
TUGboat, Volume 45 (2024), No. 1 77

Building a modern editing environment on
Windows around GNU Emacs and AUCTEX

Arash Esbati

Abstract

In this article, we describe how to set up GNU Emacs
with AUCTEX as an editing environment for (LA)TEX
on Microsoft Windows using the MSYS2 distribu-
tion.

1 Introduction

What we know today as GNU Emacs is a text editor
originally developed by Richard Stallman, who is also
the founder of the Free Software Foundation (FSF)
and the initiator of the GNU Project. The earliest
recorded release of GNU Emacs is version 13 from
March 1985, though a long history preceded that.
Emacs’ original inception was as a set of macros
and keybindings for the TECO text editor (hence
the meaning of “Emacs” as “editor macros”). For a
thorough overview of Emacs timeline and technical
development, please refer to [4].

TEX had major releases TEX78, TEX82 and
TEX3.0 in 1990. Considering that these programs
were developed more or less in the same time period
and both are free software (free in terms of “free
software” and not “open source”[6]), it is not a sur-
prise that Emacs has a long history and very good
support for editing TEX files.

Software around TEX and Emacs have their her-
itage on Unix-like operating systems where the source
is provided and the software is built by distros or
by the user. On Microsoft Windows, the process of
building software by a user is rather uncommon. Fi-
nally, porting and building *nix software on Windows
is not a task for casual users.

And this is where MSYS2 comes into play. It
introduces itself as “a collection of tools and libraries
providing an easy-to-use environment for building,
installing and running native Windows software. . . .
Our package repository contains more than 2.600
pre-built packages ready to install.” [5]

We will use MSYS2 in order to compile Emacs
from the source and install auxiliary packages which
will be used by Emacs during editing.

2 Installing the MSYS2 distribution

Before we start: As of March 2020, MSYS2 cannot
be installed on a 32-bit system. And since January
2023, MSYS2 no longer supports Windows 7 and 8.0.
So we need a 64-bit version of Windows 8.1 or higher
in order to install the distribution. There are two
other points to consider:

1. choosing a installation directory, and

2. choosing a HOME directory.

Regarding item 1, MSYS2 requires extracting its
distribution into a folder where the name consists of
only ASCII characters and no spaces. It also makes
good sense to use a path that is not too long (due
to PATH_MAX being 260); c:\msys64 is ideal.

Regarding item 2, I suggest following the ad-
vice “ASCII only, no spaces”, and possibly choosing
a directory other than c:\Users\<username>. I
recommend setting the value of the HOME environ-
ment variable to the directory chosen above globally
on Windows—this is the only variable set outside
MSYS2. The HOME directory is the place where Emacs
looks for its init file upon start.1

Now we can fetch MSYS2 from repo.msys2.

org/distrib. We want to install the portable ver-
sion, so we download the msys2-x86_64-latest.

tar.xz archive and unpack it under c:\. In the
file Explorer, we go to c:\msys64 and double click
on msys2.exe which opens a MSYS shell, does the
initial setup and ideally shows:

We follow the advice, close the window and
double click msys2.exe again. To update all pack-
ages we run the command pacman -Syu. We follow
the instructions and close the terminal if requested,
then we start a new terminal and update again with
pacman -Su. That’s it!

Working with MSYS2 is easy: If we want to
update the distribution or install new packages, we
open a MSYS shell (msys2.exe) and when we want
to use the installed packages, we open a MinGW64

shell (mingw64.exe).2

3 Installing Emacs

There are some options available for installing Emacs
on Windows. The current stable release is Emacs
29.1.

3.1 Emacs release

The Emacs project provides pre-compiled binaries for
Windows on a best-effort basis from ftpmirror.gnu.

1 gnu.org/software/emacs/manual/html_node/

efaq-w32/Location-of-init-file.html
2 This is the way the author uses MSYS2; changing the

shells isn’t strictly necessary any more; it is more a habit.

doi.org/10.47397/tb/45-1/tb139esbati-auctex

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://repo.msys2.org/distrib
https://repo.msys2.org/distrib
https://ftpmirror.gnu.org/emacs
https://ftpmirror.gnu.org/emacs
https://gnu.org/software/emacs/manual/html_node/efaq-w32/Location-of-init-file.html
https://ftpmirror.gnu.org/emacs
https://gnu.org/software/emacs/manual/html_node/efaq-w32/Location-of-init-file.html
https://ftpmirror.gnu.org/emacs
https://ftpmirror.gnu.org/emacs
https://doi.org/10.47397/tb/45-1/tb139esbati-auctex

78 TUGboat, Volume 45 (2024), No. 1

org/emacs in the windows/ subdirectory where each
major version of Emacs is kept in its own subdirec-
tory. The compressed files also contain the libraries
needed to support various features in Emacs, such
as image support.

3.2 MSYS2 release

TheMSYS2 project provides also pre-compiled Emacs
binaries, usually the latest stable version. It can be
installed via pacman with:

MSYS shell
$ pacman -S mingw-w64-x86_64-emacs

3.3 Building from the source

First, we have to install some tools we need for build-
ing Emacs. We want to have a full-fledged Emacs,
hence we install a large number of packages. Please
refer to [2] for more details. We run msys2.exe and
enter the following command in the shell (you can
paste them into the shell with Shift+Ins):

MSYS shell
$ pacman -S --needed base-devel \

mingw-w64-x86_64-toolchain \

mingw-w64-x86_64-xpm-nox \

mingw-w64-x86_64-gmp \

mingw-w64-x86_64-giflib \

mingw-w64-x86_64-gnutls \

mingw-w64-x86_64-harfbuzz \

mingw-w64-x86_64-jansson \

mingw-w64-x86_64-lcms2 \

mingw-w64-x86_64-libjpeg-turbo \

mingw-w64-x86_64-libpng \

mingw-w64-x86_64-librsvg \

mingw-w64-x86_64-libtiff \

mingw-w64-x86_64-libwebp \

mingw-w64-x86_64-libxml2 \

mingw-w64-x86_64-sqlite3 \

mingw-w64-x86_64-tree-sitter \

mingw-w64-x86_64-zlib

We will build the current development version
of Emacs from the Git repository. The code is in
sync with what will be Emacs 30. First, install Git:

MSYS shell
$ pacman -S git

The autocrlf feature of Git may interfere with the
configure file, so we disable it by running:

MSYS shell
$ git config --global core.autocrlf false

Next we close the current MSYS shell and run
mingw64.exe. We clone the Emacs repository under
a temporary directory:

MinGW64 shell
$ mkdir emacs-git

$ cd emacs-git

$ git clone \

https://git.savannah.gnu.org/git/emacs.git

$ cd emacs

The next series of commands builds Emacs.3 With
this setup, there is no need to install Emacs; we can
invoke it out of the Git tree from the src directory.
But to do an installation, we create a directory and
run make install passing that directory to prefix:

MinGW64 shell
$ mkdir -p /c/msys64/opt/emacs

$./autogen.sh

$./configure --with-native-compilation \

--without-dbus --without-imagemagick \

--without-mailutils --without-pop

$ make

$ make install prefix=/c/msys64/opt/emacs

Note that we can run make with the -j option:

$ make -jN

where N is the number of CPU-cores in our system;
the parallel execution will run significantly faster,
speeding up the build process.

3.4 Adjusting the $PATH

The final step is to add the directory which contains
emacs.exe, e.g., c:\msys64\opt\emacs\bin, to our
$PATH. We do this in our ~/.bash_profile:

MinGW64 shell
$ cd ~

$ touch .bash_profile

$ echo 'export \

PATH=$PATH:/c/msys64/opt/emacs/bin' \

>>.bash_profile

And while we’re at it, we do the same for TEXLive:

MinGW64 shell
$ echo 'export \

PATH=$PATH:/c/texlive/2023/bin/windows' \

>>.bash_profile

4 Starting Emacs

The above installs Emacs as a portable application.
We will configure other applications, that we’ll install
later, in our ~/.bash_profile. So we have to invoke
Emacs and other programs from the command-line in-
terface (CLI), mingw64.exe in our case, which starts
bash. We type:

MinGW64 shell
$ emacs &

This starts Emacs in graphical mode, as shown in
figure 1.

3 There is a known issue with GCC 13.1; if the build process
breaks, have a look at the file etc/PROBLEMS in the Emacs
source tree and search for “Building the MS-Windows port
with native compilation fails”.

Arash Esbati

https://ftpmirror.gnu.org/emacs

TUGboat, Volume 45 (2024), No. 1 79

Figure 1: Emacs appearance: Vanilla Emacs (left); with doom-one theme, Windows
dark mode and line numbers (middle); and doom-one-light theme (right), the latter
two with disabled tool bar

5 Customizing Emacs

Emacs has the reputation for being highly custom-
izable, and some even say Emacs users “customize
to live”. For basic usage and customization of Emacs,
please refer to the Emacs manual [7], especially chap-
ter 49. A good beginner’s guide is also available.4

Next, we briefly mention some initialization code
which is useful for installing and using AUCTEX. We
will use the GNU Emacs Lisp Package Archive (ELPA)
to install AUCTEX. The command list-packages

gives for me a GPG error, but this can be circum-
vented by adding this to the Emacs init file:

Emacs init file
(setq package-check-signature nil)

We have to start server communicatoins for backward
search in PDF files:

Emacs init file
(server-start)

We also like to select some text and then start typing
where typed text replaces the selection, therefore:

Emacs init file
(delete-selection-mode 1)

Just in case we want to use a mouse to get a context
menu, we add:

Emacs init file
(context-menu-mode 1)

Finally, if we want to change the font used by
Emacs, we use the entry Options in the menu bar
and go to Set Default Font. Figure 1 shows the
result of some customization effort: On the left, we
see Emacs showing this file without any adjustments,
to the middle, a dark theme with Windows dark
mode, and to the right, the way the author uses
Emacs.

4 www.masteringemacs.org/article/

beginners-guide-to-emacs

The famous last words before entering the Emacs
customizing realms:

• Try to use the Easy Customization Interface.

• Don’t copy every snippet you find on the net
into your init file.

• If you do that, read the manual and/or the
docstring try to understand what the code does.

• If you don’t understand the change, you proba-
bly don’t need it.

6 Choosing a TEX mode for Emacs

After installing Emacs, it’s time to choose the appro-
priate support for authoring (LA)TEX files. Emacs has
two major modes for this purpose: A built-in mode
and the one provided by the AUCTEX package.5

So, which to choose? A general guideline might
be: If you rely only on vanilla LATEX commands
and environments, then try the built-in variant. If
you will use large number of packages, want com-
pletion for the macros or environments and their
(key-value) arguments, including syntax highlighting,
and might define your own macros and environments
and completion support for them is desired, then go
for AUCTEX.

7 Installing AUCTEX

The modern and strongly recommended way of in-
stalling AUCTEX is by using the package manager
integrated in Emacs to fetch it from ELPA. We type
M-x list-packages RET /n auctex RET, put the
cursor on auctex, press i and we see this:

5 Each mode provides dedicated support for plain TEX,
LATEX, DocTEX (for .dtx files) and SliTEX, but we will focus
on LATEX.

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://www.masteringemacs.org/article/beginners-guide-to-emacs
https://www.masteringemacs.org/article/beginners-guide-to-emacs

80 TUGboat, Volume 45 (2024), No. 1

Now we hit x to execute the installation procedure.
That’s all. Using the ELPA version has several advan-
tages. Besides being platform and OS independent,
we will receive intermediate bugfix releases between
major AUCTEX releases.

A word of caution: The way we installed AUC-
TEX, we must not have a line like this in our init
file:

(load "auctex.el" nil t t)

or even worse:

(require 'tex-site)

Having either such line in our init file may be harmful
for the correct operations of AUCTEX.

8 Configuring AUCTEX

AUCTEX comes with a huge number of customization
options; the figure below shows the various groups
of options, some with subgroup(s).

They are well described in the AUCTEX manual [10].
We will discuss some important options below which
should be set before starting work.

Documents we edit can be a single file, or spread
over many files consisting of a “master” file in which
we include other files via LATEX macros like \input
and \include. AUCTEX can deal with both sin-
gle and multi-file projects and knows which file to
compile via the variable TeX-master. This variable
should be set in the Emacs init file and will also be
inserted in each file’s local variables. In general, it is
a good idea to do:

Emacs init file
(setq-default TeX-master nil)

which means that when we create a new TEX file,
AUCTEX will ask for the name of the “master” file
associated with the buffer and insert a marker as a

file variable in that file. For a single file project, it
will look like this:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-master: t

%%% End:

For a multi-file project, it might look like this:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-master: "../phd-main"

%%% End:

Another important variable is TeX-parse-self.
AUCTEX depends heavily on being able to extract
information from the buffers by parsing them. Since
parsing the buffer can be somewhat slow, the parsing
is initially disabled. We enable it by adding the
following line to our init file:

Emacs init file
(setq TeX-parse-self t)

This change means: Upon loading a ⟨filename⟩.tex,
AUCTEX will look in an auto subdirectory for parsed
information stored in ⟨filename⟩.el. If it finds that
file, it is loaded and the information from it is applied
to the current editing buffer. If there is no such
file, AUCTEX parses the current buffer and applies
that information to the buffer. The information
applied consists of names of used packages, where
AUCTEX loads its corresponding support files, user-
defined macros and environments, defined labels for
completion, etc. There is a catch here: AUCTEX
doesn’t distinguish among extensions of parsed files.
So if we have a TEX file named, say, geometry.tex:

Example for geometry.tex
\documentclass{article}

\usepackage{xcolor}

\begin{document}

text

\end{document}

AUCTEX will save the information after parsing in
geometry.el; upon the next loading of the saved
geometry.el, it loads article.el, xcolor.el and
the file geometry.el provided by AUCTEX itself
which adds support for macros provided by geometry.
sty—but we did not load that package. In general,
we should always use distinct names for our TEX files
in order to avoid this sort of clash.

A related option is TeX-auto-save. When set
to non-nil, AUCTEX will parse the file and write the
information each time the TEX file is saved. Again,
this option is initially disabled. We can still force
the parsing of the TEX file by pressing C-c C-n for
TeX-normal-mode. This is often the best choice, as

Arash Esbati

TUGboat, Volume 45 (2024), No. 1 81

we will be able to decide when it is necessary to
reparse the file.

If we use packages which define table environ-
ments and we want to put captions above the tables,
we adjust the variable LaTeX-top-caption-list:

Emacs init file
(setq LaTeX-top-caption-list

'("table" "table*"

"SCtable" "SCtable*"

"sidewaystable" "sidewaystable*"))

Finally, we tell AUCTEX to convert all tabs in
multiple spaces, preserving the indentation, when we
save a file:

Emacs init file
(setq TeX-auto-untabify t)

9 Using AUCTEX

AUCTEX has an extensive manual which describes its
usage in great detail [10]. Hence, we will discuss only
some general usage aspects, focusing on completion
of macros and environments with their arguments.

The file latex.el that comes with AUCTEX
provides completion support for basic LATEX macros
and environments. As package files extend LATEX’s
functionality, AUCTEX’s style files extend its com-
pletion support. These style files are named after
the package or class names used in a TEX file or the
TEX file which was parsed, so (as mentioned above)
geometry.el contains completion support for the
macros provided by geometry.sty.

Completion support in AUCTEX is built around
Emacs’ minibuffer completion.6 The entry points
for inserting with completion are the functions TeX-
insert-macro (bound to C-c C-m or C-c RET) and
LaTeX-insert-environment (bound to C-c C-e).
For example, this is what we see after hitting C-c

C-m L followed by a TAB for completion candidates:

AUCTEX presents the known candidates and we can
narrow down the choices by typing further and hit-
ting RET once we have the right macro which is
inserted into the buffer and further arguments are
queried, if applicable.

6 gnu.org/software/emacs/manual/html_node/emacs/

Completion.html

But sometimes we just want to insert the macro
directly into the buffer, or find out we have forgotten
a key-value pair in an argument where hitting the
keystrokes described above will not help: we want
in-buffer completion. As in the scenario above where
we wanted to insert the \LaTeX macro, we can insert
\L in the buffer followed by TAB and we get:

where we can choose the macro and hit RET to insert.
AUCTEX also checks if we are in math mode

and offers math symbols
for completion. In order
to get in-buffer comple-
tion, we need to install
a package like corfu7 or
company8 and configure
it accordingly. It should
be noted that in-buffer
completion is not imple-
mented in AUCTEX for all macro and environment
arguments; this is work in progress.

10 Hacking AUCTEX

One of AUCTEX’s chief achievements is that its parser
is “hackable”, i.e., AUCTEX users and style files can
extend the built-in parser with Lisp code. For exam-
ple, this document uses the fvextra package, which
loads fancyvrb in turn, and defines a custom verbatim
environment, named codesnippet, like this:

Custom environment
\DefineVerbatimEnvironment{codesnippet}

{Verbatim}{%

fontsize = \small ,

frame = topline ,

breaklines ,

framesep = 4pt

}

AUCTEX has a style file fvextra.el, which loads
the style fancyvrb.el in turn, which contains code
telling AUCTEX about the macro and its arguments
defining a new verbatim environment. With the
TEX code above in a file, AUCTEX sets its inter-
nal variables properly itself upon next parsing and
no user intervention is needed. The new environ-
ment codesnippet is available when C-c C-e is hit,
including completion and query for the optional key-
value argument. Syntax highlighting support is also
set automatically:

7 github.com/minad/corfu
8 company-mode.github.io

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://gnu.org/software/emacs/manual/html_node/emacs/Completion.html
https://gnu.org/software/emacs/manual/html_node/emacs/Completion.html
https://github.com/minad/corfu
https://company-mode.github.io

82 TUGboat, Volume 45 (2024), No. 1

The general strategy for extending the parser is
to write an AUCTEX style file where we:

• initialize the new entry to the parser by call-
ing the TeX-auto-add-type lisp macro with its
arguments;

• write a variable containing the regular expres-
sion which should be added to the parser and
plug it into AUCTEX inside the hook;

• write a function which is run before parsing,
resetting the results from the last parser run;

• write a function which is run after parsing, pro-
cessing the results from the actual parser run.

We will discuss this process with two examples.

10.1 A simple example

The geometry package provides a facility to save
the page dimensions as a ⟨name⟩ and load these
dimensions later in the document. The macros are
\savegeometry for saving the page dimensions, and
\loadgeometry for loading. The AUCTEX style file
geometry.el has the following code to parse the
newly defined ⟨name⟩. First, a new entry for the
parser is setup with:

geometry.el
(TeX-auto-add-type "geometry-savegeometry"

"LaTeX"

"geometry-savegeometries")

TeX-auto-add-type is a Lisp macro which takes two
mandatory and one optional arguments: The first
argument is a ⟨name⟩, which is prefixed by the sec-
ond argument ⟨prefix ⟩. Usually, ⟨name⟩ is composed
as ⟨package-macro⟩ and ⟨prefix ⟩ is the name of the
engine or format used, in this case LaTeX. The third
argument is the plural form of the first argument; by
default just an s is added. The Lisp macro defines:
the variable LaTeX-auto-geometry-savegeometry

which holds the bare results after a successful parsing
run; the function LaTeX-geometry-savegeometry-

list which sorts and eliminates any dupes from
LaTeX-auto-geometry-savegeometry; the variable
LaTeX-geometry-savegeometry-list which holds
the information returned by the function of the
same name; and the function LaTeX-add-geometry-

savegeometries which can be used to add new ele-
ments to LaTeX-geometry-savegeometry-list.

Next, geometry.el defines the variable LaTeX-
geometry-savegeometry-regexp:

geometry.el
(defvar LaTeX-geometry-savegeometry-regexp

'("\\\\savegeometry{\\([^}]+\\)}"

1 LaTeX-auto-geometry-savegeometry))

which is a list of three elements: A string with the reg-
ular expression to match against, including a group-
ing construct for future reference, in this case the
argument of \savegeometry with {\\([^}]+\\)}.
The second element is an integer or a list of integers
containing the number(s) of substring(s) matched,
and finally the name of the variable to put the parsed
substring(s) in. After this, a function is defined in
preparation for parsing and is added to TeX-auto-

prepare-hook:

geometry.el
(defun LaTeX-geometry-auto-prepare ()

(setq LaTeX-auto-geometry-savegeometry nil))

(add-hook 'TeX-auto-prepare-hook

#'LaTeX-geometry-auto-prepare t)

And finally, the defined regular expression is added to
the parser with the function TeX-auto-add-regexp

inside the hook. Also, two entries are defined for the
LATEX macros:

geometry.el
(TeX-add-style-hook

"geometry"

(lambda ()

(TeX-auto-add-regexp

LaTeX-geometry-savegeometry-regexp)

(TeX-add-symbols

`("savegeometry"

,(lambda (optional)

(let ((name (TeX-read-string

(TeX-argument-prompt

optional nil "Name"))))

(LaTeX-add-geometry-savegeometries

name)

(TeX-argument-insert name

optional))))

'("loadgeometry"

(TeX-arg-completing-read

(LaTeX-geometry-savegeometry-list)

"Name")))))

The entry for "savegeometry" queries for a name
and adds the user input to list of new names. The
entry for "loadgeometry" retrieves all defined names
and offers them as argument with completion.

10.2 A more complex example

For a more complex example, we look at the AUC-
TEX style file enumitem.el which contains code to
parse new environments defined with the \newlist
macro:

Arash Esbati

TUGboat, Volume 45 (2024), No. 1 83

enumitem.el
(TeX-auto-add-type "enumitem-newlist" "LaTeX")

(defvar LaTeX-enumitem-newlist-regexp

'("\\\\newlist{\\([^}]+\\)}{\\([^}]+\\)}"

(1 2) LaTeX-auto-enumitem-newlist))

\newlist takes three arguments, but only the first
two, a ⟨name⟩ and ⟨type⟩, are relevant. So the regu-
lar expression matches two arguments and both are
added to the variable containing the results. Next,
two functions are defined to prepare the parsing and
process the results:

enumitem.el
(defun LaTeX-enumitem-auto-prepare ()

(setq LaTeX-auto-enumitem-newlist nil))

(defun LaTeX-enumitem-auto-cleanup ()

;; \newlist{<name>}{<type>}{<depth>}

;; env=<name>, type=<type>

(dolist (env-type

(LaTeX-enumitem-newlist-list))

(let* ((env (car env-type))

(type (cadr env-type)))

(LaTeX-add-environments

`(,env

LaTeX-env-item-args

[TeX-arg-key-val

(LaTeX-enumitem-key-val-options)]))

(when (member type '("description"

"description*"))

(add-to-list

'LaTeX-item-list

`(,env . LaTeX-item-argument)))

(TeX-ispell-skip-setcdr

`((,env ispell-tex-arg-end 0))))))

The second function is the interesting one: Every
user-defined environment is added to the list of
known environments, including support for key-value
query for the optional argument. For description-like
environments, the optional argument of \item will be
queried as well. And finally, the optional argument
of the environment is ignored during spell-checking
(see §14). These functions and the regular expression
are added to AUCTEX with:

enumitem.el
(add-hook 'TeX-auto-prepare-hook

#'LaTeX-enumitem-auto-prepare t)

(add-hook 'TeX-auto-cleanup-hook

#'LaTeX-enumitem-auto-cleanup t)

(TeX-add-style-hook

"enumitem"

(lambda ()

(TeX-auto-add-regexp

LaTeX-enumitem-newlist-regexp)))

The techniques described above can also be used
for any user-defined macros which define new mac-
ros and/or environments. The best approach is to
put the LATEX macros inside a package and the corre-
sponding Lisp code inside an AUCTEX style file saved
in a directory which is part of TeX-style-private.
This way, the Lisp code is loaded each time the
custom package is requested with \usepackage.

11 Using preview-latex

preview-latex is a package embedding preview frag-
ments into Emacs source buffers under the AUCTEX
editing environment for LATEX. It uses preview.sty for
the extraction of certain environments (most notably
displayed formulas). preview-latex was originally writ-
ten by David Kastrup and is now maintained by the
AUCTEX team. It has an extensive manual describing
the relevant aspects of usage and configuration [3].

12 Using RefTEX

RefTEX is a package for managing labels, references,
citations and index entries for LATEX documents
within Emacs. RefTEX has been bundled and pre-
installed with Emacs since version 20.2. Originally
written by Carsten Dominik, it is currently main-
tained by the AUCTEX team. RefTEX has an ex-
cellent manual describing its functionality and op-
tions [1].

RefTEX can be used with both the built-in LATEX
mode and AUCTEX. In order to plug RefTEX into
AUCTEX, these two lines in our init file suffice:

Emacs init file
(add-hook 'LaTeX-mode-hook #'turn-on-reftex)

(setq reftex-plug-into-AUCTeX t)

The first line activates RefTEX automatically when
AUCTEX is loaded and the second line turns on all
RefTEX features within AUCTEX. The integration of
the packages is seamless: AUCTEX checks in its style
files if RefTEX is activated and updates RefTEX’s
variables with parsed elements where appropriate,
and RefTEX’s advanced mechanism for inserting la-
bels and referencing them is used when AUCTEX’s
functions are invoked.

For example, within this document, a new en-
vironment codesnippet is defined (see §10). The
fancyvrb package provides a key reflabel to define a
new label to be used by \pageref. Now when we hit
C-c C-e code<TAB> RET ref<TAB> RET without =
and a value, AUCTEX completes the key and also
adds ={lst:1} to the key where the value is gener-
ated by RefTEX. We can now reference this label by
hitting C-c C-m RET pageref RET and now AUC-
TEX delegates the request for labels to RefTEX and

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

84 TUGboat, Volume 45 (2024), No. 1

we choose the label type in the minibuffer with l

and see the following:

Similar things happen with citation macros.
Since the LATEX release of October 2019, it is

possible to use non-ASCII characters in labels such
as \label{eq:größer}. With the standard setup,
RefTEX will not allow us to enter such a label and
complain about invalid characters. This behavior
can be changed with the following addition to our
Emacs init file:

Emacs init file
(setq reftex-label-illegal-re

"[^-[:alnum:]_+=:;,.]")

13 Using a PDF viewer

On Windows, there are two TEX friendly PDF view-
ers: SumatraPDF9 and Sioyek.10 Both keep the PDF

file unlocked, and both support SyncTEX. Suma-
traPDF has been around since 2006, Sioyek since
2021. We will use SumatraPDF. Installing Suma-
traPDF is easy: We fetch the portable version and un-
pack the single binary into c:\msys64\usr\local\

bin. We run mingw64.exe and rename the file:

MinGW64 shell
$ cd /usr/local/bin

$ mv SumatraPDF-3.4.6-64.exe SumatraPDF.exe

Now we have to tell both parties, Emacs and
SumatraPDF, about their counterparts. AUCTEX
has built-in support for SumatraPDF, so there is not
much to do but put this in our init file:

Emacs init file
(setq TeX-view-program-selection

'((output-pdf "SumatraPDF")))

Emacs will find SumatraPDF.exe since it’s installed
in the MSYS2 file tree.

Next, under SumatraPDF options for inverse
search command-line, we enter the following (except
all on one line):

SumatraPDF options
c:\msys64\opt\emacs\bin\emacsclientw.exe -n

--alternate-editor=

c:\msys64\opt\emacs\bin\runemacs.exe

+%l "%f"

which means: Use the program emacsclientw.exe

to connect to Emacs server, and if there is no Emacs
server running, invoke runemacs.exe to open Emacs
and connect to it. Note that this only works when
SumatraPDF is invoked from a MinGW64 shell with:

9 sumatrapdfreader.org
10 sioyek.info

Figure 2: AUCTEX options for SumatraPDF, including
inverse search.

MinGW64 shell
$ SumatraPDF.exe &

Or when invoked with C-c C-v from Emacs, every-
thing works just fine.

Finally, we tell AUCTEX during editing to en-
able SyncTEX (“inverse search”) when running the
compiler; see figure 2. If we want to enable SyncTEX
ad-hoc for a file, we can hit C-c C-t C-s which acti-
vates TeX-source-correlate-mode for the current
file. If we want to have this mode activated for a
specific file, we can add the following to the file:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-source-correlate-mode: t

%%% End:

And if we want to have the mode always enabled, we
can customize the variable TeX-source-correlate-
mode to t.

14 Using a spelling checker program

Emacs supports the external spell checkers Hunspell,
Aspell, Ispell and Enchant. These programs are
not part of Emacs and must be installed separately.
We’ll use Hunspell because it has the feature that we
can use multiple language dictionaries at once. The
complete setup consists of three parts:

• install the program itself;

• install the language dictionaries;

• set up Emacs to use the above.

Arash Esbati

https://sumatrapdfreader.org
https://sioyek.info

TUGboat, Volume 45 (2024), No. 1 85

Installing the program is easy: We run msys2.exe

and enter:

MSYS shell
$ pacman -S mingw-w64-x86_64-hunspell

Next we need to create the directory where we
will install the dictionaries, say under /usr/local/
share/hunspell. We enter this in the shell and exit:

MSYS shell
mkdir -p /c/msys64/usr/local/share/hunspell

In our ~/.bashrc, we add the following lines:

˜/.bashrc
DICPATH=/c/msys64/usr/local/share/hunspell

WORDLIST=$HOME/.emacs.d/hunspell_default

export DICPATH WORDLIST

Next we download dictionaries for US English11

and other languages.12 We rename the .oxt exten-
sion to .zip so we can open the archive easily and
we move the files with .aff and .dic extension into
the DICPATH directory chosen above. Now we run
mingw64.exe and enter:

MinGW64 shell
$ hunspell -D

Hunspell should report the available dictionaries in
the msys64 file tree.

Now we tell Emacs about Hunspell and add the
following line to our init file:

Emacs init file
(setopt ispell-program-name "hunspell")

The next line tells Emacs about the default dictionary
to use. E.g., for people preferring to write in German,
it would be:

Emacs init file
(setq ispell-dictionary "deutsch8")

When we’re writing LATEX, we have to pass the -t

option to Hunspell:

Emacs init file
(add-hook 'LaTeX-mode-hook

(lambda ()

(setq-local ispell-extra-args

'("-t"))))

We also set the name of our personal dictionary:

Emacs init file
(setq ispell-personal-dictionary

(expand-file-name

"~/.emacs.d/hunspell_default"))

This file must exist for Hunspell, but it can be an
empty file. Finally, we define some key bindings to
switch dictionaries:

11 downloads.sourceforge.net/wordlist/hunspell-en_

US-2020.12.07.zip
12 extensions.libreoffice.org

Emacs init file
(keymap-global-set

"C-c i e"

(lambda ()

(interactive)

(ispell-change-dictionary "english")))

(keymap-global-set

"C-c i d"

(lambda ()

(interactive)

(ispell-change-dictionary "deutsch8")))

(keymap-global-set

"C-c i a"

(lambda ()

(interactive)

(require 'ispell)

(ispell-set-spellchecker-params)

(ispell-hunspell-add-multi-dic

"de_DE,en_US")

(ispell-change-dictionary

"de_DE,en_US")))

Now we can invoke Hunspell inside Emacs with
M-x ispell or inside AUCTEX with C-c C-c Spell.
More information can be obtained from the Emacs
manual.13 AUCTEX provides a library tex-ispell.

el which contains extensions for skipping certain
macros, arguments and environments when spell
checking. The supported packages are listed in the
header of the library. These extensions are activated
by default; they can be disabled by setting the value
of TeX-ispell-extend-skip-list to nil.

15 Using Pygments

If we want to use the minted package, we have to
install the additional software Pygments. We run
msys2.exe and enter:

MSYS shell
$ pacman -S mingw-w64-x86_64-python-pygments

We can check the installation by running mingw64.exe
and:

MinGW64 shell
$ which pygmentize.exe

which returns /mingw64/bin/pygmentize.exe.
minted requires that we pass the -shell-escape

option to the LATEX processor. This can be done by
setting the AUCTEX variable TeX-command-extra-

options as a file local variable:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-command-extra-options: "-shell-escape"

%%% End:

13 gnu.org/software/emacs/manual/html_node/emacs/

Spelling.html

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://downloads.sourceforge.net/wordlist/hunspell-en_US-2020.12.07.zip
https://downloads.sourceforge.net/wordlist/hunspell-en_US-2020.12.07.zip
https://extensions.libreoffice.org
https://gnu.org/software/emacs/manual/html_node/emacs/Spelling.html
https://gnu.org/software/emacs/manual/html_node/emacs/Spelling.html

86 TUGboat, Volume 45 (2024), No. 1

AUCTEX has extensive support for the minted
package, so using the package should work flawlessly.

16 Using a linter

There are two linters available for LATEX documents:
lacheck14 and ChkTEX.

15 Both of them are available
with TEXLive as part of collection-binextra.

Both programs are supported by AUCTEX, so
the question is how to invoke them. This is mostly
a matter of preference: Some people like running
the linter now and then and see the results, and
some want to have it running all the time during
typing. For the former case, one can hit C-c C-c

Check RET for lacheck or C-c C-c ChkTeX RET for
ChkTEX. Then a buffer is created with the result:

For the latter case of on-the-fly syntax checking,
Emacs provides a minor mode called Flymake which
is supported by AUCTEX. It can be activated with
M-x flymake-mode. The same result now looks like
this:

Note also the visual effects we get with Flymake.
Flymake has also an extensive manual [8].

17 Using a LSP server

Emacs 29 ships with a new library called eglot.el

(for Emacs Polyglot) which is a built-in client for
the Language Server Protocol (LSP). LSP is a stan-
dardized communications protocol between source
code editors and language servers—programs ex-
ternal to Emacs which analyze the source code on
behalf of Emacs. We can now open a source file and
type M-x eglot, presuming that an appropriate lan-
guage server is installed. Eglot comes with a manual
describing the details [9].

14 ctan.org/pkg/lacheck
15 ctan.org/pkg/chktex

Currently, two LSP servers are available for
LATEX: TexLab

16 and Digestif.17 Installing TexLab is
easy: We download the correct version from project’s
page and unpack texlab.exe into c:\msys64\usr\

local\bin. Digestif is part of TEXLive and distrib-
uted as digestif.exe.

eglot knows about both TexLab and Digestif,
so we can activate a LSP server by hitting M-x eglot

and choosing the one we want in case both servers
are installed. That’s it. The next figure shows an
example for this document with TexLab which adds
the section number to the \labelmacro and provides
annotated completion for the \ref macro.

18 Editing BIBTEX databases

Emacs has a built-in major mode for editing BibTEX
files which is used when we open a .bib file. This
major mode supports both BibTEX and BibLATEX;
BibTEX is the default. This can be changed by
customizing the variable bibtex-dialect:

Emacs init file
(setopt bibtex-dialect 'biblatex)

Once the mode is active, it is easy to use the menus
or the context menu to add new entries and operate
on the fields.

19 Miscellaneous settings

This section describes various other settings which
should make the daily work easier.

AUCTEX provides in-buffer completion which
can be activated with the TAB key. The TAB key is
somewhat overloaded since it is also used for inden-
tation. The operation of TAB can be controlled with
the variable tab-always-indent. We can set this
in our init file:

Emacs init file
(setq tab-always-indent 'complete)

which means: TAB first tries to indent the current
line, and if the line was already indented, then try
to complete the thing at point.

TEXLive provides a batch script tlmgr.bat for
managing the distribution. Being a batch file, it
is not possible to run the script inside a MinGW64

shell. We can change this by putting this small

16 github.com/latex-lsp/texlab
17 github.com/astoff/digestif

Arash Esbati

https://ctan.org/pkg/lacheck
https://ctan.org/pkg/chktex
https://github.com/latex-lsp/texlab
https://github.com/astoff/digestif

TUGboat, Volume 45 (2024), No. 1 87

snippet under c:\msys64\usr\local\bin and name
it tlmgr:

tlmgr script
#!/bin/sh

This is a small wrapper around tlmgr.bat

Note the double // for escaping /

cmd.exe //c tlmgr.bat "$@"; exit $?

When we’re inside the MinGW64 shell, hitting
TAB provides completion for executables and/or file
names. Under Windows, also files with .dll suffix
are offered for executable completion. We change
this with this line in our ~/.bashrc:

˜/.bashrc
export EXECIGNORE=*.dll

EXECIGNORE is a colon-separated list of glob patterns
to ignore when completing on executables. This is
an MSYS218 feature.

Another handy idea is to alias emacsclient to
run emacsclient.exe with some options:

˜/.bashrc
alias emacsclient='emacsclient -n \

--alternate-editor=runemacs'

20 Conclusion

TEX has been around for some time now, and so
has Emacs. Both carry the original ideas of their
developers, but they have also managed to evolve
over the decades. Emacs can be set up to look
modern,19 but more importantly, it also supports
modern techniques to support users to write LATEX
documents.

With the advent of MSYS2, it is easily possible
to build Emacs from the source on Windows, so an
initial barrier to getting the program is gone. With
AUCTEX, a configurable major mode for LATEX is
available which can be installed easily as a package
from ELPA. RefTEX is a great tool for managing la-
bels and citations and is bundled with Emacs. Other
tools around the editor such as spell-checker, PDF

viewer, Pygments, linter, etc., can be integrated into
the editing environment without trouble.

One new feature in Emacs 29 is the built-in
client for LSP servers which works out of the box
for available language servers. The support for this
feature is expected to grow. Another new feature in
Emacs 29 is the built-in support for the incremental
parsing library Tree-sitter. The usage of Tree-sitter
with Emacs for TEX editing is an area which needs
more exploration in the future.

18 Cygwin, to be more precise.
19 Depending on the definition, which currently seems to

be Microsoft Visual Studio Code.

Overall, Emacs provides a very good environ-
ment for editing (LA)TEX documents using up-to-date
tools and techniques which can be easily set up on
Windows.

Acknowledgments

I’m grateful to the AUCTEX development team and
Óscar Fuentes (MSYS2 contributor) for their com-
ments on this article.

References

[1] C. Dominik. RefTEX—Support for LATEX
labels, references, citations and index entries
with GNU Emacs. gnu.org/software/auctex/
manual/reftex.index.html

[2] Emacs. Building and Installing Emacs
on 64-bit MS-Windows using MSYS and
MinGW-w64. git.savannah.gnu.org/cgit/
emacs.git/tree/nt/INSTALL.W64

[3] D. Kastrup, J.Å. Larsson, et al. preview-latex—
A LATEX preview mode for AUCTEX in
Emacs. gnu.org/software/auctex/manual/
preview-latex.index.html

[4] S. Monnier, M. Sperber. Evolution of Emacs
Lisp. Proc. ACM Program. Lang., 4(HOPL),
June 2020. doi.org/10.1145/3386324

[5] MSYS. MSYS Software Distribution and
Building Platform for Windows. msys2.org

[6] R. Stallman. Why Open Source Misses the
Point of Free Software. gnu.org/philosophy/
open-source-misses-the-point.en.html,
2007–2021.

[7] R. Stallman, et al. GNU Emacs Manual
(updated for Emacs version 29.1), 1985–2023.
gnu.org/software/emacs/manual/emacs

[8] J. Távora, P. Kobiakov. GNU Flymake.
gnu.org/software/emacs/manual/flymake.

html

[9] J. Távora, E. Zaretskii. Eglot: The Emacs
Client for the Language Server Protocol.
joaotavora.github.io/eglot/

[10] K.K. Thorup, P. Abrahamsen, et al. AUCTEX:
A sophisticated TEX environment for Emacs.
gnu.org/software/auctex/manual/auctex.

index.html

⋄ Arash Esbati
Germany
arash (at) gnu dot org

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://gnu.org/software/auctex/manual/reftex.index.html
https://gnu.org/software/auctex/manual/reftex.index.html
https://git.savannah.gnu.org/cgit/emacs.git/tree/nt/INSTALL.W64
https://git.savannah.gnu.org/cgit/emacs.git/tree/nt/INSTALL.W64
https://gnu.org/software/auctex/manual/preview-latex.index.html
https://gnu.org/software/auctex/manual/preview-latex.index.html
https://doi.org/10.1145/3386324
https://msys2.org
https://gnu.org/philosophy/open-source-misses-the-point.en.html
https://gnu.org/philosophy/open-source-misses-the-point.en.html
https://gnu.org/software/emacs/manual/emacs
https://gnu.org/software/emacs/manual/flymake.html
https://gnu.org/software/emacs/manual/flymake.html
https://joaotavora.github.io/eglot/
https://gnu.org/software/auctex/manual/auctex.index.html
https://gnu.org/software/auctex/manual/auctex.index.html

	Introduction
	Installing the MSYS2 distribution
	Installing Emacs
	Emacs release
	MSYS2 release
	Building from the source
	Adjusting the $PATH

	Starting Emacs
	Customizing Emacs
	Choosing a TeX mode for Emacs
	Installing AUCTeX
	Configuring AUCTeX
	Using AUCTeX
	Hacking AUCTeX
	A simple example
	A more complex example

	Using preview-latex
	Using RefTeX
	Using a PDF viewer
	Using a spelling checker program
	Using Pygments
	Using a linter
	Using a LSP server
	Editing BIBTeX databases
	Miscellaneous settings
	Conclusion

