
A pattern from the Alhambra

Laurence Finston

Abstract

This article demonstrates the use of GNU 3DLDF

for creating graphics based on a pattern from the
Alhambra, a complex of fortifications and palaces
outside Granada, Spain. It explains and demon-
strates how to create a perspective drawing using
3DLDF and the technique of color replacement.

Introduction

The Alhambra is a complex of fortifications and
palaces outside Granada, Spain, built from 1238 into
the early 17th century, whereby the era of Islamic
architecture there, as in the rest of Spain, ended in
1492 with the completion of the Reconquista. It is
one of the world’s best known architectural monu-
ments and famous for its elaborate ornamentation in
the Islamic style, often based on plane tessellations
and periodic tilings, which have inspired many ar-
chitects, designers and artists, notably M.C. Escher,
the incomparable modern master of this métier.

Beginning in 1842, Owen Jones began publish-
ing the monumental work Plans, Elevations, Sec-
tions and Details of the Alhambra, based on work
he had done together with Jules Goury, who died
of cholera during their stay at the Alhambra. Pub-
lished in installments, this work has the distinction
of being the first “significant” one to use the process
of chromolithography for color reproduction [16].

Figure 1 shows Plate XLIX, No. 85, Mosaic in
the Divan, Court of the Fishpond, from Goury and
Jones, Vol. 2 [10]. It shows a single rapport of the
pattern, so the latter is clearly unusually complex.

Figure 2 shows a version of this pattern which
I created using GNU 3DLDF and GIMP with color
replacement (explained below).

Plane tessellations

“A tessellation or tiling is the covering of a surface,
often a plane, using one or more geometric shapes,
called tiles, with no overlaps and no gaps.” [17]

Of the regular polygons, only three can form a
plane tessellation, the equilateral triangle, the square
and the regular hexagon (figures 3, 4, and 5 on the
following page).

The pattern in question, referred to in the follow-
ing as pattern 207, is based on the familiar “honey-
comb” pattern consisting of regular hexagons.

378 TUGboat, Volume 44 (2023), No. 3

Plans2 207 A3 29 Nov 2021 9:31 p.m.

Fig. 1: Plate XLIX from [10].

Fig. 2: 3DLDF version, color replaced.

doi.org/10.47397/tb/44-3/tb138finston-alhambra

Laurence Finston



Fig. 3: Plane tessellation, equilateral triangles.

Fig. 4: Plane tessellation, squares.

Fig. 5: Plane tessellation, regular hexagons.

Since each hexagon is divided into six equilateral
triangles, one may say with as much justification that
it is based on the plane tessellation using triangles. In
pattern 207, the triangles in each hexagon alternately
contain a smaller hexagon or a six-pointed star:

Fig. 6: Hexagon with inner figures.

One may thus consider such a hexagon the “ba-
sic unit” of the pattern. One way to fill the plane
would be to copy the basic unit and shift it to the
right and upward repeatedly, then to copy the orig-
inal unit downward and repeat the procedure. If,
however, we consider the “basic unit” to be two
hexagons as shown in figure 7, then the plane may be

TUGboat, Volume 44 (2023), No. 3 379

filled using only translations (shifts) in the horizon-
tal and vertical directions, which is more convenient
from the point of view of programming.

Fig. 7: Basic unit of the pattern.

In the hexagons in pattern 207, the straight
edges of figure 6 have been replaced by undulat-
ing curves. However, since they are symmetrical,
they don’t affect the plane-filling property of the
tessellation.

In the 3DLDF program, the curve is specified in
this way:

point Z[]; path hex[];

for i = 0 upto 5:

Z[i] := (2cm, 0) rotated (0, 0, i*60);

endfor;

path p[]; [...]

for i := .25 step .25 until .75:

Z[6+j] := mediate(Z2, Z1, i) shifted (0, k*m);

j += 1;

m -= 1;

endfor;

p0 := Z2 .. {dir 0}Z6{dir 0} .. Z7

.. {dir 0}Z8{dir 0} .. Z1;

This code would be similar in METAPOST ex-
cept that the mediation operator [] would be used

Z1Z2
Z6 Z7 Z8

Fig. 8: Hexagon with wavy edges.

A pattern from the Alhambra



instead of 3DLDF’s mediate command. [] doesn’t
exist in 3DLDF because it would cause conflicts in
the Bison parser [8].

The direction specifiers used to define p0 work
fine when the drawing is projected onto the x-y plane,
which is, in fact, equivalent to using METAPOST in
the first place. However, they will produce erroneous
results when it is projected using the perspective
projection, for reasons explained at length in [8].
Therefore, in order to make p0 projectable, it must
be “resolved”, i.e., enough points must be added to
it along its length so that it won’t “go out of shape”
when projected using the perspective projection:

path_vector pv;

pv := resolve p0 to 80;

p0 := pv0;

Generally speaking, the more extreme the foreshort-
ening, the more points are needed. So far, 80 has
proven to be a sufficient number of points for this
drawing.

After the first two hexagons with their inscribed
figures have been drawn, they must be copied and
translated as many times as necessary to create a sin-
gle rapport, which consists of 6 rows of 4 hexagons,
offset as described above. This is fairly simple. Fol-
lowing this, they must be colored, which is not. This
task is performed by the macro tessellate, which is
defined in the file sub_alhambra_207_1.ldf, which
like all of the source files referred to in this article,
and all of the images contained in it, is included in
the distribution of 3DLDF.

For maximum flexibility, each of the paths repre-
senting the outlines of the triangles and the inscribed
figures is assigned to a variable. This makes it pos-
sible to access each one individually. For example,
the same pattern could be colored in a completely
different way. (The outlines of the outer hexagons
are not assigned to path variables.)

tessellate takes eight parameters, one for the
pen used for drawing the outlines and seven for the
colors in the pattern, including the colors for the
outlines and the background. This is the call to
tessellate for figure 9 (on the following page):

tessellate {medium_pen, black, white, blue,

teal_blue, orange, cyan_cmyk, purple};

Using parameters for the colors makes it possible to
use any combination of colors desired, and in partic-
ular, to make “masks” for color replacement, as de-
scribed below. (In the following, most of the images
have been rendered to JPEG bitmaps for ease in pro-
cessing.) tessellate draws the outlines on the picture
v6 and fills the areas of color on picture v5. Labels
are drawn on the picture v105. Again, for maximum

380 TUGboat, Volume 44 (2023), No. 3

flexibility, the paths for each individual row of tri-
angles are also drawn and filled on separate pictures
(row_picture_draw0 . . . row_picture_draw12
and row_picture_fill0 . . . row_picture_fill12).

While it is most logical to consider the rows of
the pattern as referring to the hexagons, it is more
practical from the point of view of keeping track
of locations within it for the purpose of coloring to
consider the rows as referring to the triangles. Seen
in this way, there are thus 12 rows in a rapport, offset
to one another horizontally, but not vertically.

Creating a picture for each row of triangles
makes it possible to use the pattern in drawings
without necessarily using only complete rapports or
having to clip the picture.

Color in 3DLDF

Color in 3DLDF works similarly to color in META-
POST, but there are a few differences. In META-
POST, color (i.e., (rgb)color and cmykcolor) are
two different types; it’s not possible to assign a value
of one type to a variable of the other. In addition,
“greyscale” colors are specified using numeric ex-
pressions. There is no type greyscalecolor.

In 3DLDF, there is only one type, namely color,
for all three kinds of color and variables of this type
can take on RGB, CMYK and greyscale values freely.
All color objects contain all of the following “parts”:

red_part green_part blue_part

cyan_part magenta_part yellow_part black_part

grey_part

In METAPOST, the spelling “grey” is mostly
used rather than “gray”. I prefer the spelling “gray”,
so it is used in 3DLDF except where consistency with
METAPOST is desirable, e.g., grey_part. However,
both spellings may be used for all commands and
keywords in 3DLDF, since synonyms are defined for
them all.

color c[];

c0 := (.5, .5, 0); % RGB

show c0;

>>

color:

name == c[0]

type == 3 (RGB_COLOR)

red_part == 0.50000000

green_part == 0.50000000

blue_part == 0.00000000

cyan_part == 0.00000000

magenta_part == 0.00000000

yellow_part == 0.00000000

black_part == 0.00000000

grey_part == 0.00000000

Laurence Finston



Z0

Z1

Z2

Z3

Z4
Z5

p6
Z10

p11
Z21

p12
Z29

p13
Z30

p14
Z31

p15
Z32

p21

p22
p23

p24
p25

p26

d60
p66

d61
p67

d62
p68

d63
p69

d64
p70

d65

p71

Z60

Z61

Z64
Z65

p60
p61

p62

p63
p64

p65

Z70

Z73

Z74
Z75

p82
Z82

p83
Z83

p84
Z84

p92

p93
p94

Z90

Z91
Z92

Z93

Z94 Z95

p100
Z100

p101
Z101

p102
Z102

p103
Z103

p104
Z104

p105
Z105

p110

p111
p112

p113
p114

p115

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Col. 1 Col. 2 Col. 3 Col. 4

p120
Z120

p121
Z121

p122
Z122

p123
Z123

p124
Z124

p125
Z125

p130

p131
p132

p133
p134

p135Z106

Z107

Z108

p140
Z140

p141
Z141

p142
Z142

p143
Z143

p144
Z144

p145
Z145

Z147 Z148

Z149

p150

p151
p152

p153

p154
p155

Z162

Z163

Z164

p162

p163

p164

Z166

Z167p172

p173

p174

Z180

p180

Z181

p181

Z182

p182

Z183

p183

Z184

p184

Z185

p185

Z186

Z187

p190

p191

p192

p193

p194

p195

Z206

Z207

Z200

p200

Z201

p201

Z202

p202

Z203

p203

Z204

p204

Z205

p205

p210

p211
p212

p213

p214

p215

Z226

Z227

Z228

Z220

p220

Z221

p221

Z222

p222

Z223

p223

Z224

p224

Z225

p225

p230

p231
p232

p233

p234

p235

Z246

Z247
Z248

Z240

p240

Z241

p241

Z242

p242

Z243

p243

Z244

p244

Z245

p245

p250

p251
p252

p253

p254

p255

Z266
Z267

Z260

p260

Z261

p261

Z262

p262

Z263

p263

Z264

p264

Z265

p265

p270

p271
p272

p273

p274

p275

Z286 Z287

Z280

p280

Z281

p281

Z282

p282

Z283

p283

Z284

p284

Z285

p285

p290

p291
p292

p293

p294

p295

Z306
Z307

Z308

Z300

p300

Z301

p301

Z302

p302

Z303

p303

Z304

p304

Z305

p305

p310

p311
p312

p313

p314

p315

Z326
Z327

Z328

Z320

p320

Z321

p321

Z322

p322

Z323

p323

Z324

p324

Z325

p325

p330

p331
p332

p333

p334

p335

Z346
Z347

Z340

p340

Z341

p341

Z342

p342

Z343

p343

Z344

p344

Z345

p345

p350

p351
p352

p353

p354

p355

Z366 Z367

Z360

p360

Z361

p361

Z362

p362

Z363

p363

Z364

p364

Z365

p365

p370

p371
p372

p373

p374

p375

Z386
Z387

Z388

Z380

p380

Z381

p381

Z382

p382

Z383

p383

Z384

p384

Z385

p385

p390

p391
p392

p393

p394

p395

Z406

Z407

Z408

Z400

p400

Z401

p401

Z402

p402

Z403

p403

Z404

p404

Z405

p405

p410

p411
p412

p413

p414

p415

Z426 Z427

Z420

p420

Z421

p421

Z422

p422

Z423

p423

Z424

p424

Z425

p425

p430

p431
p432

p433

p434

p435

Z446 Z447

Z440

p440

Z441

p441

Z442

p442

Z443

p443

Z444

p444

Z445

p445

p450

p451
p452

p453

p454

p455

Z466

Z467

Z468

Z460

p460

Z461

p461

Z462

p462

Z463

p463

Z464

p464

Z465

p465

p470

p471
p472

p473

p474

p475

Z486

Z487 Z488

Z480

p480

Z481

p481

Z482

p482

Z483

p483

Z484

p484

Z485

p485

p490

p491
p492

p493

p494

p495

Z506 Z507

Z500

p500

Z501

p501

Z502

p502

Z503

p503

Z504

p504

Z505

p505

p510

p511
p512

p513

p514

p515

Z520

p520

Z521

p521
Z525

p525

p530

p531
p535 Z548

Z540

p540

Z541

p541
Z545

p545

p550

p551
p555

Z71Z72

p80
Z80

p81
Z81

p85
Z85

p90

p91
p95

Z160

Z161 Z165

p160

p161 p165

Z168Z169 p170

p171
p175

Z526
Z527

Z522

p522

Z523

p523

Z524

p524

p532

p533

p534

Z546 Z547

Z542

p542

Z543

p543

Z544

p544

p552

p553

p554

Fig. 9: Colored tessellation example with 3DLDF.

TUGboat, Volume 44 (2023), No. 3 381

A pattern from the Alhambra



c1 := (.2, .3, .4, .5); % CMYK

show c1;

>>

color:

name == c[1]

type == 2 (CMYK_COLOR)

red_part == 0.00000000

green_part == 0.00000000

blue_part == 0.00000000

cyan_part == 0.20000000

magenta_part == 0.30000001

yellow_part == 0.40000001

black_part == 0.50000000

grey_part == 0.00000000

c2 := .3; % Greyscale

show c2;

>>

color:

name == c[2]

type == 4 (GREYSCALE_COLOR)

red_part == 0.00000000

green_part == 0.00000000

blue_part == 0.00000000

cyan_part == 0.00000000

magenta_part == 0.00000000

yellow_part == 0.00000000

black_part == 0.00000000

grey_part == 0.30000001

When a value is assigned to a color variable,
3DLDF “automatically” recognizes what kind of color
it’s supposed to be, RGB, CMYK or greyscale and
the “parts” are set accordingly. If subsequently a
value of a different type is assigned to it, it will take
on the new type.

A single numeric value is used to specify a
grayscale color, a 〈numeric list〉 with three elements
specifies an RGB color and one with four elements,
a CMYK color.

While 3DLDF and METAPOST support RGB

and CMYK colors and there are other color models
supported by other software, ultimately colors will
be converted to the model required by the device
that displays or prints them. Generally speaking,
computer displays require RGB and printers CMYK.
Please note that conversion is not perfect, nor can
it be. Often the results are good, but sometimes
the colors don’t match well at all. It seems this
occurs most often when CMYK containing a non-
zero black_part is converted to RGB.

In addition, I have found that it doesn’t work
at all to import images from 3DLDF or METAPOST

containing CMYK colors into the video editing soft-
ware Flowblade for animations: they are simply not
displayed. For this purpose, RGB colors must be
used instead.

382 TUGboat, Volume 44 (2023), No. 3

Color reproduction.
RGB colors. The topics of color in general and

color reproduction in particular are complex and it
is beyond the scope of this article to discuss them in
detail. In short, red, green and blue are the primary
colors for additive mixing and cyan, magenta and
yellow are the primary colors for subtractive mix-
ing. Additive mixing applies to light and subtractive
applies to pigments that absorb light selectively.

Computer displays that could display red, green
and blue and mix these colors were finally made
possible by the invention of the blue LED. Before this
time, the only form of additive mixing in general use
was with theatrical gels (i.e., filters) and spotlights.
White light, or more accurately, light which the
human eye perceives as white, results from mixing
red, green and blue light.

The pixels on a computer display, each of which
consists of a triplet of tiny LEDs, one red, one green
and one blue, do the same thing, but on a much
smaller scale and at a much lower intensity.

Mixing red and green light produces yellow,
red and blue magenta and green and blue cyan, so
yellow, magenta and cyan are the RGB secondaries
in addition to being the CMYK primaries.

CMYK colors. Schoolchildren are taught that
the primary colors are red, blue and yellow and that
mixing red and blue produces purple (violet), red and
yellow produces orange and blue and yellow produces
green. This isn’t wrong, but the colors used (at least
when I was in elementary school) are somewhat “off”
compared to what is now considered correct.

Mixing any red and blue paints will produce a
purplish color and the same applies to the other com-
binations. All of the possible combinations of a given
set of a single red, blue and yellow paint, respectively,
will produce a “color space”. It has been determined,
theoretically and/or by experiment, that the largest
possible color space under real-world constraints can
be achieved by using the colors cyan, magenta and
yellow in the shades (not coincidentally) used as ink
in offset printing.

What happens in practice when mixing two pig-
ments is in effect equivalent to mixing two pure colors
and adding gray, i.e., a mixture of black and white
pigments. Since the “colorful” pigments, i.e., not
black, white or gray, are more expensive than black,
white or gray pigments, it is wasteful to use the
colorful pigments for this purpose. It is far better,
where possible, to use a pigment of the desired shade
and to add gray to it.

In addition, while it is theoretically possible to
produce black by mixing cyan, magenta and yellow,
the result is unlikely to be satisfactory and these pig-

Laurence Finston



ments are much more expensive than black, which is
often simply soot produced by burning wood (char-
coal), acetylene gas or animal bones (in the past,
scraps of ivory were also used).

For these reasons, the CMY model (which also
exists) is generally expanded to CMYK (where “K”
stands for “black”).

Since working with pigments is subject to real-
world constraints, a color space with more possible
colors and gradations of color can be achieved by
using more pigments, including for the CMYK secon-
daries and other combinations. There are pigments
that have shades that are not reproducible by mixing
other pigments.

The use of CMYK in offset printing and in laser
and inkjet printers is called a “four-color” process.
There are also seven-color and eight-color processes
which use additional pigments for the sake of better
color reproduction.

Built-in RGB colors. These RGB colors are built-
in, i.e., they are defined within the C++ code for
3DLDF (in the file sctpcrt.web):

black white

red green blue

pink

yellow cyan magenta

orange violet purple

yellow_green green_yellow dark_green

blue_violet violet_red

brown

gray light_gray dark_gray

Additionally, grey, dark_grey and light_grey are
defined as synonyms for gray, etc.

Note that cyan, yellow and magenta are defined
as secondary RGB colors rather than primary CMYK

colors; also, violet and purple are two different colors:

show cyan;

>>

color:

name ==

type == 3 (RGB_COLOR)

red_part == 0.00000000

green_part == 1.00000000

blue_part == 1.00000000

(remaining elements zero)

show magenta;

>>

color:

name ==

type == 3 (RGB_COLOR)

red_part == 1.00000000

green_part == 0.00000000

blue_part == 1.00000000

(remaining elements zero)

TUGboat, Volume 44 (2023), No. 3 383

show yellow;

>>

color:

name ==

type == 3 (RGB_COLOR)

red_part == 1.00000000

green_part == 1.00000000

(remaining elements zero)

show violet;

>>

color:

name ==

type == 3 (RGB_COLOR)

red_part == 0.93333334

green_part == 0.50980395

blue_part == 0.93333334

(remaining elements zero)

show purple;

>>

color:

name ==

type == 3 (RGB_COLOR)

red_part == 0.62745100

green_part == 0.12549020

blue_part == 0.94117647

(remaining elements zero)

CMYK colors defined in plainldf.lmc. Numer-
ous CMYK colors are defined in the plainldf.lmc

source file, which is included in the distribution of
3DLDF. Versions of the CMYK primaries (including
black) and secondaries (which, black aside, corre-
spond exactly to the RGB secondaries and primaries):

cerulean_blue teal_blue dark_blue

dark_olive_green mauve turquoise

rose_madder lime_green

plainldf.lmc also defines RGB versions of these
colors:

cerulean_blue_rgb teal_blue_rgb dark_blue_rgb

dark_olive_green_rgb mauve_rgb turquoise_rgb

rose_madder_rgb lime_green_rgb

In addition, plainldf.lmc defines CMYK and
RGB versions of the colors defined in the color.pro

and colordvi.tex files from the Dvips distribution
(located under /usr/share/texlive in
texmf-dist/dvips/base/color.pro

texmf-dist/tex/generic/dvips/colordvi.tex

on my computer). These colors and their names
are based on the box of 64 Crayola crayons (as of
some past date). The versions from Dvips are CMYK

colors. The RGB versions defined in plainldf.lmc

have the suffix _rgb:

A pattern from the Alhambra



color GreenYellow; color GreenYellow_rgb;

color Yellow; color Yellow_rgb;

color Goldenrod; color Goldenrod_rgb;

color Dandelion; color Dandelion_rgb;

etc.

Computer-generated vs. painted colors. One
problem with filling paths with computer-generated
colors is that, leaving antialiasing (explained below)
aside for the moment, they are entirely uniform.
Neither the colors displayed on a monitor nor those
produced by an inkjet or laser printer can compare
with the appearance of fine artists’ colors on high-
quality paper. On the other hand, while they can’t
compare with the appearance of the originals either,
the results of scanning drawings and paintings and
displaying and printing them using standard office
equipment are often surprisingly good.

Since these results are also just representations
of pixels, it would, of course, be theoretically possi-
ble to simulate scanning a painted background, for
example, using the computer only. In practice, how-
ever, it is most likely easier to just scan real painted
backgrounds, since it would be difficult to program
all of the many variations in appearance that in com-
bination result in their characteristic appearance.

Figures 10 and 11 show scans of watercolor and
gouache backgrounds, respectively, which I painted.
With a few exceptions, they are in DIN A4 landscape
format (297mm × 210mm) with a 15mm margin on
each side. They have all been painted on watercolor
paper, but not all of the same kind. For most I
have used paints made by the company Schmincke
from their Horadam lines of watercolor and gouache,
respectively. Some of the gouache backgrounds were
made using paints from Schmincke’s HKS Designers’
Gouache line and a couple of the watercolors were
made using paints from the company Old Holland.
Schmincke and Old Holland are both top-of-line man-
ufacturers of artists’ colors.

In figure 2, the computer-generated colors have
been replaced by portions of a selection of these
backgrounds using GIMP.

Paint characteristics. Gouache and watercolor are
both made by combining one or more pigments with
water and a small amount of gum arabic. However,
unlike watercolor, gouache may contain additives to
make it opaque, including chalk or white pigment.
In traditional watercolor painting, translucent colors
are preferred and white paint is never used; white
areas in a watercolor painting are achieved by leaving
the paper blank. Due to the translucency of the
paint and the fact that watercolor doesn’t lie on
the surface of the paper but rather soaks into it

384 TUGboat, Volume 44 (2023), No. 3

Fig. 10: Watercolor backgrounds.

Fig. 11: Gouache backgrounds.

and stains the fibers, the structure of the paper will
normally remain visible and contribute significantly
to the total impression of the work. Watercolor
paints consist almost entirely of pigment so that the
colors are very pure. All of these factors contribute to
the luminosity that is typical of watercolor paintings.
In addition, they often reproduce extremely well.

Many techniques are possible with watercolors.
One is to use multiple layers of diluted washes to
create a glazed effect. Light colors are typically
achieved not by mixing with white, but by diluting
the paint. Accidental effects, where the pigment
concentrates in particular areas, are often desirable
in watercolors.

Gouache, in contrast, is always opaque and has
a matte surface. It doesn’t soak into the paper to any
appreciable extent but rather forms a layer on top of
it. Normally, each area of color, or each individual
brushstroke in areas containing more than one color,
is meant to be completely uniform with respect to
color and opacity. In other words, a poster-like effect,
but with a matte surface, is usually desired when
using gouache. Light colors are achieved by mixing
with white; dark colors may have to be lightened
with white or they may be virtually indistinguishable
from black.

While it is possible to dilute gouache and the
results don’t exactly look bad, there’s normally not
much point in doing this, because one might as well
just use watercolor, which, unlike gouache, is in-
tended to be used in this way.

Laurence Finston



The variations in the watercolor backgrounds
I’ve been making for this and other projects cannot
practically be achieved by using the computer. With
gouache, the situation is different. Since areas of a
single color in gouache paintings are usually intended
to be entirely uniform, theoretically, the only advan-
tage of using a gouache background is the difficulty
of discovering, inventing or stumbling upon attrac-
tive colors just by using the computer. In practice,
however, there are variations in the gouache back-
grounds and the structure of the paper sometimes
does show through, adding variability and interest
to what appears at first glance to be a solid block of
color.

Color replacement

Performing color replacement requires a number of
steps. First, the image needs to be output multiple
times so that the individual versions may be used
as masks. Figures 12 through 17 show the parts of
the pattern for each color individually with all of the
other colors replaced by gray.

These images are generated with METAPOST,
and must be imported into GIMP. METAPOST can
produce output in the form of EPS, SVG or PNG

files. It doesn’t matter which format is used, but
it is essential that the image be imported without
antialiasing. Antialiasing is a procedure whereby
the color of pixels near an edge where areas of two
different colors meet may be altered slightly in order
to improve the appearance of the edge.

However, color replacement depends on all areas
of a given color being entirely uniform, so that they
may be accessed by using GIMP’s “Select by color”
tool. When importing EPS files, at least, into GIMP

a menu appears where antialiasing can be enabled
or disabled. I usually have METAPOST output EPS

files. When generating PNG output, antialiasing can
be suppressed by using the corresponding option to
outputformatoptions. In METAPOST:

outputtemplate := "%j%3c.png";

outputformat:="png";"

outputformatoptions :=

"format=rgba antialias=none";

Or in 3DLDF:

verbatim_metapost

"outputtemplate := \"%j%3c.png\";"

& outputformat:=\"png\";"

& "outputformatoptions := "

& \"format=rgba antialias=none\";";

When the image is loaded into GIMP, it has a single
layer. First, an alpha channel (for transparency)

TUGboat, Volume 44 (2023), No. 3 385

Fig. 12: Blue mask

Fig. 13: Cyan mask.

Fig. 14: Green mask.

A pattern from the Alhambra



Fig. 15: Purple mask.

Fig. 16: Yellow mask.

Fig. 17: Outlines mask.

386 TUGboat, Volume 44 (2023), No. 3

must be added by calling the “Add alpha channel”
command in the “Layer” menu. Then the layer
is duplicated so that both a positive and negative
mask may be created. Although a single mask would
suffice, it is convenient to have two separate ones.

To make the positive mask, the blue areas are
selected by using the “Select by color” tool and click-
ing on a spot where there are only blue pixels. This
selects all of the blue pixels in the image. Then, the
selection is inverted so that all of the other portions
of the image are selected instead. These are then
made transparent by pressing the “Delete” key.

To make the negative mask, the same procedure
is followed, except that the selection isn’t inverted,
so that the blue areas are made transparent.

In order to fill the blue areas with colors from
one of the painted backgrounds, the positive mask is
made invisible by clicking on the “eye” symbol next
to the name of the layer in the listing of layers in the
GIMP window, the negative mask is duplicated and
the original negative mask is also made invisible.

Then, the desired file is opened by using the
“Open as Layers” command in the “File” drop-down
menu. It is placed behind the layer with the copy
of the negative mask and the “Merge visible layers”
command is executed. The resulting layer contains
the portions of the background image corresponding
to the blue areas of the pattern, surrounded by gray.
(Figure 18.)

Now the gray areas of this layer must be made
transparent. However, this cannot be accomplished
by simply selecting them by color: This only works
when the layer contains areas of color that are com-
pletely uniform and distinct. The painted back-
ground image is likely to contain pixels of many
different colors, including gray. If the “Select by
color” tool is used to select gray pixels, pixels within
the “blue” areas will also be selected, producing
ugly and unusable results. In addition, there is no
longer any way to select the areas where the color
replacement has taken place directly, again, because
these areas now are likely to contain pixels of many
different colors and also because the areas aren’t
contiguous. Therefore neither the “Select by color”
nor the “Fuzzy select” tool will select these areas
correctly.

To select only the gray areas in the combined
layer, first the layer with the original negative mask
must be made visible and clicked on to make it the
active layer. Then, the gray areas are selected and
the combined layer is chosen as the active layer.
When the “Delete” key is now pressed, the gray
areas on the combined layer are made transparent.

Laurence Finston



Fig. 18: Blue mask, color replaced.

When an area is selected using one layer and
the selection is used to make changes to another, the
first layer is called a “mask”.

The procedure may be varied and the steps don’t
necessarily have to be performed in exactly the order
given, but the principle remains the same and it’s
six-of-one, half-a-dozen of the other how it’s done
exactly, as long as the desired result is achieved.

Of course, it’s possible to open multiple files
containing background images as layers, combine
them with copies of the negative mask, make them
visible or invisible, use a single file to contain all of
the masks, save them in separate files, etc.

When layers have been created for all of the
masks, and with painted backgrounds replacing the
computer-generated colors in the original image, they
may be composited to form a “color replaced” image.
(Figure 19.)

The perspective projection. For the parallel pro-
jection of pattern 207 onto the x-y plane alone, there
would be no need to use 3DLDF: METAPOST would
have sufficed. For making versions of it using the
perspective projection, 3DLDF is required. Figures
20 and 21 show pattern 207 lying in the x-z plane
and projected using the perspective projection, with
the focus set as follows:

focus f;

set f with_position (5, 10, -40)

with_direction (5, 10, 10)

with_distance 45;

(The units are cm.)
Masks are created and color replacement is per-

formed in GIMP in exactly the same way as with
the version using the parallel projection, except that
clipping is performed in GIMP rather than in 3DLDF.

TUGboat, Volume 44 (2023), No. 3 387

If desired, the image may be cropped using the “Crop
to content” command in the “Image” drop-down
menu.

3DLDF implements various commands for clip-
ping, which all work by writing a call to METAPOST’s
clip 〈picture〉 to 〈path〉 operation. This works fine
for parallel projections, but for reasons (as yet) un-
beknownst to me, it does not for the perspective
projection. I plan on debugging the relevant func-
tions, although using a simple example rather than
one containing over 300 paths.

There is no particular advantage to performing
the clipping in 3DLDF (or METAPOST), especially
since clipping in METAPOST is not completely bullet-
proof: Clipping doesn’t actually remove any objects,
it just hides them. They are still present and still
affect the size of the bounding box of the image,
which is important when including the image in a
TEX file, for example. In addition, if a clipped image
is included in a PDF file (via TEX or some other way),
the areas that are supposed to have been hidden may
be displayed anyway. I’ve had this problem with the
Firefox web browser.

Bibliography

[1] Bongartz, Klaus et al. Farbige Parkette.
Basel: Birkhäuser Verlag, 1988.

[2] Bonner, Jay. Islamic Geometric Patterns.
New York: Springer, 2017.

[3] Brend, Barbara. Islamic Art. Cambridge,
Massachusetts: Harvard University Press, 1991.

[4] Brentjes, Burchard. Die Kunst der Mauren. Köln:
DuMont Buchverlag, 1992.

[5] Cundy, H. Martyn and Rollet, A. P. Mathematical
Models. Oxford: Oxford University Press, 1961.

[6] Ernst, Bruno. Der Zauberspiegel des M.C. Escher.
Berlin: TACO Verlagsgesellschaft und Agentur mbH,
1986.

[7] Escher, M. C. Graphik und Zeichnungen.
13. unveränderte deutsche Auflage.
München: Heinz Moos Verlag GmbH & Co. KG, 1979.

[8] Finston, Laurence. An introduction to
GNU 3DLDF. TUGboat 43(3):319–332, 2022.
tug.org/TUGboat/tb43-3/tb135finston-3dldf.pdf

[9] Gimpl, Karoline. Andalusien.
DuMont Kunst-Reiseführer. 2. Auflage.
Ostfildern: DuMont Reiseverlag, 2012.

[10] Goury, Jules and Jones, Owen.
Plans, Elevations, Sections and Details of the
Alhambra. London: Owen Jones, 1842–1845.

A pattern from the Alhambra

https://tug.org/TUGboat/tb43-3/tb135finston-3dldf.pdf


Fig. 19: Color replaced parallel projection

388 TUGboat, Volume 44 (2023), No. 3

Laurence Finston



Fig. 20: Perspective projection.

Fig. 21: Perspective projection, colors replaced.

[11] Hobby, John D. and the MetaPost development
team. METAPOST, A User’s Manual. 2020.
tug.org/metapost

[12] Kühnel, Ernst. Die Kunst des Islam.
Springers Handbuch der Kunstgeschichte.
Stuttgart: Alfred Kröner Verlag, 1962.

[13] Küppers, Harald. Schule der Farben.
Köln: DuMont Buchverlag, 1992.

[14] Lata, Sabine. Die Alhambra.
Geschichte—Architektur—Kunst.
Berlin: Elsengold Verlag GmbH, 2016.

[15] Wikipedia. Alhambra.
en.wikipedia.org/wiki/Alhambra

TUGboat, Volume 44 (2023), No. 3 389

[16] Wikipedia. Owen Jones.
en.wikipedia.org/wiki/

Owen_Jones_(architect)

[17] Wikipedia. Tessellation.
en.wikipedia.org/wiki/Tessellation

[18] Wilson, Eva. Islamic Designs for Artists and
Craftspeople. Mineola: Dover Publications, Inc., 1988.

[19] Wolfram Mathworld. Regular Tessellation.
mathworld.wolfram.com/RegularTessellation.html

� Laurence Finston
Germany
Laurence dot Finston (at) gmx dot de

A pattern from the Alhambra

https://tug.org/metapost/
https://en.wikipedia.org/wiki/Alhambra
https://en.wikipedia.org/wiki/Owen_Jones_(architect)
https://en.wikipedia.org/wiki/Owen_Jones_(architect)
https://en.wikipedia.org/wiki/Tessellation
https://mathworld.wolfram.com/RegularTessellation.html

