Figure 3), laying a ‘tweaked’ ver-
sion in black ink over a lighter-shade layout (yielded
by the Fruchterman-Reingold algorithm, one of the
‘force-directed’ algorithms for laying out graphs).
The tweaks include the nudging of certain nodes, to
avoid collisions present in the original layout in some
cases — in others simply to accommodate the lasso
of Figure 3. Some edges are also tweaked. Curved
arrows are usually good for directed graphs — they
make bi-directed edges easier to see — but the default

Nodes and edges with METAPOST: The MetaGraph environment



120 TUGboat, Volume 45 (2024), No. 1

outgoing angle, calculated blindly with respect to
the source node, often creates less-than-satisfying
layouts.

Theoretically, these tweaks are of course less
than crucial; but they provide a good illustration of
the benefit of direct access to individual nodes and
edges. Three kinds of commands were used to make
the tweaks in Figure 4 (only one instance of each is
listed):
npos[IV] := % avoid collision

npos[IV] rotated -3 + (.05, .05);
set_angle((IVj2, ii7), 0); % straight arrow
flipangle(IV, ii6); % flip the arrow

This kind of manipulation is much less straight-
forward in a system where both the data of nodes
and edges and the global graphic options (arrows
on/off, edge angle such and such, etc.) are issued in
the same line.4

2.1 Nodes, indices, and arrays
What we have been calling the ‘node data’ is simply
a series of METAPOST arrays. A ‘node’, for Meta-
Graph, is just the index number that points to the
node’s place in those arrays (naturally it is the same
in all of them).

In other words, the node’s index is the 〈node-
id〉 in expressions like addlabel〈node-id〉, for exam-
ple. As mentioned, this particular macro expands to
the METAPOST line ‘addto currentpicture also
label〈node-id〉’, passing 〈node-id〉 along to label.
The latter will pass it on in turn as pos〈node-id〉 and
nlabels〈node-id〉:

• The data file includes the position of the nodes
in the array npos〈node-id〉. Graph-analysis en-
gines typically issue position information with-
out thinking of a particular point size (usually
normalizing to the first quadrant, or to the unit
circle, etc.), and therefore the values in npos
need to be scaled; this is what pos〈node-id〉
does.

• Unlike node positions, node labels are not re-
quired by MetaGraph. If a graph does have
node labels, its data file will have created the
array nlabels, where MetaGraph will be able
to look up each node’s LATEX expression. In
label-less graphs, nlabels does not exist, and
MetaGraph will simply supply the default node
image (or whatever the user may define for it).

All throughout the process, 〈node-id〉 picks out the
information for the particular node at hand from
each of the data arrays.

4 One would have to issue three subgraphs: one with the
straight edges, one with the clockwise edges, and one with the
counterclockwise edges.

(50.4, -32.8)

(-78.9, 95)

(10.8, -70.9)

(50.2, 8.6)

(-22.4, 19)

(-24.9, -39.8)

(32.8, -25.8)

(-38.9, 37.4)

(82.3, -66.9)

(-7.1, -55.2)

(86.9, -20.6)
(5.3, -24.3)

(-63.2, 45.8)

(-6.4, -2.2)

(78.5, -39.8)

(-71.6, 70.3)

(-46.9, 62.3)

(14.2, 6.3)

(48.4, -61.9)

(35.1, 27.4)

(-36.1, -23)

(-92.3, 81.8)

Figure 5: A funny view of the Bach prelude’s graph,
with the (rounded) raw node positions as ‘labels’, and
blobs — rotated in the direction from one node to the
other — in the midpoint of each edge.

2.2 General programming environment
The preceding is the fate of 〈node-id〉 through the
addlabel process; but rather than illustrating the
workings of that particular macro, the point here
is to stress that we are performing general, open-
ended programming on raw values with no intrinsic
semantics. Adding the label will be the most common
use for the node position value; but at all times this
is just a pair variable like any other, and it can
be used as such. We can use it — as in Figure 5 —
as the label itself, or find the mid-point between
two of them, or find out, for whatever purpose, if
angle(npos〈node-id〉) > ctcl_angle.

2.3 The lassos
Interestingly, the general-purpose nature of META-
POST as a programming language makes MetaGraph
a suitable environment in which to implement graph-
theoretical techniques. It is relatively easy, for ex-
ample, to extract a graph’s ‘line-graph’ (a version
of the graph whose nodes are the original graph’s
edges, connected iff they originally share a node),
or perform ‘k-means’ or ‘DBSCAN’ clustering. But
these techniques are, after all, likely to be available
in whatever graph-analysis engine one is using in
connection with MetaGraph.

This is not the case with lassoing. Figure 6
zooms in on one of the communities (just SE of
the origin) of the random graph in Figure 1. This
particular lasso (the fifth place in an array of META-
POST paths created for the purpose, called comms)
was produced by the following code:

Federico García De Castro



TUGboat, Volume 45 (2024), No. 1 121

Figure 6: A close-up of one of the communities in the
random graph of Figure 1

comms[5] = 1/2[pos159, pos152]..tension 1.5
..1/2[pos129, pos40]..tension 1.3
..1/2[pos103, pos158]
..1/2[pos137, pos90]
..1/2[pos22, pos14]
..1/2[pos163, pos4]
..abovelabel168{left}
..1/2[pos152, pos168]
..cycle;

Except for ‘abovelabel’ (a MetaGraph macro that
finds the point above the label of a given node), this
is all plain METAPOST syntax:

• The ‘..’ connector creates a (Bézier) curved
path between two points. (‘--’ would create a
straight line.)

• The tension t modifier (with t = 1 by default)
is one of the ways to control the Bézier curves
thus created. (Another is ‘controls c1 and
c2’, to specify explicitly the two control points.)

• The convenient a
b [p1, p2] construction finds the

coordinates of the point that lies a
b of the way

from p1 to p2.
• ‘{left}’ tells METAPOST that the path should

travel left at that particular point. (Naturally,
one can direct a path {right} instead, or {up},
or {down}, or indeed any {〈custom vector〉}; if
one wants a particular angle θ, ‘dir(θ)’ provides
the corresponding vector.)

This path (and the others) was designed by visual
inspection and trial-and-error. From a run of the
‘Louvain community detection algorithm’ in Net-
workx I knew the sets of nodes (i.e., node indices)
in each community, and I was looking at a separate
version of the graph with the node indices as labels,
so that I could locate each community and design

its lasso. There is essentially no algorithmic way of
lassoing arbitrary sets of nodes, but direct access to
node information for varied uses makes it possible to
generate paths quickly and robustly.

Incidentally, the clipping of the graph to zoom
in on this particular region was also made through
node information: for Figure 6, I instructed Meta-
Graph to include only those nodes and edges that
are less than 50 points removed from the center of
the lasso (calculated ahead of time as ‘lassoctr’):
for edge = alledges:
if (length(pos[source(edge)]-lassoctr) < 50)
or (length(pos[target(edge)]-lassoctr) < 50):

lineedge(edge) withcolor .7white;
fi;

endfor;
for node = allnodes:
if length(pos[node]-lassoctr) < 50:

addlabel[node];
fi;

endfor;

2.4 Node (and edge) attributes
So far we have only referred to node positions and
node labels as part of the data that MetaGraph
expects to find in the graph data file. Other pieces
of information are also required contents of the data
file; we will discuss those in section 2.6. Here we shall
deal with the possibility of adding and manipulating
custom data.

Many attributes of nodes and edges are often
relevant for the way a graph is represented graphi-
cally (since they are often what needs to be shown).
This includes both intrinsic attributes like weights,
degrees, etc., and information resulting from global
graph analysis — things like k-core and -truss num-
bers, various ‘centrality’ measures, etc.5

Just like positions and labels, all these attributes
are raw data for MetaGraph. But while the arrays
of positions and labels are node-specific, one-by-one
arrays of n values (n being the number of nodes),
most other attributes are encoded in the data file as
arrays of lists — one list for each value v of the attri-
bute; paraphrasing, lists like “the nodes of attribute
foo equal to value v are: these and these”.

This is much more efficient and straightforward
to use than node-by-node arrays, since most metrics

5 The shaded region in Figure 3 (page 118), for example,
is the ‘3-truss’ of the graph, where every edge is part of at
least (3− 2) triangles, and the lasso its ‘2-core’, where every
node has at least 2 edges.

The ‘degree’ of a node is the number of edges incident upon
it; edge ‘weights’ usually encode empirical observations of a
kind or another — in the harmonic-behavior graphs like that of
Bach’s prelude, they represent the frequency of the progression
between two chord-nodes.

Nodes and edges with METAPOST: The MetaGraph environment



122 TUGboat, Volume 45 (2024), No. 1

group nodes and edges, rather than having single
values for each: rather than looping over nodes and
checking for their foo value, the program (or the user)
can loop over the list of foo-valued nodes.

The full specification of an attribute foo in
MetaGraph consists of:

• The pluralized foos, which holds a list of the
possible values the attribute takes.

• Single-value variables foo_min and foo_max.
• Explicit lists for each value, foo_values〈value〉,

whose contents is a list of the corresponding
indices.

• A macro foo that expands these lists.6
• A prefix: all of the above are actually nfoo or

efoo, according to whether they are node or
edge attributes.

For example, the attribute ‘frequency’ of the nodes
in the graph of Bach’s prelude is the number of
occurrences of each particular chord in the piece. It
can be represented as follows in the graph’s data file:
def nfreqs = 1, 2, 4, 5 enddef;
def nfreq = scantokens nfreq_values enddef;
string nfreq_values[]; % declares array
nfreq_values[1] =

"ii2, V65, ii6, V2, viid43, IVj7, sivd7,
viid2, sivd7oV, sid43, sivd43";

nfreq_values[2] =
"IV, I6, ii6, IVj2, ii7, I7, I64, Vsus7,
IV64, VoI";

nfreq_values[4] = "I";
nfreq_values[5] = "V7";
nfreq_min = 1; nfreq_max = 5;

Note that the lists are not given in terms of node
index numbers, but rather expressions that resemble
the labels of the nodes: ’ii2’, etc. This will be
addressed in the next section.

Armed with these lists, conditional formatting
based on a given attribute is straightforward. The
original view of the graph (Figure 3), for example,
makes the grey level and the width of the edges
depend on the attribute efreq:
for freq = efreqs: % freq values present

for edge = efreq[freq]: % edges of each freq
arrowedge(edge)

withpen pencircle scaled ((freq/5)*mm)
withcolor (.5*(efreq_max-freq))*white;

endfor; endfor;

The shading of the nodes, in turn, is a function
of another node attribute present in the data file —
the node degree:

6 Lists are not a METAPOST data type; they are imple-
mented as string variables, using the primitive scantokens to
process them; foo takes care of this.

for dg = ndegrees: % degree values present
for node = ndegree[dg]: % nodes of each dg

addlabel[node]
withcolor (.8 - dg/ndegree_max)*white;

endfor;
endfor;

Being raw data, the attributes can just as well be
used independently of the graph itself — for example,
to produce attribute distribution diagrams, common
in graph analysis. Here is the relevant loop for the
node degrees of the random graph of Figure 1:
pickup penrazor xscaled 6pt;
for dg = ndegrees:

count := 0;
for nodes = ndegree[dg]:

count := count + 1;
endfor;
draw (6*dg, 0) -- (6*dg, 2*count);

endfor;

2 16
0

27

Figure 7: Degree distribution of the graph in Figure 1

2.5 Nodes, labels, and aliases
We have seen that the MetaGraph’s 〈node-id〉s are
numbers (section 2.1). But nothing prevents one
from assigning these numbers to a series of named
variables, which then function essentially as node
aliases.

This is particularly relevant in graphs with la-
beled nodes. The data file of such a graph should
contain ASCII-friendly versions of the node labels, as
variable names equaling each node’s index. That is
the case with the graph of the Bach prelude, whose
data file creates these aliases as its first order of
business:
% Nodes
I = 0;
IV = 1;
...
viid43 = 16;
viid2 = 17;
...

As we have seen, even the data file uses these vari-
ables (rather than the indices) to define the lists of
node attributes. These aliases are in fact entirely
equivalent to the indices; both the program and —
more to the point — the user can use them to oper-
ate on the nodes (flipping or setting the angle of a

Federico García De Castro



TUGboat, Volume 45 (2024), No. 1 123

curved edge or nudging the position of the nodes,
as we did in Figure 4, or manually drawing edges
beyond those included in the data file, etc.) without
ever needing to care about the otherwise meaningless
index numbers.

It is quite fortunate then that METAPOST’s vari-
able name conventions allow for monstrosities like
viid43ofii, or possibly H2SO4, and of course benign
things like a. (The latter is not so benign after all;
before I knew better, I was repeatedly perplexed by
some strange graph-drawing behaviors, only eventu-
ally to find that a ‘for i’ loop had been clashing
with an ‘i’ that was one of my nodes.)

As long as it starts with a letter, virtually any
alphanumeric string is a valid METAPOST variable.
It may seem inconvenient to have to refer to vii◦7 /V

V
through the all-ASCII name viid7ofVoV. But the
concession does not come at the MetaGraph stage:
already in the graph-analysis engine, if one needs
to access nodes individually — to set or get their
attributes, for example, or to read out a list of nodes
resulting from some clustering operation — then code-
friendly names are all but required. Since the engine
will then already know these aliases, it can easily add
them as variable assignments in the data file. The
same names will be available to use at the drawing
stage with MetaGraph if they all start with a letter.

2.6 The data file
What attributes to include in a MetaGraph data file
is almost entirely discretionary; only a few pieces of
information are required. One of them, as mentioned,
is the node positions, that go in the npos array;
another is the last_node index, necessary for Meta-
Graph to loop over all the nodes.

Not mentioned so far is an addition array re-
quired by MetaGraph: the list of each node’s (out-
going) neighbors, nodes_to.

It may not be immediately obvious why this
should be required. On the one hand I can report
that I have often found myself needing that infor-
mation for particular graph drawings; on another, it
opens up the possibility of having MetaGraph extract
subgraphs — although this involves multiple levels of
nested loops, and at some point it is better to have
the external graph-analysis engine do the work and
produce a separate data file. Mostly it has to do
with implementing edges in an efficient way, as we
will see in the next section.

A minimal data file will then be something like
this (coming from rgdata.mp, the data file for the
random graph in Figure 1):

last_node = 199;
% npos (pair)
pair npos[]; i_ := -1;
for value = (0.585, 0.229), (0.722, 0.533),

...
(0.398, 0.516), (0.056, 0.328):

npos[incr i_] = value;
endfor;
% nodes_to (string)
string nodes_to[];

nodes_to[4] = "1";
nodes_to[7] = "5";
...
nodes_to[199] = "167, 13, 81, 50, 23";

Then the file may go on to set up the non-required
attributes. For example, the node degree attribute
in rgdata.mp is given by:
% ndegree (numeric)
string ndegree_values[]; % declares the array
def ndegrees = 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16
enddef;
ndegree_values[2] = "25, 76, 100, 184, 196";
ndegree_values[3] = "24, 65, 92, 171, 181";
...
ndegree_values[16] = "131, 169, 182";

ndegree_min = 2; ndegree_max = 16;
def ndegree = scantokens ndegree_values enddef;

2.7 The edges
We have not dealt much with edges so far. Just as
a node in MetaGraph is a number, a MetaGraph
edge is a pair of numbers: the indices of the source
and target nodes. As a graphical, coordinate-based
language, METAPOST has a full infrastructure for
tuples of 2 numbers — its data type pair. Edges
are not coordinate pairs, of course, but they are
METAPOST pairs.

The first implementation of MetaGraph treated
the edges of a graph as an array of such pairs, each
given an 〈edge-id〉 number. Edge attributes were
analogous to node attributes: lists of 〈edge-id〉 num-
bers held in string variable arrays.

But the experiments with the Facebook graph
in Figure 2 revealed something interesting, having
to do with the assignment of an index number to
each edge. That is: to each of all 88,234 of them. . .
METAPOST users will know that this goes over the
language’s 4,096 arithmetic limit, but this is not the
issue: there are ways to get around it (see section 3).
The problem was that the program would take way,
way too long — I could not bear to let it finish a
single time — just reading the data file. . .

This seemed to doom the whole idea of Meta-
Graph, or at least limit it to relatively small graphs
with a manageable number of edges. But it is easy

Nodes and edges with METAPOST: The MetaGraph environment



124 TUGboat, Volume 45 (2024), No. 1

to see that the ‘edges’ array is redundant, especially
as we have a list of neighbors for each node (see sec-
tion 2.6). Storing the edges of the Facebook graph in
this way entails at most 4,039 assignments (actually
somewhat less, since not all nodes have outgoing
neighbors). This is a significant reduction — enough
to make the program run smoothly. The change
makes it a little more complicated to loop over the
edges, which now means looping over each node and
then again over its nodes_to. But the nuisance is
small enough, and the macro alledges implements
the loop, even taking care of neighbor-less nodes
(which would normally make the loop break).

Edge attributes are still possible, and they are
still lists, analogous to those for nodes (“edges of
attribute foo equal to value v are: these and these”),
only holding pair values instead of single numbers.
For example, this is the list of edges of frequency 2
in the Bach prelude graph:
efreq_values[2] = "(ii7, V7), (IVj2, ii7),

(I6, IVj2), (V7, I)";

One can still loop over these lists and format the
edges conditionally — the dark arrows in Figure 3
were ultimately a loop over this very list. Further-
more, nothing prevents one from creating new lists
of edge attributes, or indeed new edges, as needed,
in real time (i.e., outside the data file).

3 How much is too much?
Larger and larger graphs will of course exceed the
system’s capacity at some point. But even the 4,039
nodes and 88,234 edges of Figure 2 are far from ex-
hausting METAPOST’s (much less LuaTEX’s) mem-
ory, stack sizes, etc. The graph, in fact, is processed
by MetaGraph in a noticeably shorter time than
matplotlib takes to draw it (and then again to display
it, zoom over it, etc).

It is still a lucky coincidence that that particu-
lar graph has 4,039 nodes — dangerously close but
still shy of METAPOST’s arithmetic bound of 4,096.
(This bound, you may recall, is not a matter of
physical capacity, but a fundamental feature of the
language: there simply exists no n > 4096 in META-
POST.)

This issue is not particularly hard to get around.
The subscripts of a METAPOST array do not have

to be natural numbers, and we could assign the
attributes of a node of index i at position i

2 of the
arrays — where in ‘normal’ circumstances we assign
just i. This would give us up to 8,192 nodes. The
same capacity would be achieved by wrapping around
and using negative indices as well. Thus, indices of
the form, say, ±i/10, would give us 81,920 possible
nodes.

Still, in an earlier draft of this paper, where
the Facebook graph came after many other figures,
the processing of the document did overflow Over-
leaf’s free-version compile time. (The paid version,
12× faster, has no problem.) What can be done in
those cases?

The solution is to produce a PNG through an
external run of METAPOST, and \includegraphics
it in the document. As a final example, the file that
produced Figure 2 is reproduced below in its entirety.
The first couple of lines are the ones that make
METAPOST produce a PNG file (‘fbtopng-1.png’);
the rest is plain MetaGraph.

outputformat := "png";
outputtemplate := "%j-%c.png";

input metagraph;
input fbdata;

scale = 180;

beginfig(1);
pickup pencircle scaled .1pt;
for node = allnodes:

for tgt = nodes_to[node]:
draw pos[node] -- pos[tgt]
withcolor .8white;

endfor;
endfor;

addnodes;
endfig;
end.

� Federico García De Castro
Professor of Composition and Theory
EAFIT University
Medellín, Colombia
fgarciac1 (at) eafit dot edu dot co

Federico García De Castro


	Introduction
	Three demo graphs
	MetaGraph, TikZ, etc.
	What is MetaGraph?
	A set of Metapost macros
	A graph-drawing system
	Dependencies and work flow
	Under construction


	Data vs. drawing
	Nodes, indices, and arrays
	General programming environment
	The lassos
	Node (and edge) attributes
	Nodes, labels, and aliases
	The data file
	The edges

	How much is too much?

