
literac
A Program That Enables Literate Commenting

Doug McKenna
Mathemaesthetics, Inc.

Boulder, Colorado

TUG — 2014

Literate Programming

I The phrase was introduced by Don Knuth 30 years ago

I Memo: “The WEB System of Structured Documentation”,
Stanford Univ., 1983

I An amalgam of Pascal and TEX, with its own added layer of
markup commands

I Two post-processing tools—TANGLE and WEAVE—create
separate Pascal code and TEX documentation files

I CWEB and tools created in 1991 by Knuth and Levi

I web2c, by Tom Rokicki, processes WEB code directly to C code

I TEX’s source code is still written in WEB, 30 years later

Problems that WEB solved

I Formal conversion and re-arrangement of pseudo-code
constructs into code

I Enriched reading experience: fonts and TEX-quality typesetting

I Code and documentation more easily kept synchronized

I Automatic upward movement of code lines from the best
expositional spot to a correct compilable spot

I No macro preprocessor in Pascal language

I Simple syntax for typesetting code |snippets| inside comments

I Treats a large program as a piece of literature worth reading
(at least, if one writes well)

I Automated document features (table of contents, index, etc.)

Why do most programmers not use WEB (or CWEB)?

I Markup is terse, undiscoverable, not quite free-form

I Requires—rather than gently permits—the programmer to
think in several languages at once

I The WEB/TANGLE/WEAVE bootstrap keeps users away

I Fosters the use of global variables; turns locals into “globals”

I Complicates and slows down the edit-compile-test cycle for
working programmers (in the zone)

I Code is typeset as mathematical notation, not as code

I Solutions should be in the computer language and IDE editors

I Search the internet for “literate programming” and ”failure”
for more

As a Programmer, I Want Literate Commenting with

I Sweet incremental simplicity, reasonable power, but no lock-in

I Documentation derived from source code, not vice-versa

I Documenting independent of edit-compile-test cycle

I Only a few, innocuous markup commands to remember

I Original source still readable/understandable after markup

I Code format/style inviolate (no pretty-printing; yes long lines)

I Defaults for immediate success or “good enough” solutions

I Decent higher-level error reporting and recovery

I No fighting against TEX/LATEX ignorance/confusion

I Access to LATEX’s power if I need it (and know what I’m doing)

I An inviting, literate, well-typeset exposition of my program

I A LATEX file to modify further, if I want or need to

What is “literac”?

I literac is (currently) a command-line program, written in C

I Written to “codify” commenting conventions in large C library

I Comprises 6000 lines of code, 6000 of literate commenting

I Eats its own dog food to create manual and literate program

I Processes about 100,000 lines of C source code per second

I Supports multiple input files and options in one invocation

I Outputs one or more LATEX files that can be immediately run

I Needs fancyvrb, dashrule, and other standard packages

I Does not rely on listings or similar packages

I Currently, only supports comments using /*. . . */ or //...

I Languages: C, C++, Objective-C, Go, Swift, and few others

I Handles obscure edge cases and (some) commenting idioms

Typeset Comments Don’t Need No Stinkin’ Delimiters

I Delimiters // and /*...*/ are for the benefit of compiler

I And they are for the benefit of source code author (initially)

I But they are (usually) unnecessary for a reader

I Delimiters are redundant in editors that do syntax coloring

I Delimiters in source code are thus syntactic noise

I They interfere with vertical eye scanning of left edge of code

I Typesetting is about visual hints on behalf of meaning

I So . . . literac gets rid of all delimiters, unless doing so would
introduce ambiguity

I Comments must therefore use different type styles from code

I Code is easy: get it into a verbatim fixed-width code font

I literac focuses on comments much more than code

C-style Comment Taxonomy

Two classes of comment delimiter: block and gloss

I Gloss comments use // and the end of same line (usually)

I Block comments use /* ... */ (possibly multiple lines)

I Also pseudo-gloss: /* ... // ... */

I And pseudo-block: // ... /* ... */

I Nested block: /* ... /* ... */ ... */ (Swift only)
(not yet supported)

Comment Taxonomy – Rest-of-Line Gloss Comments

Gloss-only (after indentation, comment on entire line)

I //

I // text

I // text\
more text

Code then gloss on remainder of line

I foo = bar(n); //

I bar = foo(n); // text

I foo = bar(n); // text\
more text

Comment Taxonomy – Single Line Block Comments

I /**/

I /* */

I /* text */

I /* text\
more text */

I foo = bar(n); /* text */

I foo = bar(n); /* text */ /* more text */

I /* text */ bar = foo(n); /* more text */

I foo = bar(/* text */ n);

Comment Taxonomy – Simple Block Comments

I /*

*/

I /*

text (delimiters are on their own lines)

*/

I /*

indented text

*/

I /*

* text

* more text

* yet more text

* and a vertical * bar

*/

Comment Taxonomy – Quiet Block Comments

Simple block comments with delimiters far to the right:

I /*

A line of commenting text.

*/

I /*

A line of commenting text.

Another line of commenting text.

*/

Style reduces syntactic noise on left edge of source code

Comment Taxonomy – Complex Block Comments

/* or */ occurs on same line as some comment text or code

I /* text ...

... more text */

I foo = far(n); /* text

more text */

I /* text

more text */ foo = far(n);

literac works to regularize these into simple block comments

Comment Taxonomy – ASCII Art Block Comments

I Lines or boxes made of * to create poor man’s rules

I /**************************************/

/* And In This Section of the Program */

/**************************************/

I /**************************************\
* And In This Section of the Program *

**************************************/
(this second example abuses line continuation on first line)

I literac erases the bars (currently doesn’t replace with any
rules, but might in the future) to regularize

What literac does

I Classify each input line’s start as “in code” or “in comment”

I Determine whether line ends in code or comment

I Honor line continuation only for comment line ends, not code

I Divide line into two (possibly empty) areas: code or comment

I Typeset code area on left using verbatim fixed-width font

I Strip comment delimiters, unless in code area, or if ambiguity

I Execute all literac commands in remaining comment text

I Converts dividers to rules, and manages a table of contents

I Prevent TEX from getting confused by special characters

I Attempt to do smart-quoting in both code and comment

I Let TEX merge “similar” comment lines into paragraphs

I Comment vs. commentary styles, based on indentation or not

Special Delimiters Available Within Block Comments

When typesetting block comment lines, literac responds to the
following patterns when they appear by themselves (after any
indentation, but no other text) on any line:

I /* Start a block comment, delete line if not indented

I */ End a block comment, delete line if not indented

I \\ Toggle one-liner mode; delete line if not indented

If line not deleted, it becomes blank and is honored as such.

I |@ enters pure TEX line collection mode; line is deleted

I @| exits pure TEX line collection mode; line is deleted

Pure TEX collection mode allows the injection of 0 or more lines of
arbitrary TEX or LATEX code, exactly as if in a ".tex" file.

Super Gloss Comments

A super gloss comment tells literac to delete the delimiter and
the rest of the line from the typeset code. There are three variants:

I /// Delete rest of line, trim whitespace, delete line if empty

I //@ Same, but doesn’t conflict with, e.g., Doxygen

I //. Delete rest of line, trim, but leave line blank if empty

These are good for commenting out code that serves no purpose in
the typeset version.

Good for issuing literac gloss comment commands on lines that
won’t be typeset as blank.

Special Commands Within Block or Gloss Comment Text

literac commands consist of an identifier immediately followed
by a (possibly empty) brace-enclosed argument. Everything must
(currently) be on one comment line. These can occur anywhere in
a block or gloss comment’s text.

I emph{ text } Emphasize text (uses \emph in LATEX file)

I bold{ text } Put text into bold (uses \bfseries)

I math{formula} Typeset formula inside $...$ math mode

I Math{formula} Same, but use a $$...$$ math display

I text{ line } Prevent short line from being a divider title

I toc{ title } Insert table of contents labeled with title

Without an immediate left brace, it’s just more comment text.

Verbatim Quoting in Comment Text

The usual WEB and LATEX verbatim syntax using |:

Within any comment text, block or gloss, use a pair of |s to
typeset a code snippet, as long as the entire quote is on one line.

I Relies on the fancyvrb package (except in titles)

I But . . . in literac any single character between two |s will
be verbatimed, no exceptions, no escapes

I ||| is the verbatim quote of a single |

I |\| is the verbatim quote of a single \
I || is the empty verbatim quote (if not followed by another |)

I |@| is the verbatim quote of a single @

I |@ code @| injects pure TEX code directly into comment’s vein

Special Gloss Comment Commands

Within any gloss, pseudo-gloss, or super-gloss comment, literac
processes and then deletes 0 or more gloss comment commands:

I verbatim{ name1 name2 . . . }
I define{[]name[]} definition

I needlines{ n }
I skip{ n } or skip{}
I save{ line group name }
I done{}
I insert{ line group name }
I pushoption{ option list }
I popoption{}

Predefining Names to Be Auto-Verbatimed

literac currently doesn’t parse code looking for variable, type, or
macro names. But you can declare any set of alphanumeric
identifiers to be automatically typeset |verbatim|, using

/// verbatim{ name1 name2 . . . }

Additionally, if a name begins with a capital letter, its (English)
plural form (ending in “s” or “es”), will be typset in the singular
form, with the pluralization in non-verbatim style, e.g.,

/// verbatim{Entry}
// Of these Entrys, only the last counts

will typeset as

Of these Entrys, only the last counts

Defining a Simple Macro

When in a comment literac recognizes a name that has been
earlier defined as a literac macro, the macro’s definition text is
substituted in its place. Names are defined with:

/// define{[]name[]} definition

The definition is whatever text remains on the line after the }.
Whitespace on either side of name inside braces matches one space
character before or after name in a comment’s text.

literac macros currently don’t support argument lists.

Example: /// define{TheFile} |@\texttt{"bingo.c"}@|

Both macro and auto-verbatim names can be preceded by an
empty verbatim quote || to prevent expansion or style changing.

Ensuring Page Has n More Lines Available

The needlines{} gloss comment command can be used to force
the next few lines onto the start of the next page, if there’s not
enough room at the bottom of whatever current page they are
otherwise ending up on. For example,

/// needlines{7}

ensures that the next 7 comment lines will remain unbroken by a
page break.

Useful with one-liner mode, and to push subroutine starts to the
next page or keep lines for short pedagogical examples together.

Preventing Compilable Code from Being Typeset

The skip{} gloss comment command declares the start of a
sequence of code or comment lines (or both) that should be
supressed from being typeset. The command has two forms.

// skip{3}

prevents 3 lines from being typeset, including the line the skip

command is on.

// skip{}

suppresses all lines until a done{} command is executed.

Good for suppressing C prototypes (forward reference noise).

Presenting Code in Any Language Verbatim, in a C File

A skip{1} command, in conjunction with C preprocessor #if 0

and #endif, lets your C source file present code, typeset verbatim,
in any language whatsoever. For example,

/*

#if 0 // skip{1}
Some \LaTeX\ code\par % with TeX comment

reverse = sort(names, $0 > $1) // Swift

#endif // skip{1}
*/

can be used to show many lines of verbatim code (here, in the TEX
and Swift languages) between two literate block comments in your
C program, but typeset without all the syntactic noise.

Postponing Code or Comments until Later

WEB migrates source lines upward for earlier compilation.
literac can migrate source lines downward for later typesetting.
Both strategies are in the service of top-down explanations.

A save{ line group name } command lets you collect lines of code
or comment under a line group name, to be removed and then
later reinserted at an appropriate place in your exposition of the
program. For example,

typedef struct foo { // save{FooBarStuff}
int flag;

struct foo *next;

} // done{}
will suppress the struct declaration’s four lines from being typeset
where it is found in the source file, but saves the four lines for later
insertion during typesetting by invoking the name FooBarStuff.

Inserting Postponed Lines of Code or Comment

The insert{ line group name } command lets you insert lines of
code or comment that have been previously saved under a line
group name. For example,

/// insert{FooBarStuff}
will place the lines previously saved under the name FooBarStuff

on the input to be read again and typeset at a new position.

Because commands are deleted from comments after execution,
re-examining a line won’t re-execute any commands.

(If visible, line numbers will be marked to indicate that they are
typeset out of order from that in the original source code.)

Specifying Titled Chapters, Sections, Subsections, etc.

Within a block comment, you can start any line with a sequence of
characters that literac recognizes as a divider.

If a line inside a block comment starts with

I #### ... it’s a part divider (with title on next line).

I ==== ... it’s a chapter divider (with title on next line).

I ++++ ... it’s a section divider (with optional title).

I ---- ... it’s a subsection divider (with optional title).

I - - - .. it’s a subsubsection divider (with optional title).

I . (a lone period), creates a blank line “divider”.

Each divider (except the blank line) has a searchable, “tagged”
variant to enter any title into a table of contents, inserted earlier
with a toc{ title } command.

Integrating a README or Manual into Implementation

Using the -readme command line option, literac will recognize
the following super-gloss comment

////\\\\////\\\\ ...

as a signal to stop typesetting and ignore the rest of the file.

For example, literac.c uses one of these comments to
automatically convert itself to its own LATEX-typesettable user
manual, ignoring the nuts and bolts of the implementation.

Command-line Options

I -help or -h

I -readme

I -linenumbers -nolinenumbers

I -strip -nostrip -stripblock -stripgloss

I -nofile

I -silent -verbose

I -clean

I -tab <n> -intab <n> -outtab <n>

I -maxline <n>

I -noplural -plural

Managing literac Command-line Options in Comments

Use the pushoption{...} and popoption{} commands to save,
change, override, and restore the command line options that
literac has been invoked with.

/// pushoption{linenumbers=off} -- suppress them

/// popoption{} -- restore previous settings

Currently, only turning line numbers on or off is supported.

To-Do List (as of July 2014)

I Customized LATEX preamble

I A formal literac-support package for LATEX

I More command-line option push/pop support

I Concatenating input files to one output LATEX file

I Shared macro dictionary across multiple files

I More leveraging off of fancyhdr and hyperref

I Automatic verbatiming of identifier or type names

I Conversion of ‘*’ patterns to actual rules or frames

I Indexing

I Other language’s comment delimiters

I . . .

Testing literac on Its Own Source Code

I "literac.c" is commented using its own syntax

I Examples in manual are authentic

	Literate Programming
	Problems that WEB solved
	Why do most programmers not use WEB (or CWEB)?
	As a Programmer, I Want Literate Commenting with
	What is ``literac''?
	Typeset Comments Don't Need No Stinkin' Delimiters
	C-style Comment Taxonomy
	Comment Taxonomy – Rest-of-Line Gloss Comments
	Comment Taxonomy – Single Line Block Comments
	Comment Taxonomy – Simple Block Comments
	Comment Taxonomy – Quiet Block Comments
	Comment Taxonomy – Complex Block Comments
	Comment Taxonomy – ASCII Art Block Comments
	What literac does
	Special Delimiters Available Within Block Comments
	Super Gloss Comments
	Special Commands Within Block or Gloss Comment Text
	Verbatim Quoting in Comment Text
	Special Gloss Comment Commands
	Predefining Names to Be Auto-Verbatimed
	Defining a Simple Macro
	Ensuring Page Has n More Lines Available
	Preventing Compilable Code from Being Typeset
	Presenting Code in Any Language Verbatim, in a C File
	Postponing Code or Comments until Later
	Inserting Postponed Lines of Code or Comment
	Specifying Titled Chapters, Sections, Subsections, etc.
	Integrating a README or Manual into Implementation
	Command-line Options
	Managing literac Command-line Options in Comments
	To-Do List (as of July 2014)
	Testing literac on Its Own Source Code

