
406 TUGboat, Volume 44 (2023), No. 3

Simplifying LATEX with ORG-mode in Emacs

Emmanuele F. Somma

Abstract

In writing academic or technical articles, you can re-
duce complexity by using markup or configurations,
dropping the LATEX markup language, and adopting
ORG-mode in Emacs while retaining LATEX’s high
typographical quality. This article shows how ORG
markup exported to LATEX works. Also, it explains
the attributes of the most common elements of aca-
demic papers, such as links, tables, notes, figures, and
bibliographic references. Finally, in the appendix, as
a practical project, the author’s choices for delivering
the original article following the typographical rules
of ArsTEXnica are documented.

1 Introduction

ORG and Markdown are Lightweight Markup Lan-
guages (or LMLs) for creating documents with a
well-designed layout, using only a text editor. ORG-
mode, or, as the full name says, “Carsten’s1 outline-
mode for keeping track of everything”, is a plain text
environment for recording whatever is useful in a
researcher’s ordinary work process (agendas, to-do
lists, scattered notes, mind maps, etc.), but its most
interesting feature is that it can export the content
of text files to many typesetting systems through
translation backends. LATEX is one of them.

The Markdown language was created by John
Gruber and Aaron Swartz in 2004 [7], as an evolu-
tion of the conventions already used in writing simple
texts, such as e-mail messages and newsletters, online
forums, wikis, and short pieces of plain text docu-
mentation. Commonly considered the progenitor, or
at least the archetype, of LMLs, it is certainly the
one that has been able to get the highest number of
online citations; however, it was in fact developed af-
ter some previous formulations of light markups and
together with many others, almost similar. It had the
merit of streamlining and extending the disparate
features usually present in an LML and making doc-
uments more accessible, but also the defect of being
implemented in many slightly incompatible dialects
[12, 14, 22, 23].

First published in ArsTEXnica #34, pp. 21–48
(guitex.org/home/en/numero-34-aprile-2023);
translation by Carla Maggi. Published by permission.

1 Carsten Dominik is Professor of Astronomy and director
of the Anton Pannekoek Institute for Astronomy of the Faculty
of Natural Sciences at the University of Amsterdam. He is
also the author of the popular LATEX reference management
package called RefTeX.

Other LMLs, AsciiDoc, Textile, reStructuredText,
txt2tags, and WikiText, the language of Wikipedia
pages, i.e., the most common LML dialects, all have
an almost contemporary genesis since the early 2000s.
ORG-mode is also part of this group: it was first
released in 2003. All were preceded by languages
with fewer capabilities, such as BBcode, setext, and
POD, which date back to the mid-1990s.

In the wake of the success of Markdown, interest
in LMLs has grown, and there are now many tools
based on this approach. The main characteristic
of these languages is simplicity of expression, to
the detriment of the variety and completeness of
functionality. Their use has not gone beyond the
limits of editing short and poorly structured texts for
online pages. Wikipedia pages are the best-known
examples; they are written with the specialized LML
WikiText mentioned above, similar to Markdown.

ORG-mode is an exception: it allows broader
and more structured elaborations and therefore de-
serves a presentation even to LATEX users, who are
used to producing high-quality texts.

The experience of using an LML, in the workflow
of an editorial staff and then in the complete type-
setting of a magazine based on LATEX, has already
been told in 2009 in the pages of ArsTEXnica [19].
In that case, a 2002 LML called BHL (Brute to HTML
and LATEX) by Bastien Guerry was adopted, a direct
ancestor of the modern ORG-mode. At first, BHL was
adopted for editing articles exported in OpenOffice
format, in communication between the editorial and
the typographical staffs of LinuxMagazine. Later,
it was extended and renamed to TCHL, to include
functions useful for drafting technical articles in a
new editorial initiative, where it was dropped into a
new workflow completely based on LATEX.

However, the needs of a technology business
magazine are less than those of an academic article,
which is broader and more structured, with foot-
notes, bibliographic references, inline mathematics,
and numbered equations, as well as management of
multiple languages and possibly different alphabets,
and greater variability and complexity of floating
elements, such as figures, boxes, and tables.

The BHL and Markdown languages in general
are not suitable for these uses. It is essential to turn
to ad-hoc typesetting programs and, in the case of
markup languages, to more sophisticated languages,
such as precisely LATEX or different versions of XML
and SGML, at the cost of greater verbosity of the lan-
guage and difficulty in managing the whole process,
or with the need to adopt user interfaces that are
not always easy to use and possibly expensive.

doi.org/10.47397/tb/44-3/tb138somma-orgmode

Emmanuele F. Somma

https://guitex.org/home/en/numero-34-aprile-2023
https://www.nongnu.org/bhl
https://www.nongnu.org/bhl
https://doi.org/10.47397/tb/44-3/tb138somma-orgmode

TUGboat, Volume 44 (2023), No. 3 407

Leveraging the benefits of both approaches, the
ORG-mode language can be integrated with LATEX
to produce high-quality documents.

2 Brief comparison among markups

To give just three meaningful examples of the rela-
tive simplicity of ORG-mode, let us consider how to
implement: a) an italicized word, b) an environment
for a direct quote, and c) a table.

In the case of italics, in LATEX we use a markup
such as

\emph{in italics}

using a keyword (‘emph’) and 6 different characters.
With ORG-mode we follow an ordinary text syntax
and it is sufficient to use the same ‘/’ character
twice:

/in italics/

For quotations in display mode, in LATEX it
is possible to use the quote or quotation environ-
ment:

\begin{quote}
« Lorem ipsum dolor sit amet, consectetur [...]
\end{quote}

In ORG-mode, the block quote is used.

#+BEGIN_QUOTE
« Lorem ipsum dolor sit amet, consectetur [...]
#+END_QUOTE

To write a quote in a language with a non-Latin
alphabet (e.g. Greek), it is sufficient to use a cou-
ple of attributes to specify the language, namely
‘:environment foreigndisplayquote’ and
‘:options {greek}’, and the right environment in
the preamble:

#+LATEX_HEADER:\usepackage[autostyle=true]
#+LATEX_HEADER: {csquotes}

to get something like:

ἀγεωμέτρητος μηδεὶς εἰσίτω.

Lastly, for the typesetting of tables in LATEX,
between keywords and specification characters, seven
different elements are used:

\begin{center}
\begin{tabular}{lll}
Header 1 & Header 2 & Header 3\\
\hline
Cell 11 & Cell 12 & Cell 13\\
Cell 21 & Cell 22 & Cell 23\\
Cell 31 & Cell 32 & Cell 33\\

\end{tabular}
\end{center}

whereas the same table in ORG-mode notation is
much more parsimonious:2

| Header 1 | Header 2 | Header 3 |
|----------+----------+----------|
Cell 11	Cell 12	Cell 13
Cell 21	Cell 22	Cell 23
Cell 31	Cell 32	Cell 33

in both cases, the result is the same:

Header 1 Header 2 Header 3
Cell 11 Cell 12 Cell 13
Cell 21 Cell 22 Cell 23
Cell 31 Cell 32 Cell 33

ORG markup is thus much more concise than
LATEX markup, and many aspects can be modified in
the export of individual elements, making it possible
to cover many, if not all, of the most common use
cases in the writing of an academic article.

3 Integration with Emacs

The comparison between ORG-mode and LATEX can
proceed along two lines: a) comparing the markup
language, as just done and as we’ll see more in detail
from the next section onwards, and b) comparing
the integration with the Emacs editor [20].

LATEX does not enforce the use of any specific
editor but this is not the case for ORG-mode, which
is closely related to Emacs. There are, it is true,
alternative implementations,3 but from the point
of view of the production of most academic papers
ORG-mode and Emacs are still one and the same.

On the other hand, it is also true that the Emacs
modes for editing LATEX files (and groups of files)
and ORG are both equally powerful. Any comparison
on this point would only involve design choices and
implementation details of one or the other. As Emacs
users well know, this editor is particularly effective
at drafting texts for the various markup languages,
as well as for programming ones. We cannot boast
of any substantial difference in the use of ORG-mode
compared to Emacs’s LATEX-mode [1, 3].

2 It should also be noted that ORG-mode has a table
editing environment that allows you to interact with these
text elements as if they were in a spreadsheet, including the
calculation of fields using formulas.

3 See the extensive list of systems given in [16]. To give
a single example, visualization of ORG markup as web pages
has been integrated into Github, which has thus become
a convenient tool for online publications using ORG markup
without any mediation by Emacs.

Simplifying LATEX with ORG-mode in Emacs

408 TUGboat, Volume 44 (2023), No. 3

Nevertheless, they are related: to use the ORG-
mode pagination subsystem for the production of
PDF documents, LATEX still needs to be correctly
installed and configured. Emacs, and consequently
ORG-mode, can adapt, practically without interven-
tion, to a well-made LATEX installation, such as those
now obtained from the common distributions.4 This
usually results in having the ORG system for LATEX
immediately available after the successful installation
of LATEX and Emacs.

Even without an installed LATEX system, it is
always possible to produce a typeset document by
exporting the text of the ORG file in other formats
(such as ODT, HTML, or plain text), and from these,
discounting the lower quality in typesetting, a PDF.

Text files with the ORG markup are identified by
the extension ‘.org’. As usual, when Emacs loads
a file with a known extension, it starts interacting
with the appropriate major mode (that’s where the
name ORG-mode comes from: it’s the major mode
by which Emacs interacts with .org files).

A major mode in Emacs activates one or more ad
hoc menus and a series of specific key combinations,
which can be used only when editing a file with that
extension. For example, when editing a .org file
there will be an ‘Org’ menu, and when the cursor
is inside a table, a further menu for editing tables
will also appear, for adding columns, rows, and other
operations, as mentioned earlier.2

In ORG-mode some interactive functions and re-
lated key combinations are fundamental in the work
process. For example, C-c C-e (the two keystrokes
CTRL-C and CTRL-E; the abbreviation to C- is cus-
tomary in Emacs), which corresponds to the com-
mand M-x org-export-dispatch, opens the panel
where the text can be exported in various output
formats. From here you choose the export backend
and launch the translation operation; for example,
the combination ‘l p’ creates a PDF file.

Furthermore, C-u C-c C-e repeats the last used
typesetting command. After the first use of the pre-
vious panel, where the desired export is selected, C-u
C-c C-e becomes the most used key combination in
the typesetting phase.

The complete combination C-c C-e l p (M-x
org-latex-export-to-pdf) transforms .org source
into LATEX and then typesets it to PDF using pdf-
LATEX (or the user’s chosen program). If, instead,
you use C-c C-e l o, at the end of the compilation
the system viewer will also open to show the typeset
result in PDF.

4 See also [5].

Thus, if properly configured, ORG-mode per-
forms all the necessary, and possibly multiple, LATEX
compilations to correctly obtain indexes, bibliogra-
phies, and references, without the user having to do
anything else.

You may find it useful to customize the PDF
compilation process with the latexmk program (or
similar) by specifically configuring the Emacs vari-
able org-latex-pdf-process in ~/.emacs, as in:

(setq org-latex-pdf-process (list
"latexmk -shell-escape -bibtex -f -pdf %f"))

Another useful key combination is C-c C-; this
opens a panel where you can choose a block type to
insert (for example, you can use e for an example, s
for a program listing in source code, q for a quote, v
for poetic verse, etc.). Many other key combinations
are defined to perform specific tasks, such as inserting
links (C-c C-l), footnotes (C-c C-x f), quotes (C-c
C-x [), and so on.

4 ORG for LATEX

To obtain a LATEX file starting from a .org, there
is no need for any particular operations other than
exporting to the .tex source file with C-c C-e l l.

With ORG-mode, the exported LATEX document
will be an article (class article) by default. You
can configure this export in a more refined way.

There are two possibilities for configuring ORG-
mode operations: a) through the Emacs customiza-
tion (or configuration) mechanism,5 which applies
to all ORG documents, or b) with the definition of
directives6 in the .org file being processed, which
obviously only apply to the file being processed.

5 In Emacs, we make a distinction between configuration
and customization, although the goal and the final result
may be indistinguishable. By configuration we mean the
introduction in the Emacs initialization file (usually ~/.emacs)
of commands in the Lisp programming language, usually very
simple, for activating the packages and defining the customiza-
tion variables. By customization, instead, we mean the use of
the hierarchical structure of the customization panels of the
Options->Customize menu to define the same customization
variables and, in turn, generate a structure within the .emacs
file based on the custom-set-variable Lisp function. The
two options have equivalent results; adopting one or the other
form, or a mix between the two, is a matter of user preference.

6 In this article, to make the difference more understand-
able, we adopt the (uncommon) convention of naming as
directives the configuration lines present inside the .org file
(which the documentation usually calls variables or ORG com-
mands), reserving the wording customization variables (or
simply Emacs variables) for the variables at the editor level.
Directives will always be represented between the characters
#+ and a :, which are necessary for their definition and will
always be capitalized, although this is not strictly necessary.
To make clear the distinction between customization variables,
which can be configured by the user, and Emacs interactive
functions, i.e. commands that can be executed by the user,

Emmanuele F. Somma

TUGboat, Volume 44 (2023), No. 3 409

The first strategy is suitable for changes to the
whole work environment, and is based on the cus-
tomization mechanism of the Options->Customize->
Group->Specific Group menu, indicating org as a
group, or with the command M-x customize-group
RET org. Alternatively, special Lisp command lines
can be introduced in the ~/.emacs file.

In contrast, in the second case, the configura-
tions can be indicated directly in the .org file using
ORG markup directives, which have the form:

#+<KEY>: <VALUE>

The key is case-insensitive.
Thus, the same effect as changing the variable

org-latex-default-class, which defines the LATEX
class to be used in the \documentclass command
at the beginning of the .tex file, is obtained using
the #+LATEX_CLASS: directive in the .org file:

#+LATEX_CLASS: report

If you want to add options to the class, the
directive #+LATEX_CLASS_OPTIONS: is used:

#+LATEX_CLASS_OPTIONS: [12pt,oneside]

The #+LATEX_COMPILER: directive specifies the
compiler to employ.

#+LATEX_COMPILER: xetex

Lastly, one or more #+LATEX_HEADER: directives
can be used to include extra lines in the preamble
of your LATEX document. They provide a convenient
way to add more packages without having to config-
ure org-latex-default-packages-alist, and also
to possibly define new commands or particular con-
figurations for LATEX.

The conversion from ORG to LATEX depends on
the org-latex-classes variable, which is defined
as follows:
(("article" "\\documentclass[11pt]{article}"

("\\section{%s}" . "\\section*{%s}")
("\\subsection{%s}" . "\\subsection*{%s}")
("\\subsubsection{%s}" . "\\subsubsection*{%s}")
("\\paragraph{%s}" . "\\paragraph*{%s}")
("\\subparagraph{%s}" . "\\subparagraph*{%s}"))

("report" "\\documentclass[11pt]{report}"
("\\part{%s}" . "\\part*{%s}")
("\\chapter{%s}" . "\\chapter*{%s}")
("\\section{%s}" . "\\section*{%s}")
("\\subsection{%s}" . "\\subsection*{%s}")
("\\subsubsection{%s}" . "\\subsubsection*{%s}"))

("book" "\\documentclass[11pt]{book}"
("\\part{%s}" . "\\part*{%s}")
("\\chapter{%s}" . "\\chapter*{%s}")
("\\section{%s}" . "\\section*{%s}")

the name of the latter will always be prefixed with the key
combination M-x necessary to activate them.

("\\subsection{%s}" . "\\subsection*{%s}")
("\\subsubsection{%s}" . "\\subsubsection*{%s}")))

Each element of this list, defined as:
(class-name preamble-start

segmentation-elements)

represents one of the usual classes of LATEX docu-
ments (article, book, and report).

The segmentation elements of the definition are
pairs of titling commands, the first to be used in case
of numbered titles, and the second for unnumbered
ones. As you can see, for article the segmentation
starts from the section, while for book and report
it starts from part, but this can clearly be changed.

When exporting to LATEX, the backend will
apply, before anything else, the class defined glob-
ally in org-latex-default-class or in the docu-
ment with the directive #+LATEX_CLASS:, whose op-
tions are in org-latex-default-class-options or
with the directive #+LATEX_CLASS_OPTIONS:. The
default packages, which are listed in the variable
org-latex-default-packages-alist are inserted
later; they can be omitted using the special string
[NO-DEFAULT-PACKAGES] in preamble-start of the
class defined in org-latex-classes.

Other packages, given in org-latex-packages-
alist, are also appended later, and can be omitted
with [NO-PACKAGES]. Finally, the EXTRA text will be
added, i.e. the lines defined in the .org file with
the #+LATEX_HEADER: directives. This set can also
be excluded using [NO-EXTRA]. The preamble of an
article for ArsTEXnica is shown in the appendix.

The org-latex-default-packages-alist var-
iable includes inputenc, fontenc, hyperref, and
other packages that are needed for various ORG-
mode functionalities. It should not be overridden.

To work with a different LATEX class, for exam-
ple, arstexnica, the class used for this article (in the
Italian original), you will need to properly configure
org-latex-classes, as shown in the appendix.

Whenever possible, it is preferable to act at the
level of the .org file, to keep the compilation needs
documented in the file itself and not depend on a
general configuration that could change over time or
between different users.

Only those directives dedicated to LATEX are in-
dicated, but many other generic directives affect the
export. For example, document descriptive directives
such as:
#+TITLE: Emacs ORG-Mode, LaTeX (and ArsTeXnica)
#+AUTHOR: Emmanuele F. Somma
#+CREATOR: Emacs 28.1 (Org mode 9.5.2)
#+DESCRIPTION: An article for ArsTeXnica
#+KEYWORDS: Emacs ORG LaTeX typesetting

Simplifying LATEX with ORG-mode in Emacs

410 TUGboat, Volume 44 (2023), No. 3

are appropriately used by the export backend:
\author{Emmanuele F. Somma}
\date{\today}
\title{Emacs ORG-Mode, \LaTeX{} (and \ArsTeXnica{})}
\hypersetup{
pdfauthor={Emmanuele F. Somma},
pdftitle={Emacs ORG-Mode, LaTeX (and ArsTeXnica)},
pdfkeywords={Emacs ORG LaTeX typesetting },
pdfsubject={An article for ArsTeXnica },
pdfcreator={Emacs 28.2 (Org mode 9.5.5)},
pdflang={Italian}}

Note also the definition of the language in which
the document is written:

#+LANGUAGE: it

The supported languages are in the variable
org-latex-babel-language-alist. However, the
language definition does not automatically include
the related LATEX package, so that the user can choose
whether to use babel or polyglossia. This can be
defined in the general list of default packages with
the Lisp command:

(add-to-list ’org-latex-packages-alist
’("AUTO" "babel"

t ("pdflatex" "xelatex" "lualatex")))

or

(add-to-list ’org-latex-packages-alist
’("AUTO" "polyglossia"

t ("xelatex" "lualatex")))

where AUTO indicates the language chosen in the
#+LANGUAGE: directive. As you can see, they can be
differentiated by typesetting engine.

Alternatively, the language package can be in-
serted explicitly in the .org file with a line like:

#+LATEX_HEADER: \usepackage[italian,greek]{babel}

5 Document options

Some ORG document options affect LATEX export.
Options are defined in the format key:value and
inserted in the directive named #+OPTIONS:.7 Here
is a lengthy example (we won’t describe them all
here; see the documentation):

#+OPTIONS: ’:nil *:t -:t ::t <:t H:3 \n:nil ^:t
#+OPTIONS: author:t broken-links:nil creator:nil
#+OPTIONS: d:(not "LOGBOOK") date:t e:t
#+OPTIONS: email:nil f:t inline:t num:t
#+OPTIONS: prop:nil stat:t tags:t tasks:t tex:t
#+OPTIONS: timestamp:t title:t toc:t todo:t |:t

7 With the key combination C-c C-e # or the command
M-x org-export-insert-default-template you can insert all
options into your document. By choosing default, you can
insert the options common to all backends; with latex, html,
etc. inserting those related to LATEX, HTML, etc.

Boolean variables are true if set to t, and false
if set to nil. Here are some useful options:
num: turns on section numbering
toc: typesets the table of contents8

|: turns on table typesetting
^: uses TEX syntax for superscripts and subscripts9

-: allows conversion of special strings
f: activates conversion of footnotes (indicated as

[fn:...])
: activates text emphasis (for bold, / for italics,

_ for underlined)
TeX: allows TEX macros in the text
author: includes author’s name in the layout
email: includes author’s email in the layout
creator: includes creation information in the layout

6 Element attributes

The directives and options seen so far apply to the
entire export process and determine how the layout
is formed. Usually, ORG-mode performs a standard
layout of the elements of the LATEX document, but
this is not always sufficient for the author’s purposes.
It is possible to provide particular specifications for
the various elements to be typeset, by defining at-
tributes for the individual elements to be typeset
(such as images, tables, etc.). Attributes are defined
in ORG with a #+ATTR_<backend>: directive. For
LATEX it is #+ATTR_LATEX:.

For the same element, several attribute direc-
tives can be specified, each relating to different back-
ends, to be used in the corresponding exports. And
in each #+ATTR_... directive, many attributes can
be included, in the format :<attribute> <value>.
Element attributes should not be confused with doc-
ument options, which are defined in the #+OPTIONS:
directive, in the format <option>:<value>.

To give an example, if you want to introduce an
image into the text flow, you can write:

[[./img/arstexnica.png]]

the following image will be obtained in the typeset
text, extended to the page size:

8 The table of contents is located after the title or at the
point where a line with only the string [TABLE-OF-CONTENTS]
is inserted.

9 Warning: it is not a boolean flag but must be set as ^:{};
in this case, a_{b} is interpreted, whereas a_b is not.

Emmanuele F. Somma

TUGboat, Volume 44 (2023), No. 3 411

We can define attributes for the image, such as
the size or a possible rotation angle, as follows:

#+ATTR_LATEX: :width 4cm :options angle=45
[[./img/arstexnica.png]]

and you will get:

You can put the image in a floating block and give
it a caption with the general command #+CAPTION:,
which is valid for all export formats:

#+CAPTION: The ArsTeXnica logo
#+ATTR_LATEX: :width 4cm
[[./img/arstexnica.png]]

Figure 1: The ArsTEXnica logo

Many elements of the ORG markup have specific
attributes, like the ones we have just seen for images.
One of the most important is :environment which
selects the environment to apply to the next element.
For example:

#+ATTR_LATEX: :environment myverbatim
#+BEGIN_EXAMPLE
« Lorem ipsum...
#+END_EXAMPLE

It will apply the myverbatim environment to
the EXAMPLE block:

\begin{myverbatim}
« Lorem ipsum...
\end{myverbatim}

although, in this case, it would be even more ap-
propriate to take advantage of the special syntax
available to specify the block with the name of the
environment:

#+BEGIN_myverbatim
« Lorem ipsum...
#+END_myverbatim

Using the attributes it is possible to specify the
details of the typesetting without directly resorting
to the LATEX commands.

7 External and internal links and
element identification

A URI, written verbatim in the document, or enclosed
in angle brackets (<LINK>) or in double square brack-
ets ([[LINK]]), is typeset as an active link in LATEX.
The general format of a hyperlink is:

[[LINK][DESCRIPTION]]

In this case, the description will be the typeset
text, and the link will allow you to access the resource.
There are precise rules to correctly represent within
links the elements that need to be escaped using the
character (\), such as square brackets, for example,
and the escape character itself. The best way to
insert and modify a URI in the text is to use the key
combination provided by Emacs (C-c C-l) which
automatically takes care of this aspect.

In addition to the external links, using all the
usual schemes (http, https, ftp, email, etc.), ORG-
mode also handles links internal to the document,
such as references to figures and tables, to sections,
and even to single items of a list.

An article element, such as a table or a figure,
can be identified with the #+NAME: directive placed
before the element. This name can then be used for
internal references; for example:

#+NAME: Tab1
| Col1 | Col2 |
|------+------|
| A | B |

As indicated in *Table [[Tab1]]*.

which will be typeset like this:

Col1 Col2
A B

As indicated in Table 7.

It is also possible to refer to the single items of
a numbered list:

1. first item
2. <<p2>>second item

As indicated in item [[p2]].

which produces:

1. first item
2. second item

As indicated in item 2.

Simplifying LATEX with ORG-mode in Emacs

412 TUGboat, Volume 44 (2023), No. 3

It is also possible to link to a section title with
the notation *Section [[*Mathematics]]* (obtain-
ing Section 10). The numbering option (num:t)
must be active.

8 Some important block types

Various specialized blocks are delimited by the di-
rectives #+BEGIN_<type> and #+END_<type>. The
#+BEGIN_ line can also specify options for the block.
Common examples:
ABSTRACT the ABSTRACT block plays a special role

because it is typeset as a summary of the doc-
ument (abstract), according to the rules of the
class used in the LATEX document. For example,
the ABSTRACT block of this article is:

#+BEGIN_ABSTRACT
In writing academic ...
#+END_ABSTRACT

CENTER center the block content on the page.
EXPORT a particularly important block, the specifi-

cation key indicates the backend system (html,
latex, etc.). The content will only be included
in exported files for that backend. So to copy
a piece of LATEX code from the .org file to the
.tex, we write:

#+BEGIN_EXPORT latex
<LaTeX code> ...
#+END_EXPORT

EXAMPLE block for showing examples in verbatim:

#+BEGIN_EXAMPLE
| Header 1 | Header 2 | Header 3 |
|----------+----------+----------|
Cell 11	Cell 12	Cell 13
Cell 21	Cell 22	Cell 23
Cell 31	Cell 32	Cell 33
#+END_EXAMPLE

QUOTE block for typesetting display quotations.
SRC block for including source code in most common

programming languages, as indicated in the first
option of the begin directive.

A relevant aspect of ORG documents is that
these code blocks are used not only to represent
an example (for which there is also the block
type EXAMPLE) but can be made active. Then
ORG-mode, with the support of external or in-
ternal language interpreters, can in fact execute
the code of the block and insert the result of
the processing in the output, using the directive
#+RESULT: placed directly after the SRC block.

Alternatively, the code can be exported to ex-
ternal source files, and subsequently interpreted

or compiled. This allows a .org document to
become an active literate programming notebook
in the same way as the classic tangle and weave
tools, with which TEX was written by Donald
Knuth [9, 10], or the more recent notebook in-
terface projects like the Jupyter project [4].

For the LATEX representation of the SRC block,
the verbatim environment is used, but it is also
possible to choose listings or minted by config-
uring the Emacs variable org-latex-listings.

Here’s an example:

#+BEGIN_SRC python
def fibonacci(n):

if n <= 1: return n
else: return fibonacci(n-1)+fibonacci(n-2)

#+END_SRC

VERSE block for typesetting poems and verses:

#+BEGIN_VERSE
There once was a student of science,
Whose essays cast off in decadence
She then used Org to write,
And LaTeX to paginate,
So her colleagues admired in silence.
#+END_VERSE

9 LATEX inside ORG markup

ORG is a format that tends to represent text content
unaltered, except for markup elements placed in the
expected positions or combinations. Anything not
recognized as markup is transferred, as is, to the
exported file.

It is possible to include text intended for the
backend. For example, you could include any LATEX
command, say \raggedright, to get the desired
LATEX behavior (the TeX:t option must be defined).

Working with a single backend, and therefore
not needing to export the result in any other format,
there is no need to use the EXPORT block. If, on the
other hand, you want to take advantage of ORG-
mode’s ability to export content in multiple formats,
you need to limit the export to just the desired
backend, using EXPORT blocks when necessary.

If you need to insert shorter fragments of LATEX
you can use an inline expression enclosed within a
double pair of symbols @ followed by latex:, as in
@@latex: arbitrary LaTeX code@@. This code
will only be inserted in the export for the selected
backend. The same can be done for other backends:

...this document is typeset with
@@latex: \LaTeX{}@@@@html: HTML@@
and not with @@latex: HTML@@@@html: \LaTeX{}@@

Emmanuele F. Somma

https://jupyter.org/

TUGboat, Volume 44 (2023), No. 3 413

Given this sentence in this article, when readers
view the typeset PDF, they will see that this docu-
ment is typeset with LATEX (and not in HTML); if
they see it on a web page, exported directly from
ORG-mode in HTML, they would read the opposite.

If you don’t need a whole block but just a single
line, you can use the #+LATEX: directive, as in:

#+LATEX: \newpage

10 Mathematics

One of the strengths that make LATEX supporters
rightly proud is the advanced ability to typeset doc-
uments with mathematical expressions, both inline
and displayed. From this point of view, ORG uses the
most straightforward approach: the LATEX notation
for mathematics. Therefore, inside the .org source
an expression like the following:

\[\hat{y} = \hat{\beta}_{0}+\hat{\beta}_{1}
x_{1}+\hat{\beta}_{2}x_{2}+\dots
+\hat{\beta}_{p}x_{p} \]

produces:

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp

For a numbered equation, it’s enough to use
an equation block or any other such environment
usually used in LATEX, e.g., displaymath, align, etc.

For inline math, you can also simply use the
LATEX notation, such as \(x^{2+y} \) to obtain
x2+y. From this point of view, therefore, ORG-mode
does not add or subtract anything to/from LATEX.10

Where the backend provides for it, the mathe-
matics will be typeset correctly even when exported
in formats other than LATEX, for example, HTML, as
you can see using the key combination C-c C-e h O.

11 Tables

Tables were already introduced above; we need only
mention a few attributes:
:environment environment name for the LATEX back-

end (tabularx, longtable, array, etc.);
:float typesets the table as a float, with options

sideways or multicolumn to obtain it respec-
tively rotated or on several columns;

:mode modifies the way the table is exported; takes
values table, math, inline-math, verbatim, or
tabbing;

10 Remember that the use of the TEX notation, $...$ or
$$...$$, for equations, while possible, is not recommended in
LATEX and, even more so, in ORG-mode.

:placement specifies the positioning of the table; it
can take the values h t b p ! H, as in LATEX.
Other options concern:

• export in a math environment: :math-prefix,
:math-suffix, :math-arguments;

• the width: :spread, :width;
• switches to improve handling of the layout:
:booktabs; :center for centered positioning;
and :rmlines to remove all but the first line
for tables typeset in the format expected by
table.el.
The table format called table.el is an alterna-

tive Emacs format. It is a little less parsimonious
than the standard ORG format, because you need to
indicate all the intersections of the cells, but it al-
lows you to typeset more complex tables than in the
simplified ORG-mode syntax. For example, a table
with merged cells, like this one:

A B
10 11
20 21 22

is written in the text file as:

+-----+-----+-----+
| A | B |
+-----+-----+ |
| 10 | 11 | |
+-----+-----+-----+
| 20 | 21 | 22 |
+-----+-----+-----+

12 Footnotes

ORG-mode supports two ways to write footnotes.
1. In the first case, an inline label is used in the

format [fn:NAME] and the footnote itself will be
expressed as an autonomous paragraph, usually
at the end of the file or of the section considered,
in the format ‘[fn:NAME] Footnote text.’.11
The definition must begin with the first square
bracket in the first column of the line, with no
preceding spaces, and ends at the start of a new
note or section or with two blank lines.

2. The second case allows insertion of an inline foot-
note with the format [fn::Inline footnote
text...]— pay attention to the double :. You
can also use the notation [fn:NAME: Inline
text] if you need to refer to the footnote else-
where as well, as was the case in this article for

11 Footnote text.

Simplifying LATEX with ORG-mode in Emacs

414 TUGboat, Volume 44 (2023), No. 3

the footnote at the end of this sentence, used
already twice elsewhere.2

Footnotes are automatically numbered.
If you do not want to place your footnotes at the

end of the page but at the end of the document, you
can introduce the following LATEX directives where
you want the footnotes to appear, at the end of the
document:

#+LATEX_HEADER: \usepackage{endnotes}
#+LATEX_HEADER: \renewcommand\footnote{\endnote}
#+LATEX: \theendnotes

13 Bibliographies and references

Citing, linking, and listing references is one of the
fundamental tasks in writing scientific articles and,
for a long time, ORG-mode did not have its own
standard system for dealing with them. In recent
years, this situation has changed, although in a way
that may not entirely satisfy an author accustomed
to LATEX.

The most modern way in ORG of indicating bib-
liographic citations is entrusted to the org-cite
subsystem (present in the oc.el library), already
included in up-to-date ORG-mode distributions.

org-cite is based on the definition of citation
processors, whose job is to offer several functionalities
including:

• colored links and tooltips on hover;
• actions on user click in the editor;
• insertion and modification of citations;
• export to different formats.

The ORG-mode quoting mechanism, which was
designed to be back-end agnostic, introduces a triad
consisting of

(processor bibliographic-style citation-style)

The citation style consists of a string based on
a uniform pattern, set up as follows:

[cite/s/v:@key1;@key2;...]

where the two specifiers /s and /v are optional and
represent the style and variant indicators of the cita-
tion. They can be used to select a citation without
author (na for noauthor), i.e. with date only, or in a
variant with initial capitalization (cf for caps-full).
They are equivalent to many biblatex citation com-
mands, such as \cite, \citetitle, \citeyear, etc.

Following that, @key1, @key2 specify the cita-
tion keys; there can be only one (in which case the
final semicolon is not needed) or many, separated
by semicolons. Each citation key is composed of the
character @ followed by the label of the reference used

in the .bib file, preceded by a possible prefix, which
will be typeset before the reference and followed first
by a locator, i.e. a page, chapter or volume marker or
other identifiable elements in the reference and, after
a space, a suffix. These elements are optional. The
general form of a citation key is therefore as follows:

prefix @key locator suffix

At the beginning of the entire citation string,
there may be a prefix without a citation key, which
acts as a common prefix for all citations. Likewise,
there may also be a suffix common to all citations.
Ultimately, a citation expressed as:

[citep/text/full:See;
@hegel1807phenomenology pp. 184--6]

or
[citep:@hegel1807phenomenology]

could be typeset as:

(See Hegel, The Phenomenology of Spirit
(1807) pp. 184–6)
or
(Hegel, 1807)

Several processors have been defined, but the
main variants are:
csl for exporting citations to all backends;
bibtex only for LATEX; there is also natbib and

biblatex, which differ from bibtex primarily
in the LATEX package loaded.
The bibtex processor uses LATEX, so

[cite:@hegel1807phenomenology pp. 184--6]
becomes
\cite[184--6]{hegel1807phenomenology}.
In this case, LATEX will also use bibtex (or biber, by
user choice) to generate the citations. The downside
of using this processor is that it cannot be used to
typeset in formats other than LATEX.

To have a universal .org file you need to use
the csl processor (Citation Style Language). CSL is
an XML-based citation and bibliography specifica-
tion language. It is used by some well-known bib-
liographic reference management programs such as
Zotero, Mendeley, and Papers, and was initially devel-
oped within the OpenOffice Bibliographic Project.12

The choice of one or the other approach is based
on whether or not to rely on bibtex for the handling
of LATEX citations. If csl is used, both citations
and bibliographic references will be composed in a
plain text way, according to the chosen bibliographic
standard: there will be no \cite citation commands

12 openoffice.org/bibliographic/

Emmanuele F. Somma

https://en.wikipedia.org/wiki/Citation_Style_Language
https://openoffice.org/bibliographic/

TUGboat, Volume 44 (2023), No. 3 415

in the file, nor a \bibliography to read the file
created by bibtex.

Those who have mastered bibtex sufficiently,
especially in selecting the citation variants or if they
have to manage lesser-known fields of the .bib file
(such as the crossref and related fields, used to
indicate related volumes or language translations),
know how powerful it is to rely on the bib(la)tex
citation system. The agnostic approach to the csl
backend may therefore not be adequate for sophisti-
cated LATEX enthusiasts.

It is also worth mentioning an alternative pack-
age, created by John Kitchin, which was originally
used as a template for org-cite, called org-ref. Al-
though it is a package that needs to be installed via
M-x package-list-package, it is, still nowadays,
the most used system for typesetting citations and
bibliographies in LATEX.

org-ref is comparable to the bibtex (and re-
lated) processors of org-cite but contains many fea-
tures which have not yet found a place in org-cite,
and maybe will never be integrated. It is gener-
ally more refined in relation to LATEX. Unfortu-
nately, Kitchin’s attempt to integrate org-ref into
org-cite, with a project called org-ref-cite, ap-
pears to have stalled. Instead, a new, even better
functioning version 3.0 of org-ref has been released.

The org-ref syntax for citing is the same as
using org-cite, except it uses the & character in the
citation key instead of @.

Thus, if you are prepared to lose compatibil-
ity with any backends other than LATEX, org-ref is
the most effective choice for typesetting ORG-mode
references and bibliographies. On the other hand,
org-cite will improve over time, despite having
structural limitations that Kitchin considers insur-
mountable.13 Looking forward, adopting org-cite
could create more maintainable documents over time.

However, org-cite refers to a specific directive
#+BIBLIOGRAPHY: which indicates the bibliographic
file to consider, whereas org-ref solves the problem
by simply adding the suitable lines at the beginning
of the LATEX file, as in

#+LATEX_HEADER: \usepackage[
#+LATEX_HEADER: citestyle=authoryear-icomp,
#+LATEX_HEADER: bibstyle=authoryear,
#+LATEX_HEADER: hyperref=true,backref=true,
#+LATEX_HEADER: maxcitenames=3,url=true,
#+LATEX_HEADER: backend=biber,natbib=true]
#+LATEX_HEADER: {biblatex}
#+LATEX_HEADER: \addbibresource{test.bib}

and a \printbibliography at the end.
13 lists.gnu.org/r/emacs-orgmode/2022-03/msg00250

14 Conclusions: why to use or not use
ORG-mode

At the end of this introductory presentation to ORG-
mode, we can balance the reasons for using or not
using ORG markup instead of LATEX. Using ORG-
mode is beneficial for the following reasons:

1. The simpler and cleaner text format of ORG helps
the readability of the source, integration in a
less-demanding publishing workflow, and greater
ease of archiving [17];

2. The ability to create documents that can be ex-
ported in different formats allows simultaneous
publication on different media as well as simpler
collaboration with co-authors who use different
formats;

3. The presence of active source blocks, which can
programmatically produce results, enables a re-
search approach oriented towards Open Science,
and the production of reproducible scientific re-
sults [11, 18, 21]. The ORG-mode solution is
considerably simpler than those working directly
with LATEX [2].
On the other hand, there are also some clear

shortcomings:
1. No journal or publisher accepts native .org for-

mat, so delivery of an article will necessarily
have to be done in a different format (LATEX,
OpenOffice, etc.).

2. An author already competent with LATEX, possi-
bly already with his own chain of development
tools tested, could consider the effort to obtain
some modest advantage superfluous, or even
counterproductive, from his point of view. (How-
ever, an author who is new to LATEX may find it
advantageous to directly learn ORG markup and
how to use Emacs at the same time, thus obtain-
ing in one fell swoop a research and publishing
environment, moreover of excellent quality.)

3. ORG-mode requires that you use Emacs as your
editor, which you may not necessarily like.
One goal of this article was to demonstrate in

practice that if you like to use Emacs and ORG-mode
to deliver an article in LATEX, it is always possible
to follow the guidelines of a magazine or a publisher.
This is true for LATEX, which is the subject of this
article, but also true if it is to be delivered in a
word-processor format (docx, odt, etc.).

ORG-mode represents an additional, supplemen-
tary approach, that you may add to your researcher’s
toolbox, and not a replacement for LATEX.

Of one thing we can be sure: we can bet on the
longevity of ORG-mode, based as it is on LATEX and
Emacs.

Simplifying LATEX with ORG-mode in Emacs

https://lists.gnu.org/r/emacs-orgmode/2022-03/msg00250

416 TUGboat, Volume 44 (2023), No. 3

A Using ORG-mode with ArsTEXnica

To submit this article written in ORG-mode to Ars-
TEXnica,14 it was necessary to comply with the edi-
torial requirements; in particular, to export using the
arstexnica class and respect the guidelines given
in the kit [8].

It’s one of those things that turned out to be
easier to do than to document.

A.1 arstexnica class

The first thing to do was define arstexnica as the
class used in the export, by indicating the directive
#+LATEX_CLASS: in the .org file:

#+LATEX_CLASS: arstexnica

However, this is not enough. We need to con-
figure org-latex-classes to add the arstexnica
class; recall the triad:
(class-name start-of-preamble segmentation-elements)

The Lisp command for ~/.emacs is therefore:
(with-eval-after-load ’ox-latex
(add-to-list ’org-latex-classes
’("arstexnica" "\\documentclass{arstexnica}"

("\\section{%s}" . "\\section{%s}")
("\\subsection{%s}" . "\\subsection{%s}")
("\\subsubsection{%s}" . "\\subsubsection{%s}")
("\\paragraph{%s}" . "\\paragraph*{%s}")
("\\subparagraph{%s}" . "\\subparagraph*{%s}"))))

Already at this point, an export from .org
allows a good view of the article. However, the
produced file does not exactly reflect the example
name.tex present in the kit. The preamble of the
article generated by ORG-mode is different from that
of ArsTEXnica. To make it the same, we need to
configure some Emacs variables.

The main model of an ArsTEXnica article, con-
tained in the name.tex file of the kit, has a funda-
mental difference from the ORG-mode model: it sup-
ports compilation with different typesetting engines
for LATEX, namely pdfLATEX, X ELATEX, or LuaLATEX.

The code that specifies this behavior is this:
1 \ifbool{PDFTeX}{%
2 \usepackage[T1]{fontenc}
3 \usepackage[utf8]{inputenc}
4 \usepackage[english, italian]{babel}
5 }{\ifbool{XeTeX}{%
6 \usepackage{polyglossia}
7 \setmainlanguage[babelshorthands]{italian}
8 \PolyglossiaSetup{italian}{indentfirst=false}
9 \setotherlanguage{english}

14 Editor’s note: The original Italian article was prepared
in ORG, while this translated version for TUGboat was not.
We felt this real-world adaptation to a journal’s requirement
was still valuable to present.

10}{\ifbool{LuaTeX}{%
11\usepackage{polyglossia}
12\setmainlanguage[babelshorthands]{italian}
13\PolyglossiaSetup{italian}{indentfirst=false}
14\setotherlanguage{english}
15}{%
16\ArsTeXnicaError\endinput
17}
18}
19}
20

21\usepackage{cochineal}
22\ifbool{PDFTeX}{%
23\usepackage[varqu,varl,var0]{inconsolata}
24}{%
25\fontspec[StylisticSet={1,2,3},
26Scale=MatchLowercase]{inconsolata}
27}
28\usepackage[scale=.9,type1]{cabin}
29\usepackage[cochineal,vvarbb]{newtxmath}
30\usepackage[cal=boondoxo]{mathalfa}
31

32\usepackage{microtype}
33\usepackage{natbib}
34\usepackage{graphicx}
35\usepackage{hyperref}

Listing 1: The preamble of the template file of an
article for ArsTEXnica, present in the kit for authors

In the two blocks on lines 1–19 and 21–27 three
cases are given:

1. If the engine is pdfLATEX, the packages used
are fontenc, inputenc, and babel for language
management, as well as, specified in the second
part (line 25), the fixed-pitch font inconsolata.

2. If the engine is X ETEX or LuaTEX, polyglossia
is used for language management. (The fontenc
and inputenc packages are not needed.) Fur-
thermore, the font inconsolata is loaded and
its characteristics specified with the \fontspec
command (lines 25–26).

3. If the engine is none of these three, an error is
given with \ArsTeXnicaError, and the typeset-
ting stops.
In the next part of the preamble (lines 28–35),

other packages are loaded, of which only graphicx
and hyperref are already present in the preamble
generated by ORG-mode.

The code produced by ORG-mode does not han-
dle this switch between typesetting engines. Two
choices can be made:

1. Assuming that the journal only uses pdfLATEX
for typesetting, you may leave the ORG-mode
configurations as they are and insert the miss-
ing packages (cochineal, inconsolata, cabin,
newtxmath, mathalfa, microtype, and natbib)

Emmanuele F. Somma

TUGboat, Volume 44 (2023), No. 3 417

with #+LATEX_HEADER: directives at the begin-
ning of the .org file. It’s the simpler choice.

2. We may try to completely replicate the file
name.tex.
We will choose the second option. To achieve

the desired result, we will add the entire preamble of
the main ArsTEXnica file to the global configuration
of the translation of the arstexnica class; disabling
the default and additional packages in ORG-mode,
but not the [EXTRA] ones.

In addition to this, both the matter of the dou-
ble abstract, Italian/English, and the definition of
the bibliographic style relating to natbib must be
managed directly within the .org file.

Finally, some details will need to be resolved,
such as the correct typesetting of the ArsTEXnica
name and the employment of some useful macros.

So, the redefinition of the org-latex-classes
variable becomes a bit more complex, adding a long
string constant with the ArsTEXnica preamble (re-
formatted slightly for TUGboat):

1 (with-eval-after-load ’ox-latex
2 (add-to-list ’org-latex-classes
3 ’("arstexnica"
4 "\\documentclass{arstexnica}
5 [NO-DEFAULT-PACKAGES]
6 [NO-PACKAGES]
7 % The following code allows the use of any type-
8 % setting engine among pdfLaTeX, XeLaTeX, or LuaLaTeX.
9 % Please, don’t change the preamble unless it is

10 % strictly necessary. You can add other languages or
11 % fonts if it is required by the subject of the paper.
12 % Other customizations should be added to the files
13 % ‘\\jobname-package.tex’ and ‘\\jobname-command.tex’.
14 %
15 \\ifbool{PDFTeX}{%
16 \\usepackage[T1]{fontenc}
17 \\usepackage[utf8]{inputenc}
18 \\usepackage[english, italian]{babel}
19 }{\\ifbool{XeTeX}{%
20 \\usepackage{polyglossia}
21 \\setmainlanguage[babelshorthands]{italian}
22 \\PolyglossiaSetup{italian}{indentfirst=false}
23 \\setotherlanguage{english}
24 }{\\ifbool{LuaTeX}{%
25 \\usepackage{polyglossia}
26 \\setmainlanguage[babelshorthands]{italian}
27 \\PolyglossiaSetup{italian}{indentfirst=false}
28 \\setotherlanguage{english}
29 }{%
30 \\ArsTeXnicaError\\endinput
31 }
32 }
33 }
34

35 \\usepackage{cochineal}
36 \\ifbool{PDFTeX}{%
37 \\usepackage[varqu,varl,var0]{inconsolata}

38}{%
39\\fontspec[StylisticSet={1,2,3},
40Scale=MatchLowercase]{inconsolata}
41}
42\\usepackage[scale=.9,type1]{cabin}
43\\usepackage[cochineal,vvarbb]{newtxmath}
44\\usepackage[cal=boondoxo]{mathalfa}
45\\usepackage{microtype}
46\\usepackage{natbib}
47\\usepackage{graphicx}
48\\usepackage{hyperref}
49[EXTRA]
50"
51("\\section{%s}" . "\\section{%s}")
52("\\subsection{%s}" . "\\subsection{%s}")
53("\\subsubsection{%s}" . "\\subsubsection{%s}")
54("\\paragraph{%s}" . "\\paragraph*{%s}")
55("\\subparagraph{%s}" . "\\subparagraph*{%s}"))))

In practice, the first part of the name.tex file
has been moved here, while disabling the addition
of the default packages via lines 5 and 6. Now, the
generation of the .tex file by ORG-mode, for the
arstexnica class, will exactly replicate the pream-
ble of the name.tex file, except for what will be
explained later.

A.2 Double abstract

ArsTEXnica has a double abstract, presenting the
abstract in two languages, Italian and English. Once
the first abstract has been defined, two strategies
can be used directly inside the .org file. The first
involves inserting everything necessary for the second
abstract in English in a specific EXPORT block for
LATEX.
#+BEGIN_EXPORT latex

\begin{otherlanguage}{} % Second language
\begin{abstract}
In writing academic ...
\end{abstract}
\end{otherlanguage}

#+END_EXPORT

The main drawback of this strategy is that the
text inserted in the abstract will not be processed by
ORG-mode but copied as is. Therefore, any markup
will not be transformed, for example, emphasis or
representation of the LATEX logo, and must be ex-
pressed directly in LATEX markup.

The alternative is not to use an EXPORT block,
but to include the second block of abstracts between
two LATEX command lines that open and close the
otherlanguage environment, like this:
#+LATEX: \begin{otherlanguage}{english}
#+BEGIN_ABSTRACT
In writing academic ...
#+END_ABSTRACT
#+LATEX: \end{otherlanguage}

Simplifying LATEX with ORG-mode in Emacs

418 TUGboat, Volume 44 (2023), No. 3

In this case, the content of the second ABSTRACT
block will also benefit from the ORG markup trans-
formation.

A.3 Macros and ArsTEXnica, the logo

The correct typesetting of the ArsTEXnica logo is a
detail that could not be overlooked. It was also the
hardest thing to do.

An easier solution would have involved using
the LATEX command directly in the .org source, or
using the #+MACRO: directive, but this would have
meant having to write in the text ’\ArsTeXnica{} in
the first case or {{{ArsTeXnica()}}} in the second.
Horrible!

For those macros that “are often used when
talking about the TEX system” [8, p. 4] like \pkgname,
\clsname, \optname, and so on, it can be useful to
define ORG-mode macros using #+MACRO:, as in:

#+MACRO: envname @@latex:\envname{$1}@@

and then use them with {{{envname(verbatim)}}}.
This approach would make sense if the aim was

to obtain a document that could also be typeset
in other backends besides LATEX, in which case the
ORG macro would have to be changed by inserting
alternatives for each backend. For example, to be
able to handle HTML as well, we could do something
like this (except all on one line):

#+MACRO: envname @@latex:\envname{$1}
#@@@@html:<b class="envname">$1@@

and then define suitable CSS for the envname class,
possibly with a common representation mode for
all environment names. In this case, the increased
complexity in the use of the macro would be justified.

However, this article is only intended for delivery
in LATEX format to ArsTEXnica, so the best choice is
to directly use LATEX macros in the .org source. To
get an environment name like verbatim, we’d like
to write \envname{verbatim}, just like in LATEX.

But for the ArsTEXnica logo, a different ap-
proach will be taken, even only to demonstrate why
the open source approach and Lisp programming
make Emacs a superior editor, adaptable to the user’s
needs down to the smallest detail [6, 13, 15].

It should be noted that the text strings LaTeX
and TeX present in the .org source are automatically
transformed by the LATEX backend into their equiva-
lent LATEX command, i.e. \LaTeX{} and \TeX{}. We
want to get the same result with ArsTeXnica as well.

Unfortunately, this operation is not immediate
or configurable in any way, because it is performed
by a non-customizable Lisp function. We have to
modify the programming of the ox-latex.el library.

Here the flexibility of the Lisp language comes
to our aid. It is an interpreted environment where a
function can be replaced simply by redefining it.

With a little research in the source code of the
ORG-mode libraries, it turns out that the responsi-
ble function is org-latex-plain-text as defined in
ox-latex.el. Its definition is this:

1(defun org-latex-plain-text (text info)
2"Transcode a TEXT string from Org to LaTeX.
3TEXT is the string to transcode. INFO is a plist
4holding contextual information."
5(let* ((specialp (plist-get info
6:with-special-strings))
7(output
8;; Turn LaTeX into \LaTeX{}
9;; and TeX into \TeX{}.
10(let ((case-fold-search nil))
11(replace-regexp-in-string
12"\\<\\(?:La\\)?TeX\\>" "\\\\\\&{}"
13;; Protect ^, ~, %, #, &, $, _, { and }.
14;; Also protect \. However, if
15;; special strings are used, be careful
16;; not to protect "\" in "\-" constructs.
17(replace-regexp-in-string
18(concat "[%$#&{}_~^]\\|\\\\"
19(and specialp "\\([^-]\\|$\\)"))
20(lambda (m)
21(cl-case (string-to-char m)
22(?\\ "$\\\\backslash$\\1")
23(?~ "\\\\textasciitilde{}")
24(?^ "\\\\^{}")
25(t "\\\\\\&")))
26text)))))
27;; Activate smart quotes. Be sure to provide
28;; original TEXT string since OUTPUT may have
29;; been modified.
30(when (plist-get info :with-smart-quotes)
31(setq output (org-export-activate-smart-quotes
32output :latex info text)))
33;; Convert special strings.
34(when specialp
35(setq output (replace-regexp-in-string
36"\\.\\.\\." "\\\\ldots{}"
37output)))
38;; Handle break preservation if required.
39(when (plist-get info :preserve-breaks)
40(setq output (replace-regexp-in-string
41"\\(?:[\t]*\\\\\\\\\\)?[\t]*\n"
42(concat org-latex-line-break-safe
43"\n")
44output nil t)))
45;; Return value.
46output))

This is a translation function that transforms the
basic text from ORG markup to LATEX, limited to some
elements that cannot be expressed as they are; among
other things, it translates TeX and LaTeX. So this is
the right place to transform ArsTeXnica as well.

Emmanuele F. Somma

TUGboat, Volume 44 (2023), No. 3 419

We need to change the regular expression on line
10 of the previous listing where the matching regular
expression ("\\<\\(?:La\\)?TeX\\>") captures the
string TeX, possibly preceded by La, and replaces
it with the replacement pattern ("\\\&{}"), i.e. it
prefixes the recognized string with a \, followed by
the string captured in the parser, denoted as \&, fi-
nally followed by the opening and closing braces (i.e.,
changing LaTeX to \LaTeX{}). The backslashes of
the replacement pattern must, in turn, be protected
with a backslash so the definitive pattern, present at
the end of line 10 in the listing, will have as many as
six backslashes in sequence: "\\\\\\&{}". Besides
the many parentheses, these trains of backslashes are
one of the least appreciated features of the Emacs
Lisp language.

To also match ArsTeXnica, we need to modify
the matching regular expression in this way:
"\\<\\(?:La\\|Ars\\)?TeX\\(nica\\)?\\>"

At this point, we may as well also add the other
acronyms defined in the arsacro.sty file included
in the ArsTEXnica kit by completing the table:
String Formatted with string Formatted with
ORG-mode in ORG-mode LATEX macro

(e.g. TeX) (e.g. \TeX)
TeX TEX TEX
LaTeX LATEX LATEX
ArsTeXnica ArsTEXnica ArsTEXnica
PCTeX PCTEX PC TEX
pcTeX pcTEX pcTEX
pdfTeX pdfTEX pdfTEX
pdfLaTeX pdfLATEX pdfLATEX
PiC PIC PIC
PiCTeX PICTEX PICTEX
plain plain plain
SliTeX SliTEX SliTEX

The final regular expression will then be (except
written on one line):

"\\<\\(?:La\\|Ars\\|pc\\|PC\\|pdf\\|pdfLa\\|PiC
\\|Sli\\)?TeX\\(nica\\)?\\|plain\\|PiC\\>"

The problem is that there is no way to in-
sert this regular expression change into the org-
latex-plain-text function; we must completely re-
place this function, by redefining it with the new
regular expression, and including it for example
in the initial Emacs configuration file (~/.emacs).
Even better will be to define an Emacs customiza-
tion variable, with a meaningful name (let’s say
org-latex-plain-subs-regexp) and insert this var-
iable in the new function, so that it can be subse-
quently configurable by the user.
; the concat is due to TUGboat’s column width.
(defcustom org-latex-plain-subs-regexp (concat

"\\<\\(\\(?:La\\|Ars\\|pc\\|PC\\|pdf\\|pdfLa\\|PiC"
"\\|Sli\\)?TeX\\(nica\\)?\\|plain\\|PiC\\)\\>")

"Regular expression that recognizes strings to be
transformed into LaTeX commands."

:group ’org-export-latex
:type ’(string :tag "Regular Expression")
:safe #’stringp)

The new function to insert in the ~/.emacs file is
therefore just the same as presented on the previous
page, except line 12 now uses our new variable:

...
(replace-regexp-in-string

12org-latex-plain-subs-regexp
"\\\\\\&{}"

...

Now, in the .org source, it will be possible to
use ArsTeXnica to obtain ArsTEXnica.

The last problem is that there is no LATEX macro
called \ArsTeXnica since the kit only defines the
command \Ars. At this point, as recommended by
the guidelines [8, p. 5], you can add a definition
(either in the preamble or directly in the .org file
with a #+LATEX_HEADER: directive):

#+LATEX_HEADER: \let\ArsTeXnica\Ars

A.4 Last details: hyperref and the article
environment

One of the small problems with ORG-mode’s stan-
dard export algorithm is the automatic creation of
the PDF file metadata definition in the \hypersetup
command, which must not be defined for delivery to
ArsTEXnica:

\hypersetup{
pdfauthor={Emmanuele F. Somma},
pdftitle={Emacs ORG-Mode, LaTeX (and ArsTeXnica)},
pdfkeywords={Emacs ORG LaTeX typesetting },
pdfsubject={An article for ArsTeXnica },
pdfcreator={Emacs 28.2 (Org mode 9.5.5)},
pdflang={Italian}}

The org-latex-hyperref-template variable
must therefore be set to nil. It can be done also
directly in the .org file using the #+BIND: directive:

#+BIND: org-latex-hyperref-template nil

Finally, all the article text must be enclosed by
an article environment, which is specific to Ars-
TEXnica. To handle this, we can use two #+LATEX:
directives, one at the beginning and one at the end
of the text.

#+LATEX: \begin{article}
...
#+LATEX: \end{article}

Simplifying LATEX with ORG-mode in Emacs

420 TUGboat, Volume 44 (2023), No. 3

A.5 And finally. . . the delivery

After all the revisions and checks, when the moment
of delivery arrives, one wonders: “Now, what to
deliver?”

Currently, ArsTEXnica does not accept .org
sources: we therefore need to generate the LATEX
source with C-c C-e l l and include it together
with all necessary additional elements, such as the
images, in a zip package and finally deliver it to the
editorial and peer-review process.

Done! Happy peer review. . . and happy reading
to all.15

References
[1] A. Babenhauserheide. Tutorial: Writing

papers for ACPD using Emacs Org-mode.
www.draketo.de/files/howto-write-for-acpd-
with-emacs.pdf, 2014.

[2] H. Bar, H. Wang. Reproducible Science with
LATEX. Journal of Data Science, 19(1):111–125,
2021. arxiv.org/abs/2010.01482, doi.org/10.
6339/21-JDS998

[3] M. Borkowski. TEXing in Emacs. TUGboat 39(1),
2018. tug.org/TUGboat/tb39-1/tb121borkowski-
emacs.pdf

[4] M. Fruchart, B. Guinhouya, et al. Jupyter
Notebooks for introducing data science to
novice users. Studies in Health Technology and
Informatics, 294:823–824, 2022. doi.org/10.3233/
shti220598

[5] M. Giordano, O. Iovino, M. Leccardi. Guida
pratica all’uso di GNU Emacs e AUCTEX. GuIT,
2013. github.com/GuITeX/guidaemacsauctex

[6] B. Glickstein. Writing GNU Emacs Extensions:
Editor Customizations and Creations with Lisp.
O’Reilly Media, Inc., 1997.

[7] J. Gruber. Markdown: Syntax, 2004.
daringfireball.net/projects/markdown/syntax

[8] GuIT. Istruzioni per gli autori, 2022.
guitex.org/home/en/for-authors

[9] D.E. Knuth. Literate programming.
The Computer Journal, 27(2):97–111, 1984.
doi.org/10.1093/comjnl/27.2.97

[10] D.E. Knuth, S. Levy. The CWEB System of
Structured Documentation. Addison-Wesley
Professional, 1993. www-cs-faculty.stanford.
edu/~knuth/cweb.html

[11] A. Leha, T. Beißbarth. The Emacs Org-mode:
Reproducible research and beyond. In The R
User Conference, useR! 2011 August 16-18 2011
University of Warwick, Coventry, UK, p. 28,
2011. www.r-project.org/conferences/useR-
2011/abstracts/010411-lehaandreas.pdf

15 The .org code of this article is available on the repository
gitlab.com/exedre/arstexnica-orgmode.

[12] S. Leonard. Guidance on Markdown: Design
philosophies, stability strategies, and select
registrations. RFC 7764, IETF, Mar 2016.
www.rfc-editor.org/rfc/rfc7764.txt

[13] B. Lewis, D. LaLiberte, et al. GNU Emacs Lisp
Reference Manual. Free Software Foundation, 1997.
gnu.org/s/emacs/manual/html_node/elisp

[14] T. Mailund. Introducing Markdown and Pandoc:
Using Markup Language and Document Converter.
Apress, 2014.
doi.org/10.1007/978-1-4842-5149-2

[15] S. Monnier, M. Sperber. Evolution of
Emacs Lisp. Proceedings of the ACM on
Programming Languages, 4(HOPL):1–55, 2020.
doi.org/10.1145/3386324

[16] Org-mode contributors. Org mode tools, 2022.
orgmode.org/worg/org-tools/

[17] C. Schöch. The right tool for the job: Five
collaborative writing tools for academics,
4 April 2014. Impact of Social Sciences Blog.
blogs.lse.ac.uk/impactofsocialsciences/
2014/04/04/five-collaborative-writing-
tools-for-academics/

[18] E. Schulte, D. Davison. Active documents with
Org-mode. Computing in Science & Engineering,
13(3):66–73, 2011.
doi.org/10.1109/MCSE.2011.41

[19] E. Somma. Il respawn di Infomedia (LATEX-based).
ArsTEXnica, (8):92–101, Ottobre 2009.
guitex.org/home/numero-8

[20] R.M. Stallman. Emacs: The extensible,
customizable self-documenting display editor.
In SIGPLAN SIGOA Symposium on Text
Manipulation, 1981.
doi.org/10.1145/872730.806466

[21] L. Stanisic, A. Legrand, V. Danjean. An
effective Git and Org-mode based workflow for
reproducible research. ACM SIGOPS Operating
Systems Review, 49(1):61–70, 2015.

[22] J. Voegler, J. Bornschein, G. Weber. Markdown –
A simple syntax for transcription of accessible
study materials. In Computers Helping People
with Special Needs: 14th International Conference,
ICCHP 2014, Paris, France, July 9-11, 2014,
Proceedings, Part I, pp. 545–548. Springer, 2014.
doi.org/10.1007/978-3-319-08596-8_85

[23] J.J. White. Using markup languages for accessible
scientific, technical, and scholarly document
creation. Journal of Science Education for Students
with Disabilities, 25(1):22 pp., 2022. Article 5.
scholarworks.rit.edu/jsesd/vol25/iss1/5/

⋄ Emmanuele F. Somma
Bank of Italy
Economics, Statistics and Research
Structural Economic Analysis
ef dot somma (at) exedre dot org

Emmanuele F. Somma

https://www.draketo.de/files/howto-write-for-acpd-with-emacs.pdf
https://www.draketo.de/files/howto-write-for-acpd-with-emacs.pdf
https://arxiv.org/abs/2010.01482
https://doi.org/10.6339/21-JDS998
https://doi.org/10.6339/21-JDS998
https://tug.org/TUGboat/tb39-1/tb121borkowski-emacs.pdf
https://tug.org/TUGboat/tb39-1/tb121borkowski-emacs.pdf
https://doi.org/10.3233/shti220598
https://doi.org/10.3233/shti220598
https://github.com/GuITeX/guidaemacsauctex
https://daringfireball.net/projects/markdown/syntax
https://guitex.org/home/en/for-authors
https://doi.org/10.1093/comjnl/27.2.97
https://www-cs-faculty.stanford.edu/~knuth/cweb.html
https://www-cs-faculty.stanford.edu/~knuth/cweb.html
https://www.r-project.org/conferences/useR-2011/abstracts/010411-lehaandreas.pdf
https://www.r-project.org/conferences/useR-2011/abstracts/010411-lehaandreas.pdf
https://gitlab.com/exedre/arstexnica-orgmode
https://www.rfc-editor.org/rfc/rfc7764.txt
https://gnu.org/s/emacs/manual/html_node/elisp
https://doi.org/10.1007/978-1-4842-5149-2
https://doi.org/10.1145/3386324
https://orgmode.org/worg/org-tools/
https://blogs.lse.ac.uk/impactofsocialsciences/2014/04/04/five-collaborative-writing-tools-for-academics/
https://blogs.lse.ac.uk/impactofsocialsciences/2014/04/04/five-collaborative-writing-tools-for-academics/
https://blogs.lse.ac.uk/impactofsocialsciences/2014/04/04/five-collaborative-writing-tools-for-academics/
https://doi.org/10.1109/MCSE.2011.41
https://guitex.org/home/numero-8
https://doi.org/10.1145/872730.806466
https://doi.org/10.1007/978-3-319-08596-8_85
https://scholarworks.rit.edu/jsesd/vol25/iss1/5/

	Introduction
	Brief comparison among markups
	Integration with Emacs
	ORG for LaTeX
	Document options
	Element attributes

	External and internal links and element identification
	Some important block types
	LaTeX inside ORG markup
	Mathematics
	Tables
	Footnotes
	Bibliographies and references
	Conclusions: why to use or not use ORG-mode
	Using ORG-mode with ArsTeXnica
	arstexnica class
	Double abstract
	Macros and ArsTeXnica, the logo
	Last details: hyperref and the article environment
	And finally… the delivery

