
...

TUG 2013

.

Graduate School of Mathematical Sciences,
the University of Tokyo—Tokyo, Japan

.

October 23–26, 2013

TUG 2013
The 34th Annual Meeting of the TEX Users Group

October 23–26, 2013
Graduate School of Mathematical Sciences, the University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, Japan

Printed in Japan (Sanbi Printing Co., Ltd.)

TUG 2013 3

TEX Users Group information

The TEX Users Group (TUG, http://tug.org) was founded in 1980 to pro-
vide an organization for people who are interested in typography and font
design, and/or are users of the TEX typesetting system invented by Donald
Knuth.

Some background: TUG is a not-for-profit organization by, for, and of
its members, also representing the interests of TEX users worldwide. It is
almost entirely member-supported, so if you use any TEX-related programs
(TEX, LATEX, ConTEXt, Metafont, MetaPost, Texinfo, et al.), please consider
joining TUG (http://tug.org/join.html), or another TEX user group (http:
//tug.org/usergroups.html).

Among TUG membership benefits are the journal TUGboat (available
both in print and online, http://tug.org/TUGboat) and the TEX software
collection (http://tug.org/texcollection, consisting of TEX Live, proTEXt,
MacTEX, etc.). TUG also holds an annual TEX conference (http://tug.org/
meetings), such as the present one in Japan!

What TUG is, what TUG isn’t

In essence, TUG is a clearinghouse organization for TEX activities of all kinds.
It takes in revenue, mostly as membership dues and donations, with some
sales of DVDs and other products (http://tug.org/store). Then it dis-
burses that money back out, mostly funding the printing and mailing of
TUGboat and the production of the software DVDs, and also making some rel-
atively small development grants (http://tug.org/tc/devfund) and other
projects. It doesn’t have the funds to employ programmers as employees; all
technical work is done by volunteers. TUG is formally a not-for-profit chari-
table organization in the USA, and has run essentially at break-even over the
years.

Organizationally, TUG is ultimately run by a volunteer board of direc-
tors. All members are eligible to run, and directors are elected by member-
ship vote every two years (http://tug.org/election).

TUG’s past, present, future

In the early years of TEX, TUG was naturally focused on development and
porting of the core programs to different systems, as perusing the online
TUGboat archives shows. The conferences also played a major role in dissem-
inating knowledge and basic information on getting TEX running, and then
actually using it.

Nowadays, of course that is all well established, and the focus is on us-
ability and extensions into new areas. As you know, TEX, LATEX, and related
programs continue to develop. It is a testament to the flexibility and fore-
sightedness of Knuth’s design that TEX is still viable, indeed widely used, to-
day — the web, PDF, OpenType, and much more were not dreamed of when
TEX was conceived, and yet it has adapted to everything that has come along,
with no signs of demise.

4 TUG 2013

You may have used the TEX executables on a new computer — TUG sup-
ported the development and distribution of those programs. You’ve hope-
fully found style files or documentation online that helped you get your job
done — TUG supported the CTAN archive that is a common collection point
for those. You may have have used new fonts already set up for TEX, or an
editor or utilities that make writing your papers go more smoothly, and by
now you won’t be surprised that it may well be that TUG helped those to
happen.

TUG exists as part of the TEX community, helping it to remain the vibrant
place it has always been.

Summary of links

• http://tug.org — TUG home page.
• http://tug.org/join.html — join (or renew with) TUG.
• http://tug.org/texlive — TEX Live software.
• http://tug.org/TUGboat — TUGboat.
• http://tug.org/aims_ben.html — aims of the organization

& benefits of joining.

Karl Berry
September 27, 2013

TUG 2013 5

Book fair and special discount
for participants

45% discount for all Manning publications!
Manning Publications Co.

We are grateful to Manning Publications Co. for their generous gift to the participants of TUG ’13: a

45% discount for all Manning publications. Just use the discount code when ordering
from their site, http://www.manning.com/. The code is valid from one week before the conference

till the end of the conference.

$9,99! The LATEX Companion 2nd Ed.
Frank Mittelbach

I’m pleased to announce that The LATEX Companion second Edition is finally available in eBook format

in addition to the printed book.
Pearson is offering the eBook as a bundle: PDF, epub, and mobi (Kindle) format without DRM

restriction (only watermarked). The list price will be $29,99. The eBook may be available from
other resellers, but typically you will then only get one format and some resellers might apply DRM.

As a special promotion we will make the eBook bundle available to any interested particiant of

the TUG conference 2013 at a price of $9,99.
To use this offer, follow the book link at http://www.latex-project.org/guides/books.

html that directs you to the book page on the publisher site. As part of the checkout process you will
be given the opportunity to enter a discount code. The code for the TUG conference participants is

and it is valid until October 31 and will reduce the price to $9,99.

For the general public there is longer running promotion at price of $14,99 and code for this is
LATEXT2013 valid until the end of the year. You are invited to pass this on to anybody interested

in the eBook.

6 TUG 2013

Japanese TEX Book Fair

A Japanese TEX Book Fair will be set up (courtesy of University of Tokyo CO­OP) just outside the

lecture room, during the following hours:

23rd October, 15:35–15:55

24th October, 14:50–15:10
26th October, 10:50–11:10, 12:20–12:40

A great chance to shop from the widest range of TEX­related Japanese books in the market. Please
note that only Japanese yen in cash will be accepted.

We are also pleased to announce an exclusive discount offer of the sixth edition of “LATEX 2ε
Bibunsho Sakusei Nyumon (A Guide to creating beautiful documents with LATEX 2ε)” by Haruhiko
Okumura and Yusuke Kuroki. This book, due to be released on 23rd October, will be available to

TUG 2013 participants at a special discount price of 3,000 yen (tax included). On 26th October, a
book signing event will be held. Anyone who bought this book can have their book autographed by

the authors. Don’t miss this special offer!

The sixth edition of “LATEX 2ε Bibunsho Sakusei Nyumon” is the latest

update of the most widely­read introduction to LATEX available in Japanese.
First issued in 1991 as “LATEX Bibunsho Sakusei Nyumon” (by Haruhiko

Okumura) this book has always been a must for LATEX users in Japan.
Covering all the major information about LATEX from basics to moderate,
it is the perfect navigator to create beautiful Japanese documents with

LATEX. This sixth edition, now with Yusuke Kuroki as co­author, comes
with a DVD including TEX Live 2013 Windows/Mac installers especially

designed for Japanese users. Special Thanks to: Norbert Preining and the
TEX Live Team, Noriyuki Abe (for Windows installer), Yusuke Terada and
Munehiro Yamamoto (for Mac installer and binaries).

Special exhibition of used and out­of­print books

Along with the Japanese TEX Book Fair, the organizer is also holding a special exhibition of used
and out­of­print books, featuring 36 or more items that are now hard to find in the market. Those
who are interested can purchase the books on the 26th. Please note that only Japanese yen in cash

will be accepted.

TUG 2013 7

8 TUG 2013

TUG 2013 Program
Note: The asterisk mark (∗) after a name means that the indicated person will be presenting.

Tuesday, 22 October

6:00pm–8:00pm

Registration and Reception

Wednesday, 23 October

9:00am–9:15am

Opening Message
Steve Peter and Haruhiko Okumura

9:15am–9:50am

TiCL: The prototype
Didier Verna

9:50am–10:05am

LISP on TEX: A LISP interpreter written using TEX macros
Shizuya Hakuta

10:05am–10:40am

A gentle introduction to PythonTEX
Andrew Mertz∗ and William Slough

10:40am–11:00am

Break

11:00am–11:10am

TUTORIAL Introduction to Tutorials
KUROKI Yusuke

11:10am–0:40pm

TUTORIAL An Introduction to the Structure of the Japanese Writing System
YADA Tsutomu

0:40pm–1:40pm

Lunch

1:40pm–2:15pm

The incredible tale of the author who didn’t want to do the publisher’s job
Didier Verna

2:15pm–2:50pm

How we try to make working with TEX comfortable
Hans Hagen

2:50pm–3:35pm

TUTORIAL Indexing Makes Your Book Perfect
SHIKANO Keiichiro

3:35pm–3:55pm

Break

TUG 2013 9

3:55pm–4:30pm

How I use LATEX to make a product catalogue that doesn’t look like a disser­
tation

Jason Lewis

4:30pm–5:05pm

TEX in educational institutes
Yasuhide Minoda

5:05pm–5:40pm

Online Publishing via pdf2htmlEX
Lu Wang and Wanmin Liu∗

5:40pm–6:25pm

The stony route to complex page layout
Frank Mittelbach

After a short break, we will have another session (not in the official program).

6:35pm–7:10pm++

What is ConTEXt? A short introduction
Hans Hagen

Thursday, 24 October

9:00am–9:30am

Making math textbooks and materials with TEX+KETpic+hyperlink
Yoshifumi Maeda and Masataka Kaneko

9:30am–10:05am

Wind roses for TEX documents
Alan Wetmore

10:05am–10:40am

Plots in LATEX: Gnuplot, Octave, make
Boris Veytsman

10:40am–11:00am

Break

11:00am–0:30pm

TUTORIAL Japanese Typeface Design—Similarities and Differences from Western
Typeface Design

TAKATA Yumi

0:30pm–1:30pm

Lunch

1:30pm–2:05pm

LATEX and graphics
Aleksandra Hankus and Zofia Walczak

2:05pm–2:50pm

LATEX3: Using the layers
Frank Mittelbach

10 TUG 2013

2:50pm–3:10pm

Break

3:10pm–4:40pm

TUTORIAL Japanese Text Layout—Basic Issues
YABE Masafumi

4:40pm–4:55pm

TUTORIAL Some notes on TEXt processing
KUROKI Yusuke

4:55pm–5:15pm

Break

5:15pm–5:50pm

Development of TeXShop—the past and the future
Yusuke Terada

5:50pm–6:25pm

TEX Live for Android: Development and usage
Clerk Ma

6:25pm–6:50pm

TEX Live Manager’s rare gems: User mode and multiple repository support
Norbert Preining

6:50pm–7:00pm

Guidance for the excursion
Organizing Committee

Friday, 25 October

ALL DAY

Excursion to the Printing Museum, Tokyo, etc.
See pp. 15–19.

Saturday, 26 October

9:00am–9:35am

Tsukurimashou: a Japanese­language font meta­family
Matthew Skala

9:35am–10:10am

upTEX—Unicode version of pTEX with CJK extensions
Takuji Tanaka

10:10am–10:45am

A short history of TEX in China
Jie Su∗ and Clerk Ma

10:45am–10:50am

Group Photo

10:50am–11:10am

Break

TUG 2013 11

11:10am–11:45am

A case study: Typesetting old documents of Japan
Ken Nakano∗ and Hajime Kobayashi

11:45am–0:20pm

A case study on TEX’s superior power: Giving different colors to building
blocks of Korean syllables

Jin­Hwan Cho

0:20pm–1:20pm

Lunch

1:20pm–1:55pm

The multibibliography package
Michael Cohen∗, Yannis Haralambous, and Boris Veytsman∗

1:55pm–2:30pm

TANSU: A workflow for cabinet layout
Pavneet Arora

2:30pm–3:05pm

Typesetting and Layout in Multiple Directions
John Plaice

3:05pm–3:25pm

Break

3:25pm–4:00pm

Making mathematical content accessible using Tagged PDF and LATEX
Ross Moore

4:00pm–4:35pm

How we move(d) on with math
Hans Hagen

4:35pm–5:10pm

The XyMTEX system for publishing interdisciplinary chemistry/mathematics
books

Shinsaku Fujita

5:10pm–5:45pm

Distributing TEX and friends: methods, pitfalls, advice
Norbert Preining

5:45pm–5:50pm

Closing Message
Norbert Preining

6:00pm–8:30pm

Banquet

12 TUG 2013

Access Map

From Tokyu Stay Shibuya/APA Hotel to Conference Venue

If you are staying at Tokyu Stay Shibuya or APA Hotel Shibuya-Dogenzaka-Ue, the best way to get to the
conference venue is on foot; it takes 10 to 15 minutes (less than 1 km). Please see the map below.

Tokyu Stay
Shibuya

APA Hotel
Shibuya Dogenzaka-Ue

Shoto 2
(intersection)

Suiji Gate of the Univ.

From Shibuya Excel Hotel Tokyu or Shibuya Station to Conference Venue

If you are staying at Shibuya Excel Hotel Tokyu, the best way to get to the conference venue is to board the
Keio Inokashira Line local train at Shibuya Station. The conference venue is very close to Komaba-Todaimae
Station, second stop from Shibuya. Take the East Exit, turn left and go out the station (Todai Gate), and you
will see the Main Gate of the University ahead. Then, turn right to a narrow path, —you don’t have to go
through the Main Gate—go along the path, seeing roses on your left and volleyball courts on your right. This
path leads to the West entrance of the Graduate School of Mathematical Sciences Building, the conference
venue.

Campus Map: Komaba I Campus, the University of Tokyo

• NO SMOKING on campus except in smoking areas
• Banquet: Italian Tomato Cafe Jr. (next to KCP South Building)

TUG 2013 13

Graduate School of Mathematical Sciences Building

An online-sign.com production sign ref st801380176446

Elevator

: elevator : toilet : smoking area

• NO SMOKING inside the building (except in smoking area)
• Lectures: Lecture room (B1)
• Rooms for lunch: 211 (2F), 152, 154, 156, 158 (1F), Common Room (2F, Saturday only)
• Lunch handout: 211 (2F)
• Reception party: Common Room (2F)
• Book fair: 056 (B1)
• Room for discussions: 052 (B1)

B1

052

056

To 1F

Lecture Room

An online-sign.com production sign ref st801380176446

Elevator

③

East entrance
(locked)

1F (West part, ground floor)

①
West entrance
(locked 8:00 pm–
and Saturday)

An online-sign.com production sign ref st801380176446

Elevator

Main entrance
(locked 5:00 pm–)

②

152

154

156

158

To B1

To East part
(no map)

2F

①
An online-sign.com production sign ref st801380176446

Elevator

211

Common Room

②
An online-sign.com production sign ref st801380176446

Elevator

③

14 TUG 2013

Lunch

If you have registered full-term (including speakers and students) or one-day (with lunch, in the Japanese
form), the organizer offers you a lunch box. It will be handed out in Room 211 when lunch time starts. Please
do not miss your lunch box; halfway through lunch time, the remainders will be given away.
For those who have chosen a no-lunch option, there are a quite a few restaurants in and outside the campus:

Restaurants in the campus (see Campus Map)

• University cafeteria (KCP South Building)
• Italian Tomato Cafe Jr. (casual Italian, next to KCP South Building)
• Lever son verre (French, at Komaba Faculty House)

Restaurants outside the campus

1 ムスカン Muskan (Indian curry)
2 英香 Eika (seafood)
3 中華井上 Chuka Inoue (casual Chinese)
4 菱田屋 Hishitaya
5 キッチン南海 Kitchen Nankai
6 ルーシー Lucy (curry)
7 つけめん 駒鉄 Tsukemen Komatetsu (ramen)
8 McDonald’s
9 苗場 Naeba (casual Chinese)
10 (1F) 満留賀 Maruka (soba, udon, donburi)
10 (2F) 楓 Kaede (okonomiyaki)

West

entrance

Graduate school of

Mathematical

Sciences Building

Komaba Todai-Mae station

1

2

3

4 5 6 7 8

9

10

TUG 2013 15

Excursion

On 25th October, a full day excursion is organized as part of the official program. It consists
of three parts: a museum tour, a letterpress printing workshop, and a calligraphy workshop.
Note: Please wear casual clothing that you would not mind staining, since the workshops will use

waterproof ink.

16 TUG 2013

Schedule

8:20 am Bus pick­up at Conference Venue

8:35 am Bus pick­up at Dogenzaka Ue, Shibuya

9:45 am–10:00 am Registration at the Printing Museum, Tokyo

Group A

10:00 am–0:00 pm Letterpress Printing Workshop
0:00 pm–0:55 pm Lunch
1:00 pm–2:00 pm Museum Tour (1)

2:05 pm–3:30 pm Bus
2:35 pm–4:20 pm Calligraphy Workshop

4:25 pm–4:35 pm Bus
4:40 pm–6:00 pm Museum Tour (2)

Return by bus or disband on site

Group B

10:00 am–11:30 am Museum Tour (1)

11:30 am–0:15 pm Lunch
0:20 pm–0:45 pm Bus
0:50 pm–2:35 pm Calligraphy Workshop

2:40 pm–2:50 pm Bus
2:55 pm–4:00 pm Museum Tour (2)

4:00 pm–6:00 pm Letterpress Printing Workshop

Return by bus or disband on site

Group C

10:00 am–11:45 am Museum Tour (1)
11:45 am–0:55 pm Lunch
1:00 pm–3:00 pm Letterpress Printing Workshop

3:00 pm–3:45 pm Museum Tour (2)
3:50 pm–4:15 pm Bus

4:20 pm–6:05 pm Calligraphy Workshop

Return by bus or disband on site

7:05 pm Bus drop­off at Shibuya

7:20 pm Bus drop­off at Conference Venue

TUG 2013 17

Pickup for the Excursion

The excursion will be held mainly in the Printing Museum, Tokyo. You have a number of options on how
to get to the Printing Museum, which you can choose from according to your hotel location and/or your
familiarity with Tokyo:

• A charter bus will pick you up at the Main entrance of the conference venue at 8:20 am;

• This bus will also pick you up at Dogenzaka Ue, Shibuya at 8:35 am (the organizer will be waiting at
the entrance of Tokyu Stay Shibuya/APA Hotel at 8:30 am);

Tokyu Stay
Shibuya

APA Hotel
Shibuya Dogenzaka-Ue

Pick-up

Drop-off

• Come on your own to the Printing Museum by 9:45 am (15-minute walk from Iidabashi Station).
to the Printing
Museum, Tokyo

Pedestrian
deck

Iidabashi Stn.
JR
East Exit

Subway
‘B1’ Exit

Iidabashi Stn.

the Printing
Museum, Tokyo

(Zoom in on Iidabashi Station) (Panoramic view)

18 TUG 2013

Letterpress Printing Workshop
at the Printing House, the Printing Museum, Tokyo

Abstract This workshop allows you to typeset and print your own name using a
letterpress. We will work in groups of three, with one or more Japanese­speaking

person in each group to help with katakana. The procedure is as follows: 1) Select
metal types corresponding to your name, set it in the composing stick, and position
your name in the center. 2) Bray ink, have the typeset mounted onto the press, and

make an impression on paper. 3) Separate the printed sheet to make a bookmark, place
each bookmark between absorbing sheets to let it dry. Each attendee can take home

several bookmarks with your name in katakana.

(Preparation)

1 Please leave your baggage in the Gutenberg Room.

2 Make a group of three. Make sure each group has at least one
Japanese­speaking person.

3 Put on the apron, which is on the table.

. Note: Don’t touch the black disks on the table—the surface is
soaked with ink!

3(Typesetting)

4 If you are not familiar with katakana expression, use your name

plate as sample. Have the Japanese­speaking person in your
group help you with katakana selection.

5 Hold the composing stick in your left hand.

5

6 Pick the metal types that correspond with your name from the
case and set it inside the stick one by one, with the nick upwards.

7 Place a 1 em quad between your first and last name. Typesetting
is now complete.

8 Centering. Place quadrat metal pieces evenly on either side so

that your name is positioned in the center. In order to bind the
lines tightly together, you should first focus on placing wider

quads on the edges, then insert narrower ones in a position
closer to the text. When inserting the last (and the narrowest)
quad, take out the widest quad, insert the narrowest quad, then

place the widest quad in position again.
9 Set an interline lead strip above the type line. The forme will

be mounted onto the press by the instructor.

TUG 2013 19

(Printing)

10 Trial run. Position a sheet of paper on the printer. Pull the bar
halfway down and up again twice, so that the ink transfers from
the disk to the roller. Then, pull the bar all the way down; allow

some time to make an impression on the paper before pulling
back the bar in its original position.

10

11 Confirm settings. Ensure that your name is as shown on your
name plate. If not, have the instructor fix the type. Leave the
printed sheet on the stand to let it dry.

12 Production run. When you have confirmed the settings, perform
the production run. Each person has two sheets of paper for

this.

(Cutting)

13 Separate the printed sheet into three pieces. Fold along the
precut lines, and tear off slowly.

. Note: Since it takes more than a day for the ink to dry com­
pletely, be careful not to touch the printed part. Should the
print be blurred or stained, please notify the instructor so that

you can perform another run.

13

14 Place the bookmarks, back to back, between absorbing sheets.
Let it dry for more than 24 hours.

(End)

15 Please return your apron on the hook on the side of the table
before you leave.

20 TUG 2013

TUG 2013 21

Tutorials

As a TEX user, you might have noticed that this city is filled with so many different characters.
You might be wondering, how does the Japanese language function with so many kinds of symbols?
How are they arranged and classified? How many glyphs does a Japanese computer system need?

What are the rules of Japanese typesetting?
We have prepared a series of tutorials on a range of topics including the basics of the Japanese

writing system. It consists of four invited presentations and one supplement:

23 October, 11:10 am–0:40 pm
YADA Tsutomu, An Introduction to the Structure of the Japanese Writing System

23 October, 2:50 pm–3:35 pm
SHIKANO Keiichiro, Indexing Makes Your Book Perfect

24 October, 11:00 am–0:30 pm
TAKATA Yumi, Japanese Typeface Design — Similarities and Differences from Western Type­

face Design

24 October, 3:10 pm–4:40 pm
YABE Masafumi, Japanese Text Layout — Basic Issues

24 October, 4:40 pm–4:55 pm
KUROKI Yusuke, Some notes on Japanese TEXt processing

This tutorial should also serve as an introduction for the excursion on 25th October.
We hope these sessions help you get an idea of the Japanese writing system, the norms and

practices underlying it, and how it is different from other writing systems of the world, especially
the alphabet.

—KUROKI Yusuke

22 TUG 2013

Indexing Makes Your Book Perfect
SHIKANO Keiichiro

Most of you already know how to make books using LATEX. And some
of you might know how to make back­of­the­book indexes with LATEX.
However, are you ready to worry about how the index of your book

should be? Or, if you have already gone through a trouble of writing
or editing books, have you actually taken advantage of indexing in your

work?
The index, which would be inserted at the back of your book, is

not just a reference list of words appearing in your book. Picking out

keywords or chunks of text from your manuscript, then arranging them
in another way—usually in alphabetical order, often complements your

book. In other words, you can exploit indexing to make your book
better!

Through this tutorial, you will find what is required for good in­

dexes, how indexing helps you and your readers, and some techniques
in making back­of­the­book indexes with LATEX. On top of that, in non­

alphabetical languages, you cannot just make use of makeindex or xindy,
mainly because these languages don’t have any concept of alphabetical
order. So, I will also go over actual cases of making back­of­the­book

indexes in non­alphabetical languages.

TUG 2013 23

Japanese Typeface Design
—Similarities and Differences from Western Typeface Design
TAKATA Yumi

What is Japanese typeface design about? As a Japanese type designer for

nearly 30 years, I will explain what it is to design a Japanese typeface,
what it does and does not have in common with designing a Western
typeface.

First, we will take a quick look at the history of Japanese characters,
in particular how the shapes of the characters have evolved through the

times.

宇比加

ウヒカ

History of Katakana

Regular
Script

Katakana

Then I will illustrate the process of Japanese typeface design in
detail. Japanese typeface designers face the challenge of dealing with

more than 9,000 characters and multiple constituent scripts. Some
examples will be given of the various accommodation techniques we use

to create readable and visually appealing typefaces, including adjusting
for optical illusion.

Vertical and Horizontal Writing Mode
(Positioning of Small Kanas and Prolonged Sound Mark)

ゃー
ゃーVertical

Writing
Mode

トケーキをちょうだ
コチップ入りのホッ
さっちゃんは「チョ
Horizontal
Writing Mode

ト
ケ
ー
キ
を
ち
ょ
う
だ

さ
っ
ち
ゃ
ん
は
「
チ
ョ

コ
チ
ッ
プ
入
り
の
ホ
ッ

Another big challenge we face is the vertical and horizontal writing

modes. I will show how we fine­tune the glyph design of each character,
one by one, for both vertical and horizontal writing modes.

Finally, the complications related to Japanese coded character sets
will be briefly explained.

東 くりは いひへつ

Letter Spacing and Counter

William Gamble
William Gamble
東 くりは いひへつ

I hope my presentation gives you a grasp of the Japanese typeface

design and leads to further discussion.

Variant Forms of an Ideographic Character

3621
(CID code)

etc.

U+8FBA
(Unicode)

辺
6929
U+908A

邊
6930
U+9089

邉
13407
邉

13235
邊

14236
邊

14237
邊

14238
邊

14239
邊

14240
邊

14241
邉

14242
邉

14243
邉

14244
邉

14245
邉

14246
邉

14247
邉

14248
邉

14249
邉

14250
邉

14251
邉

14252
邉

20233 20234

24 TUG 2013

Japanese Text Layout—Basic Issues
YABE Masafumi

This part of tutorial presents basic issues concerning page formats and
typesetting methods applied to the main text of a Japanese book with
reference to the typographic characteristics of Japanese writing system.

The issues to be discussed are threefold. The first section focuses on the
text direction, vertical or horizontal writing mode, which depends on an

editorial decision and commands in many ways the page layout as well
as the printed forms of a Japanese text. The second section concerns
the typesetting methods applied to the basic Japanese text as a sequence

of characters without spaces between words, and illustrates relevant ty­
pographic building blocks in line composition rules with emphasis on

the functional importance of punctuation marks and their surrounding
spaces for line and paragraph adjustments. The last section addresses
several issues about the methods of mixed composition of Japanese and

Western texts, presenting major technical problems relating to differen­
tiation and harmonization of typographically heterogeneous elements

in sequential texts: Western text in the context of main horizontal or
vertical Japanese text as well as Japanese text in the context of main
Western text.

TUG 2013 25

Abstracts

Note: The asterisk mark (∗) after a name means that the indicated person will be presenting.

TiCL: The prototype
Didier Verna
9:15am–9:50am, 23 October

Last year, I presented some ideas about using one of the oldest pro­
gramming language (Lisp), in order to modernize one of the oldest
typesetting systems (TEX). This talk was mostly focused on justifying

the technical fitness of Lisp for this task. This time, I would like to
take the opposite view and demonstrate a prototype, from the user’s

perspective. This will involve showing what a TiCL document could
look like, the implications in terms of typesetting vs. programmatic
features, and also in terms of extensibility (relating this to package

authoring).

26 TUG 2013

LISP on TEX: A LISP interpreter written using TEX macros
Shizuya Hakuta

9:50am–10:05am, 23 October

Although TEX macros are useful, it is difficult to write macros for

novice users. To make easier to use, there are some researches that
combine TEX and another programming language. There are a cou­

ple of approaches: calling an outer interpreter, or embedding ad­
ditional language in a family of the TEX engine. Nevertheless, we
have taken another approach because TEX is a Turing machine: im­

plementing a language processor with TEX macros. The production,
called ‘LISP on TEX’, allows us to embed LISP scripts in a LATEX

document. The interpretor is written only with TEX macros and it
has been archived in CTAN (macros/latex/contrib/lisp­on­tex). In
this talk, we would like to illustrate how to use it and contrast with

LuaTEX, PerlTEX, or related approaches.

A gentle introduction to PythonTEX
Andrew Mertz∗ and William Slough

10:05am–10:40am, 23 October

The PythonTEX package allows authors to combine computational

and typesetting tasks by embedding Python code in TEX documents.
This package allows access to many powerful Python modules, pro­
viding support for such things as symbolic mathematics, plotting, ar­

bitrary precision numerical calculations, and networking. Python’s
intuitive syntax, popularity, and extensibility together with TEX’s

formatting strengths make them a logical system for programming
documents. By examining a variety of examples, we will provide an
overview of the capabilities and possibilities of PythonTEX.

TUG 2013 27

The incredible tale of the author who didn’t want to do the publisher’s job
Didier Verna

1:40pm–2:15pm, 23 October

In this talk, I will relate a recent experience of mine: writing a book

chapter for a publisher who doesn’t have a clue about typesetting. I
will confess my futile attempt at using TEX for writing the chapter

in question. I will then describe the hell that descended upon me
for daring to do that. I will however admit that the hell in question
would have been even greater, had I not done so. I will give this talk

both crying and laughing, and I will seek your comfort.

How we try to make working with TEX comfortable
Hans Hagen

2:15pm–2:50pm, 23 October

Just as book and music production is under pressure, so is the way

we produce documents. We’re accustomed to instant rendering in
browsers and even if WYSIWYG is not that important when most
of the time is spent on writing instead of messing with the look and

feel, there is the comfort factor to keep in mind. The last few years
I have spent quite some time on a comfortable edit­proofing cycle:

from advanced syntax highlighting to fast rendering. Do such things
matter and is it worth the effort?

28 TUG 2013

How I use LATEX to make a product catalogue that doesn’t look like a
dissertation
Jason Lewis
3:55pm–4:30pm, 23 October

I run a small wholesale and distribution business in Australia. I
created a program that uses LATEX to produce PDF for a full colour

printed catalogue. The catalogue is about 70 pages, contains 8–10
full page colour adverts, has a table of contents and a product index,

and usually has around 800–1000 products listed. We produce a
new catalogue every six months.

The program takes data from our accounting system about the

price of products, combines it with some other data and produces a
LATEX file that can be compiled to a PDF. The PDF is then ready for

sending to the printer. The program greatly changed where the work
load was for producing a catalogue. It used to be a lot of copying and
pasting of data into Excel or InDesign, but now the work is mostly

in data entry and ensuring the data is correct and ready for export
to produce the catalogue.

The program is written in Perl and Perl’s Template Toolkit; it
also integrates MS Access and MS SQL server.

I faced numerous difficulties in building this system.

1. LATEX documents don’t natively look very much like a glossy cat­
alogue.
2. The system had to be usable by non­technical people to build new

catalogues.
3. Windows file paths don’t map well in LATEX.

4. Many characters that users want to use break LATEX.
5. Making a templating system to produce the LATEX from a database
of products.

6. Integration of MS Access, SQL, Template Toolkit and Perl to pro­
duce LATEX.

In my presentation I will outline how I worked around these
difficulties to make a system for users to build new product catalogues
when they need one.

TUG 2013 29

TEX in educational institutes
Yasuhide Minoda

4:30pm–5:05pm, 23 October

Tokyo Educational Institute (Tetsuryokukai) is a preparatory school

specializing in the entrance exam for Tokyo University. We use TEX for
our texts, workbooks, other handouts, and even for internal documents

and memorandums.
We used to use other software, but we swiched to TEX and made

our original documents (over 100,000 pages) into TEX files over the

last few years.
In Tetsuryokukai, we now have over 200 teachers, with various

levels of computer skill, so in order to introduce TEX we:
• developed related software (automatic installer, TEX2img and so
on),

• prepared various style files,
• educate and motivate teachers.

In this presentation, I would like to present what we have been
doing in our company. Our company can be an interesting and helpful
example of introducing TEX throughout an institution, especially in

the field of education.

Online Publishing via pdf2htmlEX
Lu Wang and Wanmin Liu∗

5:05pm–5:40pm, 23 October

The Web has long become an essential part of our lives. While web technologies

have been actively developed for years, there is still a large gap between web
and traditional paper publishing. For example, the PDF format, the de facto
standard for publishing, is not supported in the HTML standard; and the most

powerful typesetting system TEX cannot be integrated perfectly.
Despite of the long history of people trying to convert PDF or TEX into

HTML, some are focused on only a small fraction of features, e.g. text, formulas
or images; some are too old to support latest features in the HTML standard
such as embedded fonts or linear transformations (e.g. rotation); some display

everything in images at the cost of larger sizes.
In this article, a new approach is attempted to attack this issue. We introduce

an open source software, called pdf2htmlEX, which is a general PDF to HTML
converter with high fidelity. It tries to present PDF elements with corresponding
native HTML elements, in order to achieve high accuracy and small size. The

flexible design also makes it useful for different use cases in online publishing.
Obviously TEX users can be immediately benefited with zero learning cost, just

like ‘dvipdf’ while people were still using DVI.
More information are available at the home page: https://github.com/

coolwanglu/pdf2htmlex

30 TUG 2013

Making math textbooks and materials with TEX+KETpic+hyperlink
Yoshifumi Maeda and Masataka Kaneko

9:00am–9:30am, 24 October

Because of its precision and simplicity, the graphics capability originally present in TEX should

have great potential in mathematics education. However, it seems to be burdensome for usual
TEX users to fully utilize such capability. Although including the graphical images generated by

using computer algebra systems (CAS) is a typical alternate approach, the resulting documents
tend to become inefficient for actual use in classroom.

The CAS macro package named KETpic is one of the most hopeful candidates for realizing

handy and efficient use of TEX graphics. For instance, it enables us to edit high­quality math
textbooks and materials containing

2D­graphics which are precise in shape and length as in Sample 1, and
3D­graphics which are readily understandable as in Sample 2.
In this talk, it is emphasized that the programmability of KETpic (associated with CAS)

and TEX could make the use of TEX more flexible. For example, in Sample 3,
many documents with graphics can be readily generated by using both for­loop program­

ming and “meta commands” of KETpic, and
those documents can be readily linked also by using “hyperref”’ package of TEX(connected

to “hypertextlink” function).

Such unified use of TEX graphics and TEX programming through KETpic might be
applicable to many other situations in math classrooms, and should enhance the possibility of

TEX use in education.

Wind roses for TEX documents
Alan Wetmore
9:30am–10:05am, 24 October

In recent years a great many systems for including plots and graphics
in TEX documents have been developed. Many varieties of scientific

plots are directly supported by these packages. One style of plot
which has not been available is a wind rose: describing the proba­
bility of wind speed and direction with a stylized polar plot. This

report will describe a set of macros for TikZ for preparing wind rose
plots.

TUG 2013 31

Plots in LATEX: Gnuplot, Octave, make
Boris Veytsman

10:05am–10:40am, 24 October

Making scientific and engineering documents with complex plots

may be difficult and time consuming. This is especially true if data
updates require rebuilding of plots and documents. In this report a

workflow based on integration of AllTEX, Gnuplot and Octave using
Makefiles in a Unix­based environment is proposed and discussed in
detail.

LATEX and graphics
Aleksandra Hankus and Zofia Walczak

1:30pm–2:05pm, 24 October

There are an number of distinct ways of producing graphics each

with advantages and disadvantages in terms of flexibility, device in­
dependence and ability to include arbitrary TEX text. We will present
a short history of creating graphics starting with the picture environ­

ment provided by L. Lamport with the LATEX 2.09 format.
We will show examples of diagrams, charts, chemical formulas,

musical notation and more complicated three­dimensional graphics.
We also show how complex graphics can be produced with TikZ.

32 TUG 2013

LATEX3: Using the layers
Frank Mittelbach

2:05pm–2:50pm, 24 October

In this talk we will briey present the architecture of LATEX3 with its

four conceptual layers
Document Interface Layer

Document Design Layer
Typesetting Element Layer
Programming Layer

We will then look in some detail at xparse— a LATEX 2ε­like user
interface, as an example of the LATEX3 Document Interface Layer,

that can already now be used to provide extended functionality for
existing LATEX 2ε documents and packages.

We conclude with a brief detour of expl3 the foundation layer

for LATEX3 that provides the basis for all higher­level modules of
LATEX3 but can also be usefully deployed to develop packages for

LATEX 2ε.
The expl3 language is by now in a stable state and gets more and

more traction outside the LATEX3 development work, which can be

seen, for example, by its use in a growing number of answers on the
question and answer portal http://tex.stackexchange.com and

in the appearance of LATEX 2ε packages that use it for programming.

Development of TeXShop—the past and the future
Yusuke Terada
5:15pm–5:50pm, 24 October

TeXShop is a widely­used open source TEX editor and previewer
for MacOS X. TeXShop is developed by Richard Koch, emeritus

professor of mathematics at the University of Oregon, and many
other worldwide contributors including me. Now it is localized for

as many as 10 languages. While it has already sufficient functions
for editing TEX documents, TeXShop is still being updated. In this
presentation, I will give an outline of the design concept of TeXShop

and some new features that have been added recently, especially for
editing Japanese documents. In addition, I will show a vision of

TeXShop for the future.

TUG 2013 33

TEX Live for Android: Development and usage
Clerk Ma

5:50pm–6:25pm, 24 October

The Android system is one of the most popular embeded systems

for mobile devices nowdays. The word Android was coined by Andy
Rubin, the father of Android. The original functions of the Android

were aimed at photography. But, with the growth of mobile phones,
this has changed. Now, with Google’s support, Android can runs
anywhere.

The kernel of Android is based on Linux. So, any binary which
compiled by ARM toolchains can theoretically run on the Android.

But, Android’s directory structure do not obey the FHS (Filesys­
tem Hierarchy Standard). And, common users cannot access root
permissions.

Programs for Android must packed into a simple file, such as
foo.apk, and run under the Dalvik VM. The main programming

language is Java, and the tools are provided by an SDK. But Google
provides an NDK (Native Development Kit) for complex developing.

My project uses both the SDK and NDK. The Java part acts like

a native Android app, and the rest of my project’s task is porting TEX
Live via the NDK.

Portability of TEX Live. The engines in TEX Live can split into
three parts. Some engines are written primarily in Pascal, like TEX82,
Aleph, pTEX and e(u)pTEX. Two engines, pdfTEX and X ETEX, are

written in Pascal with significant additions in C or C++. One engine,
LuaTEX, is fully written in C/C++.

TEX Live provided a set of tools to translate Pascal to C, so any
engines’ code can be translated to C when building the binaries of
TEX Live. Thus, TEX Live runs on essentially any normal Unix or

Windows platform.. Building TEX Live on Linux is very simple, based
on the GNU autotools. However, porting TEX Live to Android is not

an easy task because Android’s C library is bionic, not a standard
libc. So, I needed to change some of the source.

Another cause of problems is the RTTI and exception support

of the NDK’s GCC.
Native app as installer and terminal emulator. In 2012, when

I start my project, I only provided binary files to the users. They
needed to “root” their Android devices to run these program. This
is not convenient for many users.

In 2013, I have developed a native app based on Android Termi­
nal Emulator. This app is intended to eventually have three groups
of functions: terminal emulator (done), TEX Live package manager

(work in progress), and an editor for TEX (not implemented).
Showcase: X ETEX and font­caching; copy any text to get PDF

output; managing binary file and packages.

34 TUG 2013

TEX Live Manager’s rare gems: User mode and multiple repository support
Norbert Preining

6:25pm–6:50pm, 24 October

The TEX Live Manager (tlmgr) is responsible for the manage­

ment of a TEX Live installation. It can be used to search for
packages, do the usual package management (install, update,

remove, backup). In the last couple of releases, two more fea­
tures are available that have been requested for a long time:
user mode and multiple repository support.

In user mode, instead of managing the system tree’s and
installation, tlmgr can be used to manage an arbitrary texmf

tree, for example the user’s TEXMFHOME (which is also the
default). Although full functionality is not possible in user
mode, the basic operations of package installation, removal,

and updates can be handled by any user without requiring
write permission to any system trees.

Multiple repository support was introduced to allow for
easy handling of additional repositories of TEX Live pack­
ages. A few of them have come into existence (tlcontrib,

tlcritical, tlptexlive, Korean support, . . .), but before
now one had to update packages one by one from these repos­

itories. With multiple repositories this has been made a bit
more convenient.

We will give detailed explanation of the workings of these

two features, including live demonstrations, and finish with
some words of caution.

TUG 2013 35

Tsukurimashou: a Japanese­language font meta­family
Matthew Skala

9:00am–9:35am, 26 October

METAFONT­based font projects for the Chinese, Japanese, and Ko­

rean (CJK) languages have been announced every few years since
the early 1980s, even predating the current form of the METAFONT

language. Except for a few non­parameterized conversions of fonts
that originated in other formats, in 30 years every METAFONT CJK
font has been abandoned at or before the 8­bit barrier of 256 kanji,

nowhere near the thousands required for practical typesetting. In
this presentation I describe the first project to break that barrier:

Tsukurimashou (http://tsukurimashou.sourceforge.jp/), cur­
rently at over 1400 kanji (as well as kana, Latin, and Korean hangul)
and steadily growing. I discuss technical and human challenges fac­

ing this kind of project, how to solve them, and spin­off technologies
such as the IDSgrep kanji structural query system.

upTEX—Unicode version of pTEX with CJK extensions
Takuji Tanaka

9:35am–10:10am, 26 October

upTEX is a Unicode extension of ASCII’s pTEX (a Japanese­localized TEX).

It not only improves Japanese support, but also treats Chinese and Korean
characters i.e., Hanzi, Kanji, Hanja/Kana/CJK symbols, and Hangul with
Unicode. Moreover, it can process multilingual typesetting of original

LATEX with \inputenc{utf8} and Babel (Latin, Cyrillic, Greek, etc.) by
switching its \kcatcode tables. In this presentation, the main features of

upTEX will be described.

36 TUG 2013

A short history of TEX in China
Jie Su∗ and Clerk Ma

10:10am–10:45am, 26 October

The original TEX only supported an 8­bit input encoding, and only supported a limited number of characters

in PK fonts. When using TEX to get kanji output in DVI files, we need to handle four issues: (1) encoding
processing, (2) kanji font processing, (3) glue processing between kanji and other characters, (4) kinsoku and

mojikumi processing.
First, encoding of CJK languages must contain more than thousands of kanjis. In mainland China, people use

the GB/T encodings; in Taiwan, people use the Big5 encoding.

A font is the general mechanism for mapping code points to glyphs. During the 1990s, in mainland China,
many kanji fonts for computers were designed without using PostScript technology. Some of these fonts are bitmap

fonts. Two preprocessors, CCT and TY, can produce DVI by converting these Chinese bitmap fonts to PK font.
The glue processing is the first step to get breakable kanji text.
Kinsoku and mojikumi processing is the second step to get correct output of kanji text with punctuations in

proper position.
1. Poor Man’s TEX
The earliest way to process CJK languages was Poor Man’s TEX. Several years later, the CJK package has inherited
Poor Man’s TEX’s mechanism, and wraps it with a simple interface.

The first step of Poor Man’s TEX is to switch the catcode of kanjis to 13 (active character). And then to define

these kanjis as macros which contain a \char command and a font command to produce a glyph in kanji fonts.
Without any extension to METAFONT, Poor Man’s TEX only split a big kanji font into several small fonts to

avoid the limitations of PK format.
2. CCT and TY: Two preprocessors
These preprocessors appeared in the 1990s. At that time, computers in China often ran a DOS system. These pre­

processors’ mechanism is similar to that of Poor Man’s TEX, but modified for the tradition of Chinese typography.
In China, CCT has been accepted by the Chinese Mathematical Society (CMS). Most magzines are produced

by CCT.
3. cwTEX and chiTEX: Another two prepocessors in Taiwan
These preprocessors are used in Taiwan, also using the Poor Man’s TEX mechanism. The cwTEX developers have

provided some patches for ConTEXt MkII to get kanji output.
4. PUTEX: An extension of TEX3
The PUTEX project was started in 1997 and stopped in 2004. The project was developed by Chey Woei Tsay. The
PU in PUTEX is the abbreviation of Providence University in Taiwan.

Compared with the preprocessors above, PUTEX provided an intelligent way to processing kanjis.

PUTEX can handle both GB/T and Big5 encodings natively. On processing a font, PUTEX have patched one
kanji font to an alphabetic font defined by \font. Put another way, PUTEX provided a fallback font mechanism.

Regarding kinsoku and mojikumi processing, PUTEX provided lots of primitives. In pTEX, some processing of
mojikumi is defined by a JFM file. The different method of PUTEX’s mojikumi processing is caused by the complex
punctuation system in China.

The PUTEX project have also provided a patched version of makeindex: puidx. Traditionally, index sorting
in China is more complex than in alphabetic languages. The sorting method can be: (1) by phonetic order, (2) by

Bopomofo order, (3) by stroke count order, (4) by radical/stroke order. The puidx program can do sorting by
phonetic order and Bopomofo order.

The PUTEX project also provided a patched version of dvipdfmx: cdi2pdf.

The general design of PUTEX is comparable to that of pTEX. Although these two engines have some differences
in detail, they share some common concepts.

TUG 2013 37

A case study: Typesetting old documents of Japan
Ken Nakano∗ and Hajime Kobayashi

11:10am–11:45am, 26 October

Shiryo Hensan­jo (the Historiographical Institute, HI), the University

of Tokyo, is a major center of Japanese historical research. The HI
makes historical sources available through its library, publications

and databases.
Livretech helped them develop the typesetting system and data­

bases for the old documents of Japan. These documents have more

difficulties than ordinary Japanese books:
many varieties of characters such as seiji (proper/correct charac­

ters) and sanskrit;
various editorial notes such as headnote, one­liner note, inline

note, line spacing note before line and after line;

page­breakable family tree.
In this presentation, I will talk about how we approached these

topics.

A case study on TEX’s superior power: Giving different colors to building
blocks of Korean syllables
Jin­Hwan Cho
11:45am–0:20pm, 26 October

In 2007 Dave Walden, the instigator and primary interviewer of
TUG’s Interview Corner, tossed a tricky question at me. “One of the

concerns of many people in the TEX world is that TEX is relatively
unknown in the larger worlds of typesetting and word processing
compared with commercial programs such as Adobe’s InDesign and

Microsoft Word. How do you see the future of TEX when it comes
to Asian languages?” Since then, it has been my mission to find

a wonderful answer, that is, a TEX product which other programs
cannot reproduce.

Unicode contains 11,172 modern Korean syllables all of which

are composed by only 24 building blocks. In this talk, I will show
an interesting TEX example containing a large number of Korean

syllables each of which is grouped by building blocks of different
colors. Nobody, of course, will try to reproduce the example with
other commercial programs.

38 TUG 2013

The multibibliography package
Michael Cohen∗, Yannis Haralambous, and Boris Veytsman∗

1:20pm–1:55pm, 26 October

Conventional standards for bibliography styles entail a forced choice

between index and name–year citations and corresponding refer­
ences. We reject this false dichotomy, and describe a multibibli­

ography, comprising alphabetic, sequenced, and also chronological
orderings of references. An extended inline citation format is pre­
sented which integrates such heterogeneous styles, and is useful even

without separate bibliographies. Richly hyperlinked for electronic
browsing, the citations are articulated to select particular bibliogra­

phies, and the bibliographies are cross­referenced through their la­
bels, linking among them.

Typesetting and Layout in Multiple Directions
John Plaice

2:30pm–3:05pm, 26 October

I propose a new, general way of looking at typesetting and layout

in multiple directions. It subsumes the left­to­right and right­to­left
horizontal writing used in most of the world, as well as the vertical
writing used in East Asia. The generality allows the development of

layout schemes for situations when several writing directions appear
on the same page.

The key to the approach is that managing multidirectional text
requires a separation of writing style from box direction. It turns out
that there are only three different kinds of writing style, and eight

kinds of directional box, and that simple rules can be used to define
how these different writing styles may appear in different kinds of

box.

TUG 2013 39

Making mathematical content accessible using Tagged PDF and LATEX
Ross Moore

3:25pm–4:00pm, 26 October

‘Tagged PDF’ (more specifically PDF/UA) is the method developed by

Adobe to allow the Web Content Accessibility Guidelines (WCAG 1.0
and WCAG 2.0) to be satisfied within PDF documents. In this talk

I will show the latest developments on using an extended version of
pdfTEX to allow Tagged PDF documents to be produced, satisfying
both PDF/A (archivability) and PDF/UA (Universal Accessibility).

I’ll show examples which include quite complicated mathemat­
ical expressions, fully tagged with MathML, which can be ‘Read

Aloud’ in Adobe’s Acrobat and free Reader software. These will in­
clude ‘real­world’ documents containing such features as top­matter,
nested list environments, logos, watermarks and other pagination

artifacts, tabular material within mathematics, and some support of
colour and text­styling. A special math­indexing feature has been

developed, which allows the result of processing by external pro­
grams to be identified and reused in successive LATEX runs. This
indexing feature leads to significant time savings when developing a

full document over many processing runs.

How we move(d) on with math
Hans Hagen
4:00pm–4:35pm, 26 October

Given the amount of time I spend on LuaTEX and ConTEXt I occa­
sionally ask myself if it really makes sense to do that. The answer

to that question is determined by several factors. Probably the most
important factor is the userbase: what are their demands, how do

they like to code, what control do they want, and therefore, where
can these tools be of help? Another factor is relevance: can this
combinations do certain things better than other tools? One area

that has always drawn users is math typesetting. So, how up to date
is TEX in that respect? Can we still claim victory there? Did we

evolve well? Can we survive?

40 TUG 2013

The XΥMTEX system for publishing interdisciplinary chemistry/mathematics
books
Shinsaku Fujita
4:35pm–5:10pm, 26 October

The present version of the XΥMTEX system for drawing chemical structural
formulas supports a AllTEX­compatible mode (based on the LATEX picture envi­

ronment and the epic package), a PostScript­compatible mode (based on the
PSTricks package), as well as a PDF­compatible mode (based on the PGF/TikZ

package).
XΥMTEX is useful to generate directly­printable PDF manuscripts for pub­

lishing interdisciplinary books between chemistry and mathematics. Thereby, I

have published several books by combining the chemical capabilities of XΥMTEX
with mathematical ones of AllTEX, e.g., S. Fujita, Organic Chemistry of Photog-

raphy, Springer­Verlag (2004); S. Fujita, Diagrammatical Approach to Molecu-

lar Symmetry and Enumeration of Stereoisomers, Univ. Kragujevac (2007); S.
Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures,

and Chemical Compounds, Univ. Kragujevac (2013, in press).
I will show how the XΥMTEXsystem has changed my style of writing man­

uscripts by referring to my monograph before the development of the XΥMTEX
system: S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry,
Springer­Verlag (1991).

Distributing TEX and friends: methods, pitfalls, advice
Norbert Preining
5:10pm–5:45pm, 26 October

The TEX environment has grown slowly but steadily to a huge collection of
programs, fonts, macro packages, support packages. TEX Live currently ships

about 2 GB in more than 2000 different TEX Live “packages”. As teTEX stopped
being developed and supported several years ago, TEX Live has become the main
TEX distribution on Unix, including MacOS X (MacTEX is exactly TEX Live plus

a few Mac­specific additions); it is also gaining on Windows (where MiKTEX is
still strong).

Integrating TEX Live into any full operating system distribution is a non­
trivial task due to the large number of post installation tasks that have to be
performed. Although over the last years the quality of packages has improved,

the TEX Live development list still often gets bug reports that stem from incorrect
packaging.

This talk gives an overview of the structure of TEX Live and a list of
important and special configuration files. Furthermore, based on the experience
of packaging TEX Live over many years, we will give some advice and examples

on best practices. The talk is not targeted specifically for Debian, but at any
distribution that redistributes TEX Live in one way or another.

TUG 2013 41

Preprints

Math new style: are you better off?
Hans Hagen

Typesetting and Layout in Multiple Directions — Outline
John Plaice

Tsukurimashou: a Japanese­language font meta­family
Matthew Skala

The XyMTEX System for Publishing Interdisciplinary Chemistry/Mathematics Books
Shinsaku Fujita

The Multibibliography Package
Michael Cohen, Yannis Haralambous, and Boris Veytsman

42 TUG 2013

1

1 Math new style: are we better off?

1.1 Introduction

In this article I will summarize the state of upgrading math support in CONTEXT per mid 2013 in the perspective of

demand, usability, font development and LUATEX. There will be some examples, but don’t consider this a manual: there

are enough articles in the mkiv, hybrid and about series about specific topics; after all, we started with this many years

ago. Where possible I will draw some conclusions with respect to the engine. Some comments might sound like criticism,

but you should keep in mind that I wouldn’t spend so much time on TEX if I would not like it that much. It’s just that the

environment wherein TEX is and can be used is not always as perfect as one likes it to be, i.e. bad habits and decisions

once made can be pretty persistent and haunt us forever. I’m not referring to TEX the language and program here, but

more to its use in scientific publishing: in an early stage standards were set and habits were nurtured which meant

that to some extent the coding resembles the early days of computing and the look and feel got frozen in time, in spite

of developments in coding and evolving typographic needs. I think that the community has missed some opportunities

to influence and improve matters which means that we’re stuck with suboptimal situations and, although they are an

improvement, UNICODE math and OPENTYPE math have their flaws.

This is not a manual. Some aspects will be explained with examples, others are just mentioned. I’ve written down

enough details in the documents that describe the history of LUATEX and MKIV and dedicated manuals and repeating

myself makes not much sense. Even if you think that I talk nonsense, some of the examples might set you thinking.

This article was written for the TUG 2013 conference in Japan. Many thanks to Barbara Beeton for proofreading and

providing feedback.

1.2 Some basic questions

Is there still a need for a program like TEX? Those who typeset math will argue that there is. After all, one of the reasons

why TEX showed up is typesetting math. In this perspective we should ask ourselves a few questions:

• Is TEX still the most adequate tool?

• Does it make sense to invest in better machinery?

• Have we learned from the past and improved matters?

• What drives development and choices to be made?

The first question is not that easy to answer, unless you see proof in the fact that TEX is still popular for typesetting a

wide range of complex content (with critical editions being among the most complex). Indeed the program still attracts

new users and developers. But we need to be realistic. First of all, there is some bias involved: if you have used a tool for

many years, it becomes the one and only and best tool. But that doesn’t necessarily make it the best tool for everyone.

In this internet world finding a few thousand fellow users gives the impression that there is a wide audience but there

can be of course thousandfold more users of other systems that don’t fall into your scope. This is fine: I always wonder

why there is not more diversity; for instance, we have only a few operating systems to choose from, and in communities

around computer languages there is a tendency to evangelize (sometimes quite extreme). We should also take into

account that a small audience can have a large impact so size doesn’t matter much.

As TEX is still popular among mathematicians, we can assume that it hasn’t lost its charm yet and often it is their only

option. We have a somewhat curious situation that scientific publishers still want to receive TEX documents —a demand

that is not much different from organizations demanding MS WORD documents— but at the same time don’t care too

much about TEX at all. Their involvement in user groups has started degrading long ago, compared to their profits;

they don’t invest in development; they are mostly profit driven, i.e. those who submit their articles don’t even own their

sources any more, etc.

On the other hand, we have users who make their own books (self-publishing) and who go, certainly in coding and style,

beyond what publishers do: they want to use all kinds of fonts (and mixtures), color, nicely integrated graphics, more

interesting layouts, experiment with alternative presentations. But especially for documents that contain math that also

brings a price: you have to spend more time on thinking about presenting the content and coding of the source. This

all means that if we look at the user side, alternative input is an option, especially if they want to publish on different

media. I know that there are CONTEXT users who make documents (or articles) with CONTEXT, using whatever coding

suits best, and do some conversion when it has to be submitted to a journal. Personally I think that the lack of interest

of (commercial) publishers, and their rather minimal role in development, no longer qualifies them to come up with

requirements for the input, if only because in the end all gets redone anyway (in Far Far Away).

It means that, as long as TEX is feasible, we are relatively free to move on and experiment with alternative input.

Therefore the other two questions become relevant. The TEX engines are adapted to new font technology and a couple

TUG 2013 43

2

of math fonts are being developed (funded by the user groups). Although the TEX community didn’t take the lead in math

font technology we are catching up. At the same time we’re investing much time in new tools, but given the fact that

much math is produced for publishers it doesn’t get much exposure. Scientific publishing is quite traditional and like

other publishing lags behind and eventually will disappear in its current form. It could happen that one morning we find

out that all that ‘publishers want it this or that way’ gets replaced by ways of publishing where authors do all themselves.

A publisher (or his supplier) can keep using a 20-year old TEX ecosystem without problems and no one will notice, but

users can go on and come up with more modern designs and output formats and in that perspective the availability of

modern engines and fonts is good. I’ve said it before: for CONTEXT user demand drives development.

In the next sections I will focus on different aspects of math and how we went from MKII to MKIV. I will also discuss

some (pending) issues. For each aspect I will try to answer the third question: did matters improve and if not, and how

do we cope with it (in CONTEXT).

1.3 The math script

All math starts with symbols and/or characters that have some symbolic meaning and in TEX speak this can be entered

in a rather natural way:

$ y = 2x + b $

In order to let TEX know it’s math (the equivalent of) two dollar signs are used as triggers. The output of this input is:

𝑦 = 2𝑥 + 𝑏. But not all is that simple, for instance if we want to square the x, we need to use a superscript signal:

$ y = x^2 + ax + b $

The ^ symbol results in a smaller 2 raised after the x as in 𝑦 = 𝑥2 + 𝑎𝑥 + 𝑏. Ok, this ^ and its cousin _ are well known

conventions so we stick to this kind of input.

A next level of complexity introduces special commands, for instance a command that will wrap its argument in a square

root symbol: 𝑦 = √𝑥2 + 𝑎𝑥 + 𝑏.

$ y = \sqrt { x^2 + ax + b } $

It is no big deal to avoid the backslash and use this kind of coding:

\asciimath { y = sqrt (x^2 + ax + b) }

In fact, we have been supporting scientific calculator input for over a decade in projects where relatively simple math

had to be typeset. In one of our longest-running math related projects the input went from TEX, to content MATHML to

OPENMATH and via presentation MATHML ended up as a combination of some kind of encoding that web browsers can

deal with. This brings us to reality: it’s web technology that drives (and will drive math) coding. Unfortunately content

driven coding (like content MATHML) does not seem to be the winner here, even if it renders easier and is more robust.

Later I will discuss fences, like parentheses. Take this dummy formula:

$ (x + 1) / a = (x - 1) / b $

In a sequential (inline) rendering this will come out okay. A more display mode friendly variant can be:

$ \frac{x + 1}{a} = \frac{x - 1}{b} $

which in pure TEX would have been:

$ {x + 1} \over {a} = {x - 1} \over {b} $

The main difference between these two ways of coding is that in the second (plain) variant the parser doesn’t know in

advance what it is dealing with. There are a few cases in TEX where this kind of parsing is needed and it complicates

not only the parser but also is not too handy at the macro level. This is why the \frac macro is often used instead. In

LUATEX we didn’t dare to get rid of \over and friends, even if we’re sure they are not used that often by users.

In inline or in more complex display math, the use of fences is quite normal.

$ (\frac{x + 1}{a} + 1)^2 = \frac{x - 1}{b} $

Here we have a problem. The parentheses don’t come out well.

(𝑥+1
𝑎

+ 1)2 = 𝑥−1
𝑏

We have to do this:

$ \left(\frac{x + 1}{a} + 1 \right)^2 = \frac{x - 1}{b} $

in order to get:

44 TUG 2013

3

(
𝑥+1

𝑎
+ 1)

2
= 𝑥−1

𝑏

Doing that \left-\right trick automatically is hard, although in MATHML, where we have to interpret operators anyway

it is somewhat easier. The biggest issue here is that these two directives need to be paired. In 𝜀-TEX a \middle primitive

was added to provide a way to have bars adapt their height to the surroundings. Interesting is that where at the

character level a (has a math property open and) has close. The bar, as we will see later, can also act as separator

but this property does not exist. Because properties (classes in TEX speak) determine spacing we have a problem here.

So far we didn’t extend the repertoire of properties in LUATEX to suit our needs (although in CONTEXT we do have more

properties).

If you are a TEX user typesetting math, you can without doubt come up with more cases of source coding that have the

potential of introducing complexities. But you will also have noticed that in most cases TEX does a pretty good job on

rendering math out of the box. And macro packages can provide additional constructs that help to hide the details of

fine tuning (because there is a lot that can be fine tuned).

In TEX there are a couple of special cases that we can reconsider in the perspective of (for instance) faster machines.

Normally a macro cannot have a \par in one of its arguments. By defining them as \long this limitation goes away. This

default limitation was handy in times when a run was relatively slow and grabbing a whole document source as argument

due to a missing brace had a price. Nowadays this is no real issue which is why in LUATEX we can disable \long which

indeed we do in CONTEXT. On the agenda is to also permit \par in a math formula, as currently TEX complains loudly.

Permitting a bit more spacy formula definitions (by using empty lines) would be a good thing.

Another catch is that in traditional TEX math characters cannot be used outside math. That restriction has been lifted.

Of course users need to be aware of the fact that a mix of math and text symbols can be visually incompatible.

In the examples we used ^ and _ and in math mode these have special meanings. Traditionally in text mode they trigger

an error message. In CONTEXT MKIV we have made these characters regular characters but in math mode they still

behave as expected.1 In a similar fashion the & is an ampersand and when you enable \asciimode the dollar and percent

signs also become regular.2 In LUATEX we have introduced primitives for all characters (or more precisely: catcodes)

that TEX uses for special purposes like opening and closing math mode, scripts, table alignment, etc.

In projects that involve XML we use MATHML. In TEX many characters can be inserted using commands that are tuned

for some purpose. The same character can be associated with several commands. In MATHML entities and UNICODE

characters are used instead of commands. Interesting is that whenever we get math coded that way, there is a good

chance that the coding is inconsistent. Of course there are ways in MATHML to make sure that a character gets inter-

preted in the right way. For instance, the mfenced element drives the process of (matching) parenthesis, brackets, etc.

and a renderer can use this property to make sure these symbols stretch vertically when needed. However, using mo in

an mrow for a fence is also an option, but that demands some more (fuzzy) analysis. I will not go into details here, but

some of the more obscure options and flags in CONTEXT relate to overcoming issues with such cases.

I have no experience with how MS WORD handles math input, apart from seeing some demos. But I know that there is

some input parsing involved that is a mixture between TEX and analysis. Just as word processing has driven math font

technology it might be that at some point users expect more clever processing of input. To a large extent TEX users

already expect that. Where till now TEX could inspire the way word processers do math, word processors can inspire

TEXies way of inputting text.

So, we have MATHML, which, in spite of being structured, is still providing users a lot of freedom. Then there are word

processors, where mouse clicks and interpretation does the job. And of course we have TEX, with its familiar backslashes.

Let us consider math, when seen in print, as a script to express the math language. And indeed, in OPENTYPE, math is

one of the official scripts although one where a rather specific kind of machinery is needed in order to get output.

I could show more complex math formulas but no matter what notation is used, coding will always be somewhat cum-

bersome and handywork. Math formula coding and typesetting remains a craft in itself and TEX notation will keep its

place for a while. So, with that aspect settled we can continue to discuss rendering.

1.4 Alphabets

I have written about math alphabets before so let’s keep it simple here. I think we can safely say that most math support

mechanisms in macro packages are inspired by plain TEX. In traditional TEX we have fonts with a limited number of

glyphs and an eight-bit engine, so in order to get the thousands of possible characters mapped onto glyphs the right one

has to be picked from some font. In addition to characters that you find in UNICODE, there are also variants, additional

sizes and bits and pieces that are used in constructing large characters, so in practice a math font is quite large. But it

is unlikely that we will ever run into a situation where fonts pose limits.

1 In an intermediate version \nonknuthmode and \donknuthmode controlled this.
2 Double percent signs act as comments then which is comparable to comments in some programming languages.

TUG 2013 45

4

The easiest way is of course a direct mapping: an ‘a’ entered in math mode becomes an ‘𝑎’ simply because the current

font at that time has an italic shape in the slot referenced by the character. If we want a bold shape instead, we can

switch to another font and still input an ‘a’. The 16 families available are normally enough for the alphabets that we

need. Because symbols can be collected in any font, they are normally accessed by name, like \oplus or ⊕.

In UNICODE math the math italic ‘𝑎’ has slot U+1D44E and directly entering this character in a UNICODE aware TEX

engine also has to give that ‘𝑎’. In fact, it is the only official way to get that character and the fact that we can enter the

traditional ASCII characters and get an italic shape is a side effect of the macro package, for instance the way it defines

math fonts and families.3

Before we move on, let’s stress a limitation in UNICODE with respect to math alphabets. It has always been a principle

of UNICODE committees to never duplicate entries. So, thanks to the availability of some characters in traditional (font)

encodings, we ended up with some symbols that are used for math in the older regions of UNICODE. As a consequence

some alphabets have gaps. The only real reason I can come up with for accepting these gaps is that old documents using

these symbols would be not compatible with gapfull UNICODE math but I could argue that a document that uses those

old codepoints uses commands (and needs some special fonts) to get the other symbols anyway, so it’s unlikely to be a

real math document. On the other hand, once we start using UNICODE math we could benefit from gapless alphabets

simply because otherwise each application would have to deal with the exceptions. One can come up with arguments

like “just use this or that library” but that assumes persistence, and also forces everyone to use the same approach. In

fact, if we hide behind a library we could as well have hidden the vectors (alphabets) as well. But as they are exposed,

the gaps stand out as an anomaly. Let’s illustrate this with an example. Say that we load the TEXGyre Pagella math font

and call up a few characters:

\definefont[mathdemo][file:texgyrepagellamath*mathematics]

\mathdemo \char"0211C \char"1D507 \char"1D515

The UNICODE fraktur math alphabet is continuous but the ‘MATHEMATICAL FRAKTUR CAPITAL R’ is missing as we

already have the BLACK-LETTER CAPITAL R instead. So, this is why we only see two characters show up. It means that

in the input we cannot have a U+1D515.

ℜ𝔇

Of course we can cheat and fill in the gap:

\definefontfeature

[mymathematics]

[mathematics]

[mathgaps=yes]

This feature will help us cheat:

\definefont[mathdemo][file:texgyrepagellamath*mymathematics]

\mathdemo \char"0211C \char"1D507 \char"1D515

This time we can use the character. I wonder what would happen if the TEX community would simply state that slot

U+1D515 is valid. I bet that math related applications would support it, as they also support more obscure properties of

TEX input encoding.

ℜ𝔇ℜ

If you still wonder why I bother about this, here is a practical example. The SCITE editor that I use is rather flexible

and permits me to implement advanced lexers for CONTEXT (and especially hybrid usage). It also permits to hook in LUA

code and that way the editor can (within bounds) be extended. As an example I’ve added some button bars that permit

entering math alphabets. Of course the appearance depends on the font used but operating systems tend to consult

multiple fonts when the core font of the editor doesn’t provide a glyph.

Here I show a small portion of the stripe with buttons that inject the shown characters. What happens in the rendering

is that first the used font is consulted and that one has a couple of ‘BLACK LETTER CAPITAL’s so they get used. The

3 Our experience is that even when for instance MATHML permits coding of math in XML, copy editors have no problem with abusing regular italic font switches

to simulate math. This can result is a weird mix of math rendering.

46 TUG 2013

5

others are ‘MATHEMATICAL FRAKTUR CAPITAL’s and since the font is not a math font the renderer takes them from

(in this case) Cambria Math, which is why they look so different, especially in proportion. Of course we could start out

with Cambria but it has no monospace (which I want for editing) and is a less complete text font, so we have a chicken--

egg problem here. It is one reason why as part of the math font project we extend the Dejavu Sans Mono with proper

(consistent) math symbols. Anyhow, it illustrates why gaps are kind of evil from the application point of view.

gap char meant unicode used

U+1D455 𝑕 MATHEMATICAL ITALIC SMALL H U+0210E PLANCK CONSTANT

U+1D49D 𝒝 MATHEMATICAL SCRIPT CAPITAL B U+0212C SCRIPT CAPITAL B

U+1D4A0 𝒠 MATHEMATICAL SCRIPT CAPITAL E U+02130 SCRIPT CAPITAL E

U+1D4A1 𝒡 MATHEMATICAL SCRIPT CAPITAL F U+02131 SCRIPT CAPITAL F

U+1D4A3 𝒣 MATHEMATICAL SCRIPT CAPITAL H U+0210B SCRIPT CAPITAL H

U+1D4A4 𝒤 MATHEMATICAL SCRIPT CAPITAL I U+02110 SCRIPT CAPITAL I

U+1D4A7 𝒧 MATHEMATICAL SCRIPT CAPITAL L U+02112 SCRIPT CAPITAL L

U+1D4A8 𝒨 MATHEMATICAL SCRIPT CAPITAL M U+02133 SCRIPT CAPITAL M

U+1D4AD 𝒭 MATHEMATICAL SCRIPT CAPITAL R U+0211B SCRIPT CAPITAL R

U+1D4BA 𝒺 MATHEMATICAL SCRIPT SMALL E U+0212F SCRIPT SMALL E

U+1D4BC 𝒼 MATHEMATICAL SCRIPT SMALL G U+0210A SCRIPT SMALL G

U+1D4C4 𝓄 MATHEMATICAL SCRIPT SMALL O U+02134 SCRIPT SMALL O

U+1D506 𝔆 MATHEMATICAL FRAKTUR CAPITAL C U+0212D BLACK-LETTER CAPITAL C

U+1D50B 𝔋 MATHEMATICAL FRAKTUR CAPITAL H U+0210C BLACK-LETTER CAPITAL H

U+1D50C 𝔌 MATHEMATICAL FRAKTUR CAPITAL I U+02111 BLACK-LETTER CAPITAL I

U+1D515 ℜ MATHEMATICAL FRAKTUR CAPITAL R U+0211C BLACK-LETTER CAPITAL R

U+1D51D 𝔝 MATHEMATICAL FRAKTUR CAPITAL Z U+02128 BLACK-LETTER CAPITAL Z

U+1D53A 𝔺 MATHEMATICAL DOUBLE-STRUCK CAPITAL C U+02102 DOUBLE-STRUCK CAPITAL C

U+1D53F 𝔿 MATHEMATICAL DOUBLE-STRUCK CAPITAL H U+0210D DOUBLE-STRUCK CAPITAL H

U+1D545 𝕅 MATHEMATICAL DOUBLE-STRUCK CAPITAL N U+02115 DOUBLE-STRUCK CAPITAL N

U+1D547 𝕇 MATHEMATICAL DOUBLE-STRUCK CAPITAL P U+02119 DOUBLE-STRUCK CAPITAL P

U+1D548 𝕈 MATHEMATICAL DOUBLE-STRUCK CAPITAL Q U+0211A DOUBLE-STRUCK CAPITAL Q

U+1D549 𝕉 MATHEMATICAL DOUBLE-STRUCK CAPITAL R U+0211D DOUBLE-STRUCK CAPITAL R

U+1D551 𝕑 MATHEMATICAL DOUBLE-STRUCK CAPITAL Z U+02124 DOUBLE-STRUCK CAPITAL Z

Barbara Beeton told me that, although it took some convincing arguments in the discussions about math in UNICODE,

we have at least one hole less than to be expected: slot U+1D4C1 has not been seen as already covered by U+02113.

So is there really this distinction between a MATHEMATICAL SCRIPT SMALL L and SCRIPT SMALL L (usually \ell in macro

packages? Indeed there is, although at the time of this writing interestingly Latin Modern fonts lacked the mathematical

one (which in CONTEXT math mode normally results in an upright drop--in). Such details become important when math

is edited by someone not familiar with the distinction between a variable (or whatever) represented by a script shape

and the length operator. There seems not to be agreement by font designers about the shapes being upright or italic, so

some confusion will remain, although this does not matter as long as within the font they differ.

font U+1D4C1 U+02113

latin modern ℓ
stix/xits 𝓁 ℓ
bonum 𝓁 ℓ
termes 𝓁 ℓ
pagella 𝓁 ℓ
lucida 𝓁 ℓ

As math uses greek and because greek was already present in UNICODE when math was recognized as script and got its

entries, you can imagine that there are some issues there too, but let us move on to using alphabets.

In addition to a one--to--one mapping from a font slot onto a glyph, you can assign properties to characters that map

them onto a slot in some family (which itself relates to a font). This means that in a traditional approach you can choose

among two methods:

• You define several fonts (or instances of the same font) where the positions of regular characters point to the relevant

shape. So, when an italic family is active the related font maps character U+61 as well as U+1D44E to the same italic

shape ‘𝑎’. A switch from italic to bold italic is then a switch in family and in that family the U+61 as well as U+1D482

become bold italic ‘𝒂’.
• You define just one font. The alphabet (uppercase, lowercase and sometimes digits and a few symbols) gets codes

that point to the right shape. When we switch from italic to bold italic, these codes get reassigned.

TUG 2013 47

6

The first method has some additional overhead in defining fonts (you can use copies but need to make sure that the

regular ASCII slots are overloaded) but the switch from italic to bold italic is fast, while in the second variant there is less

overhead in fonts but reassigning the codes with a style switch has some overhead (although in practice this overhead

is can be neglected because not that many alphabet switches take place). In fact, many TEX users will probably stick to

traditional approaches where verbose names are used and these can directly point to the right shape.

In CONTEXT, when we started with MKIV, we immediately decided to follow another approach. We only have one family

and we assume UNICODE math input. Ok, we do have a few more families, but these relate to a full bold math switch

and right--to--left math. We cannot expect users to enter UNICODE math, if only because support in editors is not that

advanced, so we need to support the ASCII input method as well.

We have one family and don’t redefine character codes, but set properties instead. We don’t switch fonts, but properties.

These properties (often a combination) translates into the remapping of a specific character in the input onto a UNICODE

math code point that then directly maps onto a shape. This approach is quite clean and efficient at the TEX end but

carries quite a lot of overhead at the LUA end. So far users never complained about it, maybe because CONTEXT math

support is rather optimized. Also, dealing with characters is only part of math typesetting and we have subsystems that

use far more processing power.

Because math characters are organized in classes, we need to set them up. Because for several reasons we collect

character properties in a database we also define these character properties in LUA. This means that the math-* files

are relatively small. So we have much less code at the TEX end, but quite a lot at the LUA end. This assumes a well

managed LUA subsystem because as soon as users start plugging in their code, we have to make sure that the core

system still functions well. The amount of code involved in virtual math fonts is also relatively large but most of that is

becoming sort of obsolete.

Relatively new in CONTEXT is the possibility in some mathematical constructs to configure the math style (text, script,

etc.) and in some cases math classes can be influenced. Control over styles is somewhat more convenient in LUATEX,

because we can consult the current style in some cases. I expect more of this kind of control in CONTEXT, although most

users probably never need it. These kinds of features are meant for users like Aditya Mahajan, who likes to explore such

features and also takes advantage of the freedom to experiment with the look and feel of math.

The font code that relates to math is not the easiest to understand but this is because it has to deal with bold as well

as bidirectional math in efficient ways. Because in CONTEXT we have additional sizes (x, xx, a, b, c, d, . . .) we also have

some delayed additional defining going on. This all might sound slower to set up but in the end we win some back by

the fact that we have fewer fonts to load. The price that a CONTEXT user pays in terms of runtime is more influenced by

the by now large sequence of math list manipulators than by loading a font.

An unfortunate shortcoming of UNICODE math is that some alphabets have gaps. This is because characters can only

end up once in the standard. Given the number of weird characters showing up in recent versions, I think this condition

is somewhat over the top. It forces applications that deal with UNICODE math to implement exceptions over and over

again. In CONTEXT we assume no gaps and compensate for that.

There are several ways that characters can become glyphs. An ‘a’ can become an italic, bold, bold italic but also end

up sans serif or monospace. Because there are several artistic interpretations possible, some fonts provide a so-called

alternate. In the case of for instance greek we can also distinguish upright or slanted (italic). A less well known trans-

formation is variants driven by UNICODE modified directives. If we forget about bidirectional math and full bold (heavy)

math we can (currently) identify 6 axes:

axis use choices

1 type digits, lowercase & uppercase latin & greek, symbols

2 alphabet regular, sans serif, monospace, blackboard, fraktur, script

3 style upright, italic, bold, bolditalic

4 variant alternative rendering provided by font

5 shape unchanged, upright, italic

6 UNICODE alternative rendering driven by UNICODE modifier

Apart from the last one, this is not new, but it is somewhat easier to support this consistently. It’s one of the areas

where UNICODE shines, although the gaps in vectors are a bad thing. One thing that I decided early in the MKIV math

development is that all should fit into the same model: it makes no sense to cripple a whole system because of a few

exceptions.

Users expect their digits to be rendered upright and letters to be rendered with italic shapes, but use regular ASCII input.

This means that we need to relocate the letters to the relevant alphabet in UNICODE. In CONTEXT this happens as part of

several analysis steps that more or less are the same as the axis mentioned. In addition there is collapsing, remapping,

italic correction, boldening, checking, intercepting of special input, and more going on. Currently there are (depending

on what gets enabled) some 10 to 15 manipulation passes over the list and there will be more.

48 TUG 2013

7

So how does the situation compare to the old one? I think we can safely say that we’re better off now and that LUATEX

behaves quite okay. There is not much that can be improved, apart from more complete fonts (especially bold). A nice

bonus of LUATEX is that math characters can be used in text mode as well (given that the current font provides them).

It will be clear that by following this route we moved far away from the MKII approach and the dependency on LUA has

become rather large in this case. The benefit is that we have rather clean code with hardly any exceptions. It came at

the price of lots of experiments and (re)coding but I think it pays off for users.

1.5 Bold

Bold is sort of special. There are bold symbols and some bold alphabets and that is basically what bold math is: just a

different rendering. In a proper OPENTYPE math fonts these bold characters are covered.

Section titles or captions are often typeset bolder and when they contain math all of it needs to be bolder too. So, a

regular italic shape becomes a bold italic shape but a bold shape becomes heavy. This means that we need a full blown

bold font for that purpose. And although some are on the agenda of the font team, often we need to fake it. This is

seldom an issue as (at least in the documents that I deal with) section titles are not that loaded with math.

A proper implementation of such a mechanism involves two aspects: first there needs to be a complete bold math font

with heavy bold included, and second the macro package must switch to bold math in a bold context. When no real bold

font is available, some automatic mapping can take place, but that might give interpretation issues if bold is used in a

formula. For the average highschool math that we render this is not an issue. Currently there are no full bold math fonts

that have enough coverage. (The XITS font, derived from STIX, has a bold companion that does provide for instance bold

radicals but lacks many bolder alphabets and symbols.)

\startimath

\sqrt{x^2\over 4x} \qquad

{\bf \sqrt{x^2\over 4x}} \qquad

{\mb \sqrt{x^2\over 4x}} \qquad

\sqrt{x^2 + 4x} \qquad

{\bf \sqrt{x^2 + 4x}} \qquad

{\mb \sqrt{x^2 + 4x}}

\stopimath

This gives:

√
𝑥2

4𝑥 √
𝐱𝟐

𝟒𝐱
√ 𝑥2

4𝑥
√𝑥2 + 4𝑥 √𝐱𝟐 + 𝟒𝐱 √𝑥2 + 4𝑥

Here it is always a bit of a guess if bold extensibles are (already) supported so it’s dangerous to go wild with full

bold/heavy combinations unless you check carefully what results you get. Another aspect you need to be aware of is

that there is an extensive fallback mechanism present. When possible a proper alphabet will be used, but when one is

not present there is a fallback on another. This ensures that we get at least something.

There is not much that an engine can do about it, apart from providing enough families to implement it. In a TYPE1

universe indeed we need lots of families already so the traditional 16-family pool is drained soon. In LUATEX we can have

256 families which means that additional TYPE1 bases family sets are no issue any longer. But as in MKIV we no longer

follow that route, bold math can be set up relatively easy, given that we have a bold font. If we don’t have such a font,

we have an intermediate mode where a bold font is simulated. Keep in mind that this always will need checking, at least

as long as don’t have complete enough bold fonts with heavy bold included.

1.6 Radicals

In most cases a TEX user is not that aware of what happens in order to get a nicely wrapped up root on paper. In

traditional TEX this is an interplay between rather special font properties and macros. In LUATEX it has become a bit

more simple because we introduced a primitive for it. Also, in OPENTYPE fonts, the radical is provided in a somewhat

more convenient way. In an OPENTYPE math font there are some variables that control the rendering:

RadicalExtraAscender

RadicalRuleThickness

RadicalVerticalGap

RadicalDisplayStyleVerticalGap

The engine will use these to construct the symbol. The root symbols can grow in two dimensions: the left bit grows

vertically but due to the fact that there is a slope involved it happens in steps using different symbols.

TUG 2013 49

8

√√√√√√

√√√

⎷

√√√√

⎷

√√√√

⎷

√√√√√

⎷

Compare this to for instance how a bracket grows:

[[[[

⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

The bracket is a so-called vertical extensible character. It grows in steps using different glyphs and when we run out

of variants a last resort kicks in: a symbol gets constructed from three pieces, a top and bottom piece and in between

a repeated middle segment. The root symbol is also vertically extensible but there the change to the stretched variant

is visually rather distinct. This has a reason: the specification cannot deal with slopes. So, in order to stretch the last

resort, as with the bracket, goes vertical and provides a middle segment.

The root can also grow horizontally; just watch this:

√ √ √ √ √ √

√√√

⎷

√√√√

⎷

√√√√

⎷

√√√√√

⎷

The font specification can handle vertical as well as horizontal extensibles but surprise: it cannot handle a combination.

Maybe the reason is that there is only one such symbol: the radical. So, instead of expecting a symmetrical engine, an

exception is made that is controlled by the mentioned variables. So, while we go upwards with a proper middle glyph,

we go horizontal using a rule.

One can argue that the traditional TEX machinery is complex because it uses special font properties and macros, but once

you start looking into themodern variant it becomes clear that althoughwe can have a somewhat cleaner implementation,

it still is a kludge. And, because rendering on paper no longer drives development it is not to be expected that this will

change. The TEX community didn’t come up with a better approach and there is no reason to believe that it will in the

future.

One of the reasons for users to use TEX is control over the output: instead of some quick and dirty job authors can spend

time on making their documents look the way they want. Even in these internet times with dynamic rendering, there

is still a place for a more frozen rendering, explicitly driven by the author. But, that only makes sense when the author

can influence the rendering, maybe even without bounds.

So, because in CONTEXT I really want to provide control, as one of the last components, math radicals were made

configurable too. In fact, the code involved is not that complex because most was already in place. What is interesting

is that when I rewrapped radicals once again I realized that instead of delegating something to the engine and font one

could as well forget about it and do all in dedicated code. After all, what is a root symbol more that a variation of a

framed bit of text. Here are some examples.

$

y = \sqrt { x^2 + ax + b } \quad

y = \sqrt[2]{ x^2 + ax + b } \quad

y = \sqrt[3]{ \frac{x^2 + ax + b }{c} }

$

By default this gets rendered as follows:

𝑦 = √𝑥2 + 𝑎𝑥 + 𝑏 𝑦 = 2√𝑥2 + 𝑎𝑥 + 𝑏 𝑦 =
3
√

𝑥2+𝑎𝑥+𝑏
𝑐

We can change the rendering alternative to one that permits some additional properties (like color):

\setupmathradical[sqrt][alternative=normal,color=darkblue]

This looks more or less the same:

𝑦 = √𝑥2 + 𝑎𝑥 + 𝑏 𝑦 = 2√𝑥2 + 𝑎𝑥 + 𝑏 𝑦 =
3
√

𝑥2+𝑎𝑥+𝑏
𝑐

We can go a step further and instead of a font use a symbol that adapts itself:

\setupmathradical

50 TUG 2013

9

[sqrt]

[alternative=mp,

color=darkgreen]

Now we get this:

𝑦 = 𝑥2 + 𝑎𝑥 + 𝑏 𝑦 = 𝑥2 + 𝑎𝑥 + 𝑏2 𝑦 = 𝑥2+𝑎𝑥+𝑏
𝑐

3

Such a variant can be more subtle, as we not only can adapt the slope dynamically, but also add a nice finishing touch

to the end of the horizontal line. Take this variant:

\startuniqueMPgraphic{math:radical:extra}

draw

math_radical_simple(OverlayWidth,OverlayHeight,OverlayDepth,OverlayOffset)

withpen pencircle

xscaled (2OverlayLineWidth)

yscaled (3OverlayLineWidth/4)

rotated 30

dashed evenly

withcolor OverlayLineColor ;

\stopuniqueMPgraphic

We hook this graphic into the macro:

\setupmathradical

[sqrt]

[alternative=mp,

mp=math:radical:extra,

color=darkred]

And this time we see a dashed line:

𝑦 = 𝑥2 + 𝑎𝑥 + 𝑏 𝑦 = 𝑥2 + 𝑎𝑥 + 𝑏2 𝑦 = 𝑥2+𝑎𝑥+𝑏
𝑐

3

Of course one can argue about esthetics but let’s face it: much ends up in print, also by publishers, that doesn’t look

pretty at all, so I tend to provide the author the freedom to make what he or she likes most. If someone is willing to

spend time on typesetting (using TEX), let’s at least make it a pleasant experience.

Here we see the symbol adapt. We can think of alternative symbols, for instance the first part becomes wider dependent

on the height, but this can be made less prominent. Depending on user input I will provide some more variants as it’s

relatively easy to implement.

Before I wrap up, let’s see what exactly we have in stock deep down. Traditionally TEX provides a \surd command which

is just the root symbol. Then there is a macro \root..\of.. that wraps the last argument in a root and typesets a

degree as well (of given). In CONTEXT we now provide this:

$\surd x \quad \surdradical x \quad \rootradical{3}{x} \quad \sqrt[3]{x}$

I don’t remember ever having used the \surd command, but this is what it renders:

√𝑥 √𝑥 3√𝑥 3√𝑥

Only the last command, \sqrt is a macro defined in one of the math modules, the others are automatically defined from

the database:

[0x221A] = { -- there are a few more properties set

unicodeslot = 0x221A,

description = "SQUARE ROOT",

adobename = "radical",

category = "sm",

mathspec = {

{ class = "root", name = "rootradical" },

{ class = "radical", name = "surdradical" },

TUG 2013 51

10

{ class = "ordinary", name = "surd" },

},

}

So we get the following definitions:

command meaning usage

\surd \Umathchar"0"00"00221A \surd

\surdradical \protected macro:->\Uradical "0 "221A \surdradical{body}

\rootradical \protected macro:->\Uroot "0 "221A \rootradical{degree} {body}

So, are we better off? Given that a font sticks to how Cambria does it, we only need a minimal amount of code to

implement roots. This is definitely an improvement at the engine level. However, in the font there are no fundamental

differences between the traditional and more modern approach, but we’ve lost the opportunity to make a proper two--

dimensional extensible. Eventually the user won’t care as long as the macro package wraps it all up in useable macros.

1.7 Primes

Another rather disturbing issue is with primes. A prime is an accent-like symbol that as a kind of superscript is attached

to a variable or function. In good old TEX tradition this is entered as follows:

$ f'(x) $ and $ f''(x) $

which produces: 𝑓′(𝑥) and 𝑓″(𝑥). The upright quote symbols are never used for anything else than primes and magically

get remapped onto a prime symbol. This might look trivial, but there are several aspects to deal with, especially when

using traditional fonts. In the eight-bit lmsy10 math symbol font, which is derived from the original cmsy10 the prime

symbol looks like this:

󰀏

The bounding box is rather tight and the reason for this becomes clear when we put it alongside another character:

𝑥󰀏

The prime is not only pretty large, it also sits on the baseline. It means that in order to make it a real prime (basically

an operator pointing back to the preceding symbol), we need to raise it. Of course we can define a \prime command

that takes care of this, and indeed that is what happens in plain TEX and derived formats. The more direct ' input is

supported by making that character an active character in math mode. Active characters behave like commands and in

this case the \prime command.

In the OPENTYPE latin modern fonts the prime (U+2032) looks like this:

𝑥′
So here we have an already raised and also smaller prime symbol. And, because we also have double (U+2033) and triple

primes (U+2034) a few more characters are available

𝑥′ 𝑥″ 𝑥‴
In the traditional approach these second and third order primes are built from the first order primes. And this introduces,

in addition to the raising, another complexity: the \prime command has to look ahead and intercept future primes. And

as there can also be a following raised symbol (or number) it needs to take a superscript trigger into account as well.

So, let’s look at some possible input:

$f'(x)$ 𝑓′(𝑥)
$f''(x)$ 𝑓″(𝑥)
$f'''(x)$ 𝑓‴(𝑥)
$f\prime ^2$ 𝑓′2

$f\prime \prime ^2$ 𝑓″2

$f\prime \prime \prime ^2$ 𝑓‴2

$f'\prime '^2$ 𝑓‴2

$f^'(x)$ 𝑓′(𝑥)
f'^2 𝑓′2

$f{\prime }^2$ 𝑓′2

Now imagine that you have this big prime character sitting on the baseline and you need to turn ''' into a a triple prime,

but don’t want ^' to be double raised, while on the other hand ^2 should be. This is of course doable with some macro

juggling but how about supporting traditional fonts in combination with OPENTYPE, where the primes are already raised.

When we started with LUATEX and CONTEXT MKIV, one of the first decisions I made was to go UNICODE math and drop

eight-bit. In order to compensate for the lack of fonts, a mechanism was provided to construct virtual UNICODE math

52 TUG 2013

11

fonts, as a prelude to the lm/gyre OPENTYPE math fonts. In the meantime we have these fonts and the virtual variants

are only kept as historic reference and for further experiments.

As a starter I wrote a variant of the traditional CONTEXT \prime command that could recognize somehow if it was

dealing with a TYPE1 or OPENTYPE font. As a consequence it also had the traditional raise and look ahead mess on

board. However, there was also some delegation to the LUA enhanced math support code, so the macro was not that

complex. When the real OPENTYPE math fonts showed up the macro was dropped and the virtual fonts were adapted

to the raised-by-default situation, which in itself was somewhat complicated by the fact that a smaller symbol had to be

used, i.e. some more information about the current set of defined math sizes has to be passed around.4

Anyhow, the current implementation is rather clean and supports collapsing of combinations rather well. There are four

prime symbols but only three reverse prime symbols. If needed I can provide a virtual REVERSED TRIPLE PRIME if needed,

but I guess it’s not needed.

U+2032 PRIME ′ ′
U+2033 DOUBLE PRIME ″ ′′ ″
U+2034 TRIPLE PRIME ‴ ′′′ ′″ ″′ ‴
U+2057 QUADRUPLE PRIME ⁗ ′′′′ ′′″ ′″′ ″′′ ″″ ‴′ ′‴ ⁗
U+2035 REVERSED PRIME ‵ ‵
U+2036 REVERSED DOUBLE PRIME ‶ ‵‵ ‶
U+2037 REVERSED TRIPLE PRIME ‷ ‵‵‵ ‵‶ ‶‵ ‷

Of course no one will use this ligature approach but I’ve learned to be prepared as it wouldn’t be the first time when we

encounter input that is cut and paste from someplace or clicked-till-it-looks-okay.

There is one big complication and that is that where in TEX there is only one big prime that gets raised and repeated in

case of multiple primes, in OPENTYPE the primes are already raised. They are in fact not supposed to be superscripted,

as they are already. In plain TEX the prime is entered using an upright single quote and that one is made active: it is in

fact a macro. That macro looks ahead and intercepts following primes as well as subscripts. In the end, a superscript

(the prime) and optional subscripts are attached to the preceding symbol. If we want to benefit from the UNICODE

primes as well as support collapsing, such a macro quickly becomes messy. Therefore, in MKIV the optional subscript is

handled in the collapser. We cheat a bit by relocating super- and subscripts and at the same time remap the primes to

virtual characters that are smashed to a smaller height, lowered to the baseline, and eventually superscripted. Indeed,

it sounds somewhat complex and it is. In a next version I will also provide ways to influence the size as one might

want larger of smaller primes to show up. This is one case where the traditional TEX fonts have a benefit as the primes

are superscriptable characters, but we have to admit that the UNICODE and OPENTYPE approach is conceptually more

correct. The only way out of this is to have a primitive operation for primes just as we have for radicals but that also has

some drawbacks. Eventually I might come up with a cleaner solution for this dilemma.

Let us summarize the situation and solution used in MKIV now:

• When (still) using the virtual UNICODE math fonts, we construct a virtual glyph that has properties similar to proper

OPENTYPE math fonts.

• We collapse a sequence of primes into proper double and triple primes.

• We unraise primes so that users who (for some reason) superscript them (maybe because they still assume big ones

sitting on the baseline) get the desired outcome.

• We accept mixtures of ' and \prime.

We can do this because in CONTEXT MKIV we don’t care too much about exact visual compatibility as long as we can

make users happy with clean mechanisms. So, this is one of the situations where the new situation is better, thanks to

on the one hand the way primes are provided in fonts, and on the other hand the enhanced math machinery in MKIV.

1.8 Accents

There are a few special character types in math and accents are one of them. Personally I think that the term accent is

somewhat debatable but as they are symbols drawn on top of or below something we can stick to that description for

the moment. In addition to some regular fixed width variants, we have adaptive versions: \hat as well as \widehat and

more.

̂ ̂ ̂ ̂ ̂ ̂
I have no clue if wider variants are needed but such a partial coverage definitely looks weird. So, as an escape users can

kick in their own code. After all, who says that a user cannot come up with a new kind of math. The following example

demonstrates how this is done:

4 The actual solution for this qualifies as a dirty trick so we are not freed from tricks yet.

TUG 2013 53

12

\startMPextensions

vardef math_ornament_hat(expr w,h,d,o,l) text t =

image (

fill

(w/2,10l) -- (w + o/2,o/2) --

(w/2, 7l) -- (- o/2,o/2) --

cycle shifted (0,h-o) t ;

setbounds

currentpicture

to

unitsquare xysized(w,h) enlarged (o/2,0)

)

enddef ;

\stopMPextensions

This defines a hat-like symbol. Once the sources of the math font project are published I can imagine that an ambitious

user defines a whole set of proper shapes. Next we define an adaptive instance:

\startuniqueMPgraphic{math:ornament:hat}

draw

math_ornament_hat(

OverlayWidth,

OverlayHeight,

OverlayDepth,

OverlayOffset,

OverlayLineWidth

)

withpen

pencircle

xscaled (2OverlayLineWidth)

yscaled (3OverlayLineWidth/4)

rotated 30

withcolor

OverlayLineColor ;

\stopuniqueMPgraphic

Last we define a symbol:

\definemathornament [mathhat] [mp=math:ornament:hat,color=darkred]

And use it as \mathhat{...}:

Of course this completely bypasses the accent handler and in fact even writing the normal stepwise one is not that hard

to do in macros. But, there is a built--in mechanism that helps us for those cases and it can even deal with font based

stretched alternatives of which there are a few: curly braces, brackets and parentheses. The reason that these can

stretch is that they don’t have slopes and therefore can be constructed out of pieces: in the case of a curly brace we

have 4 snippets: begin, end, middle and repeated rules, and in the case of braces and brackets 3 snippets will do. But,

if we really want we can use METAPOST code similar to the code shown above to get a nicer outcome.

There are in good TEX tradition four accents that can also stretch horizontally: bar, brace, parenthesis and bracket.

When using fonts such an accent looks like this:

𝑎 + 𝑏 + 𝑐 + 𝑑⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ 𝑎 + 𝑏 + 𝑐 + 𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑎 + 𝑏 + 𝑐 + 𝑑⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

this is coded like:

$ \overbrace{a+b+c+d} \quad \underbrace{a+b+c+d} \quad \doublebrace{a+b+c+d} $

As with radicals, for more fancy math you can plug in METAPOST variants. Of course this kind of rendering should fit

into the layout of the document but I can imagine that for schoolbooks this makes sense.

\useMPlibrary[mat]

\setupmathstackers

[vfenced]

54 TUG 2013

13

[color=darkred,

alternative=mp]

Applied in an example we get:

𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

This kind of magic is partly possible because in LUATEX (and therefore MKIV) we can control matters a bit better. And

of course the fact that we have METAPOST embedded means that the impact of using graphics is not that large.

We used the term ‘stackers’ in the setup command so although these are officially accents, in CONTEXT we implement

them as instances of a more generic mechanism: things stacked on top of each other. We will discuss these in the next

section.

1.9 Stackers

In plain TEX and derived work you will find lots of arrow builders. In most cases we’re talking of a combination of one

or more single or double arrow heads combined with a rule. In any case it is something that is not so much font driven

but macro magic. Optionally there can be text before and/or after as well as text above and/or below them. The later

is for instance the case in chemistry. This text is either math or upright properly kerned and spaced non--mathematical

text so we’re talking of some mixed math and text usage. The size is normally somewhat smaller.

Arrows can also go on top or below regular math so in the end we end up with several cases:

• Something stretchable on top of or centered around the baseline, optionally with text above or below.

• Something stretchable on top of a running (piece of) text or math.

• Something stretchable below a running (piece of) text or math.

• Something stretchable on top as well as below a running (piece of) text or math.

These have in common that the symbol gets stretched. In fact the last three cases are quite similar to accents but in

traditional TEX and its fonts arrows and alike never made it to accents. One reason is probably that because a macro

language was available and because fonts were limited, it was rather easy to use rules to extend an arrowhead.

In CONTEXT this kind of vertically stacked stretchable material is implemented as stackers. In the chapter mathstackers

of about.pdf you can read more about the details so here I stick to a short summary to illustrate what we’re dealing

with. Say that you want an arrow that stretches over a given width.

\hbox to 4cm{\leftarrowfill}

In traditional TEX with traditional fonts the definition of this arrow looks as follows:

\def\leftarrowfill {$

\mathsurround=0pt

\mathord{\mathchar"2190}

\mkern-7mu

\cleaders

\hbox {$

\mkern-2mu

\mathchoice

{\setbox0\hbox{$\displaystyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\textstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptscriptstyle-$}\ht0=0pt\dp0=0pt\box0}

\mkern-2mu

$}

\hfill

\mkern-7mu

\mathchoice

{\setbox0\hbox{$\displaystyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\textstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptstyle -$}\ht0=0pt\dp0=0pt\box0}

TUG 2013 55

14

{\setbox0\hbox{$\scriptscriptstyle-$}\ht0=0pt\dp0=0pt\box0}

$}

When using TYPE1 fonts we don’t use a \mathchar but more something like this:

\leftarrow = \mathchardef\leftarrow="3220

What we see in this macro is a left arrow head at the start and as minus sign at the end. In between the \cleaders will

take care of filling up the available hsize with more minus signs. The overlap is needed in order to avoid gaps due to

rounding in the renderer and also obscures the rounded caps of the used minus sign.

The minus sign is used because it magically connects well to the arrow head. This is of course a property of the design

but even then you can consider it a dirty trick. We don’t specify a width here as this macro adapts itself to the current

width due to the leader. But if we do know the width an easier approach becomes possible. Take this combination of a

left and right arrow on top of each other:

\mathstylehbox{\Umathaccent\fam\zerocount"21C4{\hskip4cm}}

The \mathstylehbox macro is a CONTEXT helper. When we take a closer look at the result (scaled up a bit) we see again

snippets being used:5.

⇄⇄⇄
But this time the engine itself deals with the filling. Unfortunately for the accent approach to work we need to specify

the width. Given how these arrows are used, this is no problem: because we often put text on top and/or below, we

need to do some packaging and therefore know the dimensions, but a generic alternative would be nice. This is why for

LUATEX we have on the low priority agenda:

\leaders"2190\hfill

or a similar primitive. This way we can let the engine do some work and keep macros simple. Normally \leaders

delegate part of repeating to the backend but in the case of math it has to be part of constructing the formula because

the extensible constructor has to be used.

If you’ve looked into the LUATEX manual you might have noticed that there is a new primitive that permits this:

\mathstylehbox{\Uoverdelimiter\fam"21C4{\hskip4cm}}

However, it is hardly useable for our purpose for several reasons. First of all, when the argument is narrower than the

smallest possible delimiter both get left aligned, so the delimiter sticks out (this can be considered a bug). But also,

the placement is influenced by a couple of parameters that we then need to force to zero values, which might interfere.

Another property of this mechanism is that the style is influenced and so we need to mess more with that. These are

enough reasons to ignore this extension for a while. Maybe at some point, when really needed, I will write a proper

wrapper for this primitive.

When we started with MKIV we stuck with the leaders approach for a while if only because there was no real need to

redefine the old macros. But after a while one starts wondering if this is still the way to go, especially when reimple-

menting the chemistry macros didn’t lead to nicer looking code. Part of the problem was that putting two arrows on

top of each other where each one goes into another direction gave issues due to the fact that we don’t have the right

snippets to do it nicely. A way out was to create virtual characters for combinations of begin and end snippets as well

as middle pieces, construct a proper virtual extensible and use the LUATEX extensible constructor. Although we still

have a character that gets built out of snippets, at least the begin and end snippet indicate that we have to do with one

codepoint, contrary to two independent stacked arrows.

This was also the moment that I realized that it was somewhat weird that OPENTYPE math fonts didn’t have that kind

of support. After discussing this with Bogusław Jackowski of the math font project we decided that it made sense to

add proper native extensibles to the upcoming math fonts. Of course I still had to support other math fonts but at least

we had a conceptually clean example font now. So, from that moment on the implementation used extensibles when

possible and falls back on the fake approach when needed.

In CONTEXT all these vertically stacked items are now handled by the math stacker subsystem, including a decent set

of configuration options. As said, the symbols that need to stretch currently use the accent primitives which is okay but

somewhat messy because that mechanism is hard to control (after all it wants to put stuff on top or below something).

For (mostly) chemistry we can put text on top or below arrows and control offsets of the text as well as the axis of the

arrows. We can use color and set the style. In addition there are constructs where there is text in the middle and arrows

(or other symbols that need to adapt) on top or at the bottom.

5 We cheat a bit here: as we use XITS in this document, and that font doesn’t yet provide this magic we switch temporarily to the Pagella font

56 TUG 2013

15

Many arrows come in sizes. For instance there are two sizes of right pointing arrows as well as stretched variants, and

use as top and bottom accents.

$\rightarrow \quad \char "2192$ → →
$\longrightarrow \quad \char "27F6$ ⟶ ⟶
\hbox to 2cm{$\rightarrowfill $} −−−−−−−−−−−−→
\hbox to 4cm{$\rightarrowfill $} −−−−−−−−−−−−−−−−−−−−−−−−→

$\overrightarrow {a+b+c}$ 𝑎 + 𝑏 + 𝑐
←←←←←←←←←←←←→

$\underrightarrow {a+b+c}$ 𝑎 + 𝑏 + 𝑐←←←←←←←←←←←←→
The first two arrows are just characters. The boxed ones are extensibles using leaders that build the arrow from snippets

(a hack till we have proper character leaders) and the last two are implemented by abusing the accent mechanism and

thereby use the native extensibles of the first character.

The problem here is in names and standards. The first characters have a fixed size while the later are composed. The

short ones have the extensibles and can therefore be used as accents (or when supported as character leader). However

from the user’s perspective, the distinction between the two UNICODE characters might be less clear, not so much when

they are used as character, but when used on top of or below something. As a coincidence, while writing this section, a

colleague dropped a snippet of MATHML on my desk:

<m:math>

<m:mrow>

<m:mover accent='true'>

<m:mrow>

<m:mi>A</m:mi>

<m:mi>S</m:mi>

</m:mrow>

<m:mo stretchy='true'>→</m:mo>

</m:mover>

</m:mrow>

</m:math>

However, instead of <m:mo>→</m:mo> there was used <m:mo>⟶</m:mo> and that entity is the long arrow. As

is often the case in MATHML the rendering is supposed to be quite tolerant and here both should stretch over the row.

When a TEX user renders his or her source and sees something wrong, the search for what character or command should

be used instead starts. A MATHML user probably just expects things to work. This means that in a system like CONTEXT

there will always be hacks and kludges to deal with such matters. It is again one of these areas where optimally the TEX

community could have influenced proper and systematic coding, but it didn’t happen. So, no matter now good we make

an engine or macro package, we always need to be prepared to adapt to what users expect. Let’s face it: it’s not that

trivial to explain why one should favor one or the other arrow as accent: the more it has to cover, the longer it gets and

the more we think of long arrows, but adding a whole bunch pf \longrightarrow... commands to CONTEXT makes no

sense.

Nevertheless, we might eventually provide more MATHML compliant commands at the TEX end. Just consider the fol-

lowing MATHML snippets:6

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:mover>

<m:mo>⟶</m:mo>

<m:ms>arrow + text</m:ms>

</m:mover>

<m:mi>b</m:mi>

<m:mover>

<m:ms>text + arrow</m:ms>

<m:mo>⟶</m:mo>

</m:mover>

<m:mi>c</m:mi>

</m:mrow>

</m:math>

This renders as:

6 These examples are variations on what we run into in Dutch school math (age 14–16).

TUG 2013 57

16

𝑎 ←←←←←←←←←←←←←←←←←←→
“arrow + text”

𝑏 “text + arrow”
←←←←←←←←←←←←←←←←←←←←←→

𝑐

Here the same construct is being used for two purposes: put an arrow on top of content that sits on the math axis or put

text on an arrow that sits on the math axis. In TEX we have different commands for these:

$ a \overrightarrow{b+c} d $ and $ a \mrightarrow{b+c} d $

or

𝑎 𝑏 + 𝑐
←←←←←→

𝑑 and 𝑎 ←←←←←←←→
𝑏 + 𝑐

𝑑

The same is the case for:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munder>

<m:mo>⟶</m:mo>

<m:ms>arrow + text</m:ms>

</m:munder>

<m:mi>b</m:mi>

<m:munder>

<m:ms>text + arrow</m:ms>

<m:mo>⟶</m:mo>

</m:munder>

<m:mi>c</m:mi>

</m:mrow>

</m:math>

or:

𝑎 ←←←←←←←←←←←←←←←←←←→
“arrow + text”

𝑏 “text + arrow”←←←←←←←←←←←←←←←←←←←←←→ 𝑐

When no arrow (or other stretchable character) is used, we still need to put one on top of the other, but in any case we

need to recognize the two cases that need the special stretch treatment. There is also a combination of over and under:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munderover>

<m:mo>⟶</m:mo>

<m:ms>text 1</m:ms>

<m:ms>text 2</m:ms>

</m:munderover>

<m:mi>b</m:mi>

</m:mrow>

</m:math>

𝑎 ←←←←←←←←←←→
“text 1”

“text 2”
𝑏

And again we need to identify the special stretchable characters from anything otherwise.

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munderover>

<m:ms>text 1</m:ms>

<m:ms>text 2</m:ms>

<m:ms>text 3</m:ms>

</m:munderover>

<m:mi>b</m:mi>

</m:mrow>

</m:math>

or:

58 TUG 2013

17

𝑎 “text 1”

“text 2”

“text 3”

𝑏

And we even can have this:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munderover>

<m:ms>text 1</m:ms>

<m:mo>⟶</m:mo>

<m:ms>text 2</m:ms>

</m:munderover>

<m:mi>b</m:mi>

</m:mrow>

</m:math>

𝑎 “text 1”

−−−−−−−−→

“text 2”

𝑏

We have been supporting MATHML in CONTEXT for a long time and will continue doing it. I will probably reimplement

the converter (given a good reason) using more recent subsystems. It doesn’t change the fact that in order to support it,

we need to have some robust analytical support macros (functions) to deal with situations as mentioned. The TEX engine

is not made for that but in the meantime it has become more easy thanks to a combination of TEX, LUA and data tables.

Consistent availability of extensibles (either or not virtual) helps too.

Among the conclusions we can draw is that quite a lot of development (font as well as engine) is driven by what we have

had for many years. A generic multi--dimensional glyph handler could have covered all odd cases that used to be done

with macros but for historic reasons we could still be stuck with several slightly different and overlapping mechanisms.

Nevertheless we can help macro writers by providing for instance leaders that accept characters as well in which case

in math mode extensibles can be used.

1.10 Fences

Fences are symbols that are put left and/or right of a formula. They adapt their height and depth to the content they

surround, so they are vertical extensibles. Users tend to minimize their coding but this is probably not a good idea with

fences as there is some magic involved. For instance, TEX always wants a matching left and right fence, even if one is a

phantom. So you will normally have something like this:

\left\lparent x \right\rparent

and when you don’t want one of them you use a period:

\left\lparent x \right.

The question is, can we make the users live easier by magically turning braces, brackets and parentheses etc. into

growing ones. As with much in MKIV, it could be that LUA can be of help. However, look at the following cases:

\startformula (x) \stopformula

(𝑥)

This internally becomes something like this:

open noad : nucleus : mathchar : U+00028

ord noad : nucleus : mathchar : U+00078

close noad : nucleus : mathchar : U+00029

We get a linked list of three so-called noads where each nucleus is a math character. In addition to a nucleus there can

be super- and subscripts.

\startformula \mathinner { (x) } \stopformula

(𝑥)

inner noad : nucleus : submlist :

open noad : nucleus : mathchar : U+00028

TUG 2013 59

18

ord noad : nucleus : mathchar : U+00078

close noad : nucleus : mathchar : U+00029

This is still simple, although the inner primitive results in three extra levels.

\startformula \left(x \right) \stopformula

(𝑥)

Now it becomes more complex, although we can still quite well recognize the input. The question is: how easily can we

translate the previous examples into this structure.

inner noad : nucleus : submlist :

left fence : delim : U+00028

ord noad : nucleus : mathchar U+00078

right fence : delim : U+00029

\startformula ||x|| \stopformula

‖𝑥‖

Again, we can recognize the sequence in the input:

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+00078

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+0007C

Here we would have to collapse the two bars into one. Now, say that we manage to do this, even if it will cost a lot of

code to check all border cases, then how about this?

\startformula \left|| x \right|| \stopformula

||𝑥| |

inner noad : nucleus : submlist noad :

left fence : delim : U+00028

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+00078

right fence : delim : U+00029

ord noad : nucleus : mathchar : U+0007C

This time we have to look over the sublist and compare the last fence with the character following the sublist. If you

keep in mind that there can be all kind of nodes in between, like glue, and that we can have multiple nested fences, it

will be clear that this is a no-go. Maybe for simple cases it could work out but for a bit more complex math one ends up

in constantly fighting asymmetrical input at the LUA end and occasionally fighting the heuristics at the TEX end.

It is for this reason that we provide a mechanism that users can use to avoid the primitives \left and \right.

\setupmathfences

[color=red]

\definemathfence

[fancybracket]

[bracket]

[command=yes,

color=blue]

\startformula

a \fenced[bar] {\frac{1}{b}} c \qquad

a \fenced[doublebar]{\frac{1}{b}} c \qquad

a \fenced[triplebar]{\frac{1}{b}} c \qquad

a \fenced[bracket] {\frac{1}{b}} c \qquad

a \fancybracket {\frac{1}{b}} c

\stopformula

So, you can either use a generic instance of fences (\fenced) or you can define your own commands. There can be

several classes of fences and they can inherit and be cloned.

60 TUG 2013

19

𝑎 |
1
𝑏 | 𝑐 𝑎 ‖

1
𝑏 ‖ 𝑐 𝑎 ⦀

1
𝑏 ⦀ 𝑐 𝑎 [

1
𝑏] 𝑐 𝑎 [

1
𝑏] 𝑐

As a bonus CONTEXT provides a few wrappers:

\startformula

\Lparent \frac{1}{a} \Rparent \quad

\Lbracket \frac{1}{b} \Rbracket \quad

\Lbrace \frac{1}{c} \Rbrace \quad

\Langle \frac{1}{d} \Rangle \quad

\Lbar \frac{1}{e} \Rbar \quad

\Ldoublebar \frac{1}{f} \Rdoublebar \quad

\Ltriplebar \frac{1}{f} \Rtriplebar \quad

\Lbracket \frac{1}{g} \Rparent \quad

\Langle \frac{1}{h} \Rnothing

\stopformula

which gives:

(
1
𝑎) [

1
𝑏] {

1
𝑐 } ⟨

1
𝑑 ⟩ |

1
𝑒 | ‖

1
𝑓‖ ⦀

1
𝑓⦀ [

1
𝑔) ⟨

1
ℎ

For bars, the same applies as for primes: we collapse them into proper UNICODE characters when applicable:

U+007C VERTICAL LINE | |
U+2016 DOUBLE VERTICAL LINE ‖ || ‖
U+2980 TRIPLE VERTICAL BAR DELIMITER ⦀ ||| |‖ ‖| ⦀

The question is always: to what extent do users want to structure their input. For instance, you can define this:

\definemathfence [weirdrange] [left="0028,right="005D]

and use it as:

$ (a,b] = \fenced[weirdrange]{a,b}$

This gives (𝑎, 𝑏] = (𝑎, 𝑏] and unless you want to apply color or use specific features there is nothing wrong with the direct
way. Interesting is that the complications are seldom in regular TEX input, but MATHML is a different story. There is an

mfenced element but as users can also use the more direct route, a bit more checking is needed in order to make sure

that we have matching open and close symbols. For reasons mentioned before we cannot delegate this to LUA but have

to use special versions of the \left and \right commands.

One complication of making a nice mechanism for this is that we cannot use the direct characters. For instance curly

braces are also used for grouping and the less and equal signs serve different purposes. So, no matter what we come

up with, these cases remain special. However, in CONTEXT the following is valid:

\setupmathfences[color=darkgreen]

\setupmathfences[mirrored][color=darkred]

\startformula

\left { \frac{1}{a} \right } \quad

\left [\frac{1}{b} \right] \quad

\left (\frac{1}{c} \right) \quad

\left < \frac{1}{d} \right > \quad

\left ⟨ \frac{1}{d} \right ⟩ \quad

\left | \frac{1}{e} \right | \quad

\left \frac{1}{e} \right \quad

\left \frac{1}{e} \right \quad

\left [\frac{1}{d} \right [\quad

\left] \frac{1}{d} \right [\quad

\stopformula

In the background mapping onto the mentioned left and right commands happens so we do get color support as well.

And, it doesn’t look that bad in your document source either. Of course other combinations are also possible.

{
1
𝑎 } [

1
𝑏] (

1
𝑐) ⟨

1
𝑑 ⟩ ⟨

1
𝑑 ⟩ |

1
𝑒 | ⟪

1
𝑒 ⟫ ⟫

1
𝑒 ⟪ [

1
𝑑 []

1
𝑑 [

As there are many ways to get fences and users can come from other macro packages (or use them mixed) we support

them all as well as possible.

TUG 2013 61

20

\left (\frac{1}{x} \right) =

(\frac{1}{x}) =

\left\(\frac{1}{x} \right\) =

\(\frac{1}{x} \) =

\left\lparent \frac{1}{x} \right\rparent =

\lparent \frac{1}{x} \rparent =

\Lparent \frac{1}{x} \Rparent

(
1
𝑥) = (1

𝑥
) = (

1
𝑥) = (1

𝑥
) = (

1
𝑥) = (1

𝑥
) = (

1
𝑥)

Unfortunately UNICODE math doesn’t free us from some annoyances with respect to paired fences. On the one hand

coding math is a symbolic, abstract matter: a left parenthesis opens something and a right one closes something. The

same is true for brackets and braces. However, the bar is used for left and right fencing as well as separating pieces of a

formula (e.g. in conditions). Because traditionally these left and right bars were purely vertical with no slope, or hooks,

or other thingies attached, in UNICODE there is only one slot for it. Where paired fences can play a role in analyzing

content, bars are rather useless for that. It also means that when coding a formula one cannot rely on the bar symbol to

determine a left or right property. Normally this is no problem as we can use symbolic names (that include the \left or

\right directive) but for instance in rendering MATHML it demands some fuzzy logic to be applied. It would have been

nice to have code points for the three cases.

\ruledhbox{$\left|x\right|$}

\ruledhbox{$\left(x\middle|x\right)$}

\ruledhbox{$\startcheckedfences\left(x\leftorright|x\right)\stopcheckedfences$}

\ruledhbox{$\startcheckedfences\leftorright|x\leftorright|\stopcheckedfences$}

\ruledhbox{$\startcheckedfences\leftorright|x\stopcheckedfences$}

\ruledhbox{$\startcheckedfences\left(x\leftorright|\stopcheckedfences$}

Believe me: we run into any combination of these bars and parentheses. And we’re no longer surprised to see code like

this (generated from applications):

<math>

<mrow>

<mo>(</mo>

<mi>y</mi>

<mrow>

<mo>|</mo>

</mrow>

<mi>y</mi>

<mo>)</mo>

</mrow>

</math>

Here the bar sits in its own group, so what is it? A lone left, right ormiddle symbol, meant to stretch with the surroundings

or not?

To summarize: there is no real difference (or progress) with respect to fences in LUATEX compared to traditional TEX.

We still need matching \left and \right usage and catching mismatches automatically is hard. By adding some hooks

at the TEX end we can easily check for a missing \right but a missing \left needs a two-pass approach. Maybe some

day in CONTEXT we will end up with multipass math processing and then I’ll look into this again.

1.11 Directions

The first time I saw right-to-left math was at a Dante and later at a TUG meeting hosted in Morocco where Azzeddine

Lazrek again demonstrated right-to-left math. It was only after Khaled Hosny added some support to the XITS font that I

came to supporting it in CONTEXT. Apart from some housekeeping nothing special is needed: the engine is ready for it.

Of course it would be nice to extend the lm and gyre fonts as well but currently it’s not on the agenda. I expect to add

some more control and features in the future, if only because it is a nice visual experience. And writing code for such

features is kind of fun.

As this is about as complex as it can gets, it makes a nice example of how we control math font definitions, so let’s see

how we can define a XITS use case. Because we have a bold (heavy) font too, we define that as well. First we define the

two fonts.

\starttypescript [math] [xits,xitsbidi] [name]

\loadfontgoodies [xits-math]

62 TUG 2013

21

\definefontsynonym

[MathRoman]

[file:xits-math.otf]

[features=math\mathsizesuffix,goodies=xits-math]

\definefontsynonym

[MathRomanBold]

[file:xits-mathbold.otf]

[features=math\mathsizesuffix,goodies=xits-math]

\stoptypescript

Discussing font goodies is beyond this article so I stick to a simple explanation. We use so-called goodie files for setting

special properties of fonts, but also for defining special treatment, for instance runtime patches. The current xits-math

goodie file looks as follows:

return {

name = "xits-math",

version = "1.00",

comment = "Goodies that complement xits (by Khaled Hosny).",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

italics = {

["xits-math"] = {

defaultfactor = 0.025,

disableengine = true,

corrections = {

[0x1D453] = -0.0375, -- f

},

},

},

alternates = {

cal = { feature = 'ss01', value = 1,

comment = "Mathematical Calligraphic Alphabet" },

greekssup = { feature = 'ss02', value = 1,

comment = "Mathematical Greek Sans Serif Alphabet" },

greekssit = { feature = 'ss03', value = 1,

comment = "Mathematical Italic Sans Serif Digits" },

monobfnum = { feature = 'ss04', value = 1,

comment = "Mathematical Bold Monospace Digits" },

mathbbbf = { feature = 'ss05', value = 1,

comment = "Mathematical Bold Double-Struck Alphabet" },

mathbbit = { feature = 'ss06', value = 1,

comment = "Mathematical Italic Double-Struck Alphabet" },

mathbbbi = { feature = 'ss07', value = 1,

comment = "Mathematical Bold Italic Double-Struck Alphabet" },

upint = { feature = 'ss08', value = 1,

comment = "Upright Integrals" },

vertnot = { feature = 'ss09', value = 1,

comment = "Negated Symbols With Vertical Stroke" },

},

}

}

There can be many more entries but here the most important one is the alternates table. It defines the additional styles

available in the font. Alternaties are chosen using commands like

\mathalternate{cal}\cal

and of course shortcuts for this can be defined.

Of course there is more than math, so we define a serif collection too:

\starttypescript [serif] [xits] [name]

\setups[font:fallback:serif]

\definefontsynonym[Serif] [xits-regular.otf] [features=default]

TUG 2013 63

22

\definefontsynonym[SerifBold] [xits-bold.otf] [features=default]

\definefontsynonym[SerifItalic] [xits-italic.otf] [features=default]

\definefontsynonym[SerifBoldItalic][xits-bolditalic.otf] [features=default]

\stoptypescript

If needed you can redefine the default feature before this typescript is used. Once we have the fonts defined we can

start building a typeface:

\starttypescript[xits]

\definetypeface [xits] [rm] [serif] [xits] [default]

\definetypeface [xits] [ss] [sans] [heros] [default] [rscale=0.9]

\definetypeface [xits] [tt] [mono] [modern] [default] [rscale=1.05]

\definetypeface [xits] [mm] [math] [xits] [default]

\stoptypescript

We can now switch to this typeface with:

\setupbodyfont[xits]

But, as we wanted bidirectional math, something more is needed. Instead of the two fonts we define six. We could have

a more abstract reference to the XITS fonts but in cases like this we prefer file names because then at least we can be

sure that we get what we ask for.

So, we use the same fonts several times but apply different features to them. This time the typeface definition explicitly

turns on both directions. When we don’t do that we get only left to right support, which is of course more efficient in

terms of font usage.

We can now switch to the bidirectional typeface with:

\setupbodyfont[xitsbidi]

However, in order to get bidirectional math indeed, we need to turn it on.

\setupmathematics[align=r2l]

You might have wondered what this special way of defining the features using \mathsizesuffix means? The value of

this macro is set at font definition time, and can be one of three values: text, script and scriptscript. At this moment

the features are defined as follows:

\definefontfeature

[mathematics]

[mode=base,

liga=yes,

kern=yes,

tlig=yes,

trep=yes,

mathalternates=yes,

mathitalics=yes,

% nomathitalics=yes, % don't pass to tex

language=dflt,

script=math]

From this we clone:

\definefontfeature

[mathematics-l2r]

[mathematics]

[]

\definefontfeature

[mathematics-r2l]

[mathematics]

[language=ara,

rtlm=yes,

locl=yes]

Watch how we enable two specific features, where rtlm is a XITS-specific one. The eventually used features are defined

as follows.

\definefontfeature[math-text] [mathematics] [ssty=no]

64 TUG 2013

23

\definefontfeature[math-script] [mathematics] [ssty=1,mathsize=yes]

\definefontfeature[math-scriptscript] [mathematics] [ssty=2,mathsize=yes]

\definefontfeature[math-text-l2r] [mathematics-l2r][ssty=no]

\definefontfeature[math-script-l2r] [mathematics-l2r][ssty=1,mathsize=yes]

\definefontfeature[math-scriptscript-l2r][mathematics-l2r][ssty=2,mathsize=yes]

\definefontfeature[math-text-r2l] [mathematics-r2l][ssty=no]

\definefontfeature[math-script-r2l] [mathematics-r2l][ssty=1,mathsize=yes]

\definefontfeature[math-scriptscript-r2l][mathematics-r2l][ssty=2,mathsize=yes]

Even if it is relatively simple to do, it makes no sense to build complex mixed mode system, so currently we have to

decide before we typeset a formula:

\setupmathematics[align=l2r]

\startformula

\sqrt{x^2\over 4x} \qquad

{\bf \sqrt{x^2\over 4x}} \qquad

{\mb \sqrt{x^2\over 4x}}

\stopformula

This gives a left to right formula:

√
𝑥2

4𝑥 √
𝐱𝟐

𝟒𝐱
√ 𝑥2

4𝑥

\setupmathematics[align=r2l]

\startformula

\sqrt{2^ف\over {ب4 \qquad

{\bf \sqrt{2^ف\over {{ب4 \qquad

{\mb \sqrt{2^ف\over {{ب4

\stopformula

And here we get an Arabic formula, where the quality of course is determined by the completeness of the font.

√
2ف

√ب4
𝟐ف

ب𝟒
2ف√

ب4

The bold font has a partial bold implementation so unless I implement a more complex pseudo-bold mechanism you

should not expect results. Because we have no official Arabic math alphabets they are not seen by the CONTEXT MKIV

analyzers that normally take care of this. It’s all a matter of demand and supply (combined with a dose of motivation).

For instance while a base size might be covered, the extensibles might be missing.

About the time of writing this another variation was requested at the mailing list. For Persian math we keep the direction

from left to right but the digits have to be in an Arabic font. We cannot use the bidirectional handler for this so we need

to swap regular and bold digits in another way. We can use the fallback mechanism for this and a definition roughly boils

down to this:

\definefontfallback

[mathdigits]

[dejavusansmono]

[digitsarabicindic]

[check=yes,

force=yes,

offset=digitsnormal]

This is used in:

\definefontsynonym

[MathRoman]

[file:xits-math.otf]

[features=math\mathsizesuffix,

goodies=xits-math,

fallbacks=mathdigits]

The problem with this kind of feature is not so much in the implementation, because by now in CONTEXT we have plenty

of ways to deal with such issues in a convenient way. The biggest challenge is to come up with an interface that somehow

fits in the model of typescripts and with a couple of predefined typescripts we now have:

TUG 2013 65

24

\usetypescriptfile[mathdigits]

\usetypescript [mathdigits] [xits-dejavu] [arabicindic]

\setupbodyfont[dejavu]

After that a formula like $2 + 3 = 5$ comes out as ٢ + ٣ = ٥. In fact, if you want that in text mode, you can just use the

CONTEXT MKIV font feature anum:

\definefontfeature [persian-fake-math] [arabic] [anum=yes]

\definefont[persianfakemath][dejavusans*persian-fake-math]

But of course you won’t have proper math then. But as right-to-left math is still under construction, in due time we

might end up with more advanced rendering. Currently you can exercise a little control. For instance by using the

align parameter in combination with the bidi parameter. Of course support for special symbols like square roots

depends on the font as well. We probably need to mirror a few more characters.

\m{ (1 = 1) }\quad

\m{ (123 = 123) }\quad

\m{ a (1 = 1) b }\quad

\m{ a (123 = 123) b }\quad

\m{ x = 123 y + (1 / \sqrt {x}) }

As in math we can assume sane usage of fences, we don’t need extensive tests on pairing.

align bidi

l2r no (1 = 1) (123 = 123) 𝑎(1 = 1)𝑏 𝑎(123 = 123)𝑏 𝑥 = 123𝑦 + (1⁄√𝑥)
l2r yes (1 = 1) (123 = 123) 𝑎(1 = 1)𝑏 𝑎(123 = 123)𝑏 𝑥 = 123𝑦 + (1⁄√𝑥)
r2l no (1=1) (123=123) 𝑎(1=1)𝑏 𝑎(123=123)𝑏 𝑥=123𝑦+(1⁄√𝑥)
r2l yes)1=1()123=123(𝑎)1=1(𝑏 𝑎)123=123(𝑏 𝑥=123𝑦+)1⁄√𝑥(

1.12 Structure

At some point publishers started asking for tagged PDF and as a consequence a typeset math formula suddenly becomes

more than a blob of ink. There are several arguments for tagging content. One is accessibility and another is reflow.

Personally I think that both arguments are not that relevant. For instance, if you want to help a visually impaired reader,

it’s far better to start from a well structured original and ship that along with the typeset version. And, if you want

reflow, you can better provide a (probably) simplified version in for instance HTML format.

We are surrounded by all kinds of visualizations, and text on paper or some medium is one. We don’t make a painting

accessible either. If accessibility is a demand, it should be done as best as can be, and the source is then the starting

point. Of course publishers don’t like that because when a source is available, it’s one step closer to reuse by others. But

that problem can simply be ignored as we consider publishers to be some kind of facilitating organization that deliver

content from others. Alas publishers don’t play that humble role so as long as they’re around they can demand from

their suppliers tagging of something visual.

Of course when you use TEX tagging is no real issue as you can make the input as verbose and structured as you like.

But authors don’t always want to be verbose, take this:

$ f(x) = x^2 + 3x + 7 $

This enters TEX as a sequence of characters: 𝑓(𝑥) = 𝑥2 +3𝑥+7. These characters can have properties, for instance they
can represent a relation or be an opening or closing symbol, but in most cases they are just classified as ordinary. These

properties to some extent control spacing and interplay between math elements. They are not structure. If you have

seen presentation MATHML you have noticed that there are operators (mo), identifiers (mi) and numbers (mn), as well as

some structural elements like fences (mfenced), superscripts (msup), subscripts (msub). Because it is a presentational

encoding, there is no guarantee about the quality of the input as well as the rendering, but it somehow made it into a

standard that is also used for tagging PDF content.

Going from mostly unstructured TEX math input to more structured output is complicated by the fact that the interme-

diate somewhat structured math lists eventually become regular boxes, glyphs, kerns, glue etc. In CONTEXT we carry

some persistent information around so that we can still reverse engineer the output to structured input but this can be

improved by more explicit tagging. We plan to add some more of that to future versions but here is an example:

$ \apply{f}{(x)} = x^2 + 3x + 7 $

You can go over the top too:

66 TUG 2013

25

$ \apply{f}{(x)} = \mi{x}^\mi{2} + \mi{3}\mi{x} + \mi{7} $

The trick is to find an optimal mix of structure and readability. For instance, in \sin we already have the apply done by

default, so often extra tagging is only needed in situations where there are several ways to interpret the text. Of course

we’re not enforcing this, but by providing some structure related features, at least we hope to make users aware of the

issue. Directly inputting MATHML is also an option but has never become popular.

All this is mostly a macro package issue, and CONTEXT has the basics on board. Because there is no need to adapt LUATEX

the most we will do is add a bit more consistency in building the lists (two way pointers) and carrying over properties

(like attributes). We also have on the agenda a math table model that suits MATHML, because some of those tables are

somewhat hard to deal with.

How the export and tagging evolves depends on demand. I must admit that I implemented it as an exercise mostly

because these are features I don’t need myself (and no one really asked for it anyway).

1.13 Italic correction

Here we face a special situation. In regular OPENTYPE italic correction is not part of the game, although one can cook up

some positioning feature that does a similar job. In OPENTYPE math there is italic correction, but also a more powerful

sharpe-related kerning which is to be preferred. In traditional TEX the italic correction was present but since it is a font

specific feature there is no way to make it work across fonts, and TYPE1 based math has lots of them.

At some point we have discussed throwing italic correction out of the engine, if only because it was unclear how and

when to apply it. In the meantime there is some compromise reached. Because CONTEXT is always in sync with the latest

LUATEX, we oscillated between solutions and this was complicated by the fact that we had to support a mix of OPENTYPE

math fonts and virtualized TYPE1 legacy fonts.

The italic correction related code is still somewhat experimental, but we have several options.7 In most cases we insert

the italic correction ourselves and as the engine then sees a kern already it will not add another one. This has the

advantage that we can be more consistent if only because not all fonts have these corrections and not all cases are

considered by the engine.

1. A math font can have italic correction per glyph. The engine gets this passed but before it can apply them we already

inject them into the mathlist where needed.

2. This is a variant of the first one, but is always applied, and not controlled by the font. This makes it possible to add

additional corrections. This method is kind of obsolete as we no longer generate missing corrections at font definition

time.8

3. This variant looks at the shape and if it is italic (or bolditalic) then correction is applied. Here the correction is related

to the emwidth and controlled by a factor. We use this method by default.

4. The fourth variant is a mixture of the first (font driven) and the third (emwidth driven).

Are we better off? I honestly don’t know. It is a bit of a mess and will always be, simply because the reference font

(cambria) and reference implementation (msword) is not clear about it and we follow them. In that respect I consider it

a macro package issue mostly. In CONTEXT at least we can offer some options.

1.14 Big

When migrating math to MKIV I couldn’t resist looking into some functionality that currently uses macro magic. An

example is big delimiters.

$ (\big(\Big(\bigg(\Bigg(x $

(((((𝑥

Personally I never use these, I just trust \left and \right to do the right job, but I’m no reference at all when it comes

to math. The reason for looking into the bigs is that in plain TEX there are some magic numbers involved. The macros,

when translated to CONTEXT boil down to this:

\left<delimiter>\vbox to 0.85\bodyfontsize{}\right.

\left<delimiter>\vbox to 1.15\bodyfontsize{}\right.

\left<delimiter>\vbox to 1.45\bodyfontsize{}\right.

\left<delimiter>\vbox to 1.75\bodyfontsize{}\right.

7 In text mode we also have an advanced mechanism for italic correction but this operates independent from math.
8 Because the font loader is also used for the generic code, we don’t want to add such features there.

TUG 2013 67

26

Knowing that we have a chain of sizes in the font, I was tempted to go for a solution where a specific size is chosen from

the linked list of next sizes. There are several strategies possible when we delegate this to LUA but we don’t provide a

high level interface yet. Personally I’d like to set the low level configuration options as:

\setconstant\bigmathdelimitermethod \plusone

\setconstant\bigmathdelimitervariant\plusthree

But as users might expect plain--like behaviour, CONTEXT also provides the command

\plainbigdelimiters

which sets the method to 2. Currently that is the default. When method 1 is chosen there are four variants and the

reason for keeping them all is that they are part of experiments and explorations.

1 choose size n from the available sizes

2 choose size 2n from the available sizes

3 choose the first variant that has 1.33n × (ht + dp) > size
4 choose the first variant that has 1.33n × bodyfontsize > size

The last three variants give similar results but they are not always the same as the plain method. This is because not all

fonts provide the same range.

pagella latin modern cambria

plain (((((𝑥 (((((𝑥 (((((𝑥

variant 1 (((((
𝑥 (((((𝑥 (((((𝑥

variant 2 (((((
𝑥 (((((𝑥 (((((𝑥

variant 3 (((((
𝑥 (((((𝑥 (((((𝑥

variant 4 (((((
𝑥 (((((𝑥 (((((𝑥

So, we are somewhat unpredictable but at least we have several ways to control the situation and better solutions might

show up.

1.15 Macros

I already discussed roots and the traditional \root command is a nice example of one that can be simplified in LUATEX

thanks to a new primitive. A macro package often has quite a lot of macros related to math that deal with tables and

LUATEX doesn’t change that. But there is a category of commands that became obsolete: the ones that are used to

construct characters that are not in the fonts. Keep in mind that the number of fonts as well as their size was limited

at the time TEX was written, so by providing building blocks additional characters could be made. Think of for instance

the negated symbols: a new symbol could be made by overlaying a slash. The same is true for arrows: by prepending

or appending minus signs, arrows of arbitrary length could be constructed.

Here I will stick to another example: dots. In plain TEX we have this definition:

\def\vdots

{\vbox

{\baselineskip4pt

\lineskiplimit0pt

\kern6pt

\hbox{.}%

\hbox{.}%

\hbox{.}}}

This will typeset vertical dots, while the next does them diagonally:

\def\ddots

{\mathinner

{\mkern1mu

68 TUG 2013

27

\raise7pt\vbox{\kern7pt\hbox{.}}%

\mkern2mu

\raise4pt\hbox{.}%

\mkern2mu

\raise1pt\hbox{.}%

\mkern1mu}}

Of course these dimensions relate to the font size of plain TEX so in CONTEXT MKII we have something like this:

\def\vdots

{\vbox

{\baselineskip4\points

\lineskiplimit\zeropoint

\kern6\points

\hbox{$\mathsurround\zeropoint.$}%

\hbox{$\mathsurround\zeropoint.$}%

\hbox{$\mathsurround\zeropoint.$}}}

\def\ddots

{\mathinner

{\mkern1mu

\raise7\points\vbox{\kern 7\points\hbox{$\mathsurround\zeropoint.$}}%

\mkern2mu

\raise4\points\hbox{$\mathsurround\zeropoint.$}%

\mkern2mu

\raise \points\hbox{$\mathsurround\zeropoint.$}%

\mkern1mu}}

These two symbols are rendered (in MKII) as follows:

...
. . .

I must admit that I only noticed the rather special height when I turned these macros into virtual characters for the

initial virtual UNICODE math that we needed in the first versions of MKIV. This is a side effect of their use in matrices.

However, in MKIV we just use the characters in the font and get:

⋮ ⋱
These characters look different because instead of three text periods a real symbol is used. The fact that we have more

complete fonts and rely less on special font properties to achieve effects is a good thing, and in this respect it cannot

be denied that LUATEX triggered the development of more complete fonts. Of course from the user’s perspective the

outcome is often the same, although . . . using a single character instead of three has the advantage of smaller files

(neglectable), less runtime (really neglectable) and cleaner output files (undeniable) from where such characters can

now be copied as one.

1.16 Unscripting

If you ever looked into plain TEX you might have noticed this following section. The symbols are more related to pro-

gramming languages than to math.

% The following changes define internal codes as recommended

% in Appendix C of The TeXbook:

\mathcode`\^^@="2201 % \cdot

\mathcode`\^^A="3223 % \downarrow

\mathcode`\^^B="010B % \alpha

\mathcode`\^^C="010C % \beta

\mathcode`\^^D="225E % \land

\mathcode`\^^E="023A % \lnot

\mathcode`\^^F="3232 % \in

\mathcode`\^^G="0119 % \pi

\mathcode`\^^H="0115 % \lambda

\mathcode`\^^I="010D % \gamma

\mathcode`\^^J="010E % \delta

\mathcode`\^^K="3222 % \uparrow

TUG 2013 69

28

\mathcode`\^^L="2206 % \pm

\mathcode`\^^M="2208 % \oplus

\mathcode`\^^N="0231 % \infty

\mathcode`\^^O="0140 % \partial

\mathcode`\^^P="321A % \subset

\mathcode`\^^Q="321B % \supset

\mathcode`\^^R="225C % \cap

\mathcode`\^^S="225B % \cup

\mathcode`\^^T="0238 % \forall

\mathcode`\^^U="0239 % \exists

\mathcode`\^^V="220A % \otimes

\mathcode`\^^W="3224 % \leftrightarrow

\mathcode`\^^X="3220 % \leftarrow

\mathcode`\^^Y="3221 % \rightarrow

\mathcode`\^^Z="8000 % \ne

\mathcode`\^^[="2205 % \diamond

\mathcode`\^^\="3214 % \le

\mathcode`\^^]="3215 % \ge

\mathcode`\^^^="3211 % \equiv

\mathcode`\^^_="225F % \lor

This means as much as: when I hit Ctrl-Z on my keyboard and my editor honors that by injecting character U+1A into

the input then TEX will turn that into ≠, given that you’re in math mode. I’m not sure how many keyboards and editors

there are around that still do that but it illustrates that inputting in some kind of WYSIWYG is not alien to TEX.
9

One of the subprojects of the ongoing TEX user group font project is to extend the already extensive Dejavu font with

all relevant math characters so that we can edit a document in a more UNICODE savvy way. So, after more than three

decades we might arrive where Don Knuth started: you see what you input and a similar shape will end up on paper.

Does this mean that all such input is good? Definitely not, because in UNICODE we find all kinds of characters that

somehow ended up there as a result of merging existing encodings. At work we’re accustomed to getting input that is

a mix of everything a word processor can produce and often we run into characters that users find normal but are not

that handy from a TEX perspective. It’s the main reason why in math mode we intercept some of them, for instance in:

$ y = x² + x³ + x²³ + x²ᵃ $ % not all characters are in monospace

These superscripts are an inconsistent bunch so they will never be real substitutes for the ^ syntax, simply because a mix

like above looks bad. But fortunately it comes out well: 𝑦 = 𝑥2 + 𝑥3 + 𝑥23 + 𝑥2𝑎. This is because CONTEXT will transform

such super- and subscripts into real ones and in the process also collapse multiple scripts into a group. This is typically

one of the features that already showed up early in MKIV.

Here we have a feature that doesn’t relate to fonts, the math machinery or the engine, but is just a macro package

goodie. It’s a way to respond to the variation in input, although probably hardly any TEX math user will need it. It’s one

of those features that comes in handy when you use TEX as invisible backend where the input is never seen by humans.

1.17 Combining fonts

I already mentioned that we started out with virtual math fonts. Defining them is not that hard and boils down to

defining what fonts make up the desired math font. Normally one starts out with a decent complete OPENTYPE math

font followed by mapping TYPE1 fonts onto specific alphabets and symbols. On top of this there are additional virtual

characters constructed (including extensibles). However, this method will become kind of obsolete (read: not used)

when all relevant OPENTYPE math fonts are available.

Does this mean that we have only simple font setups? In practice yes: you can set up amath font in a few lines in a regular

typescript. There are of course a fewmore lines needed when defining bold and/or right-to-left math but users don’t need

to bother about it. All is predefined. There are signals that users want to combine fonts so the already present fallback

mechanism for text fonts has been made to work with math fonts as well. This permits for instance to complement the

not-yet-finished OPENTYPE Euler math fonts with Pagella. Of course you always need to keep consistency into account,

but in principle you can overload for instance specific alphabets, something that can make sense when simple math is

mixed with a font that has no math companion. In that case using the text italic in math mode might look better. For the

at the time of this writing incomplete Euler font we can add characters like this:

\loadtypescriptfile[texgyre]

9 There are more such hidden features, for instance, in some fonts special ligatures can be implemented that no one ever uses.

70 TUG 2013

29

\loadtypescriptfile[dejavu]

\resetfontfallback [euler]

\definefontfallback [euler] [texgyrepagella-math] [0x02100-0x02BFF]

\definefontfallback [euler] [texgyrepagella-math] [0x1D400-0x1D7FF]

\starttypescript [serif] [euler] [name]

\setups[font:fallback:serif]

\definefontsynonym [Serif] [euler] [features=default]

\stoptypescript

\starttypescript [math] [euler] [name]

\definefontsynonym [MathRoman] [euler] [features=math\mathsizesuffix,fallbacks=euler]

\stoptypescript

\starttypescript [euler]

\definetypeface [\typescriptone] [rm] [serif] [euler] [default]

\definetypeface [\typescriptone] [tt] [mono] [dejavu] [default] [rscale=0.9]

\definetypeface [\typescriptone] [mm] [math] [euler] [default]

\stoptypescript

If needed one can use names instead of code ranges (like uppercasescript) as well as map one range onto another. This

last option is handy for merging a regular text font into an alphabet (in which case the UNICODE’s don’t match).

We expect math fonts to be rather complete because after all, a font designer has a large repertoire of free alphabets

to choose from. So, in practice combining math fonts will happen seldom. In text mode this is more common, especially

when multiple scripts are mixed. There is a whole bunch of modules that can generate all kind of tables and overviews

for testing.

1.18 Experiments

I won’t describe all experiments here. An example of an experiment is a better way of dealing with punctuation, especially

the cultural determined period/comma treatment. I still have the code somewhere but the heuristics are too messy to

keep around.

There are also some planned experiments, like breaking and aligning display math, but they have a low priority. It’s not

that hard to do, but I need a good reason. The same is true for equation number placement where primitives are used

that can sometimes interfere or not be used in all cases. Currently that placement in combination with alignments is

implemented with quite a lot of fuzzy macro code.

One of the areas where experimenting will continue is with fonts. Early in the development of MKIV font goodies showed

up. A font (or collection of fonts) can have a file (or more files) that control functionality and can have fixes. There are

some in place for math fonts. It is a convenient way to use the latest greatest fonts as we have ways to circumvent issues,

for instance with math parameters. The virtual math fonts are also defined as goodies.

Some mechanisms will probably be made accessible from the TEX end so that users can exercise more control. And

because we’re not done yet, additional features will show up for sure. There are some math related subsystems like

physics and chemistry and these already demanded some extensions and might need more. Introducing math symbol

(and property) dictionaries as in OPENMATH is probably a next step.

I already mentioned that typesetting and rendering related technology is driven by the web. This also reflects on UNI-

CODE and OPENTYPE. For instance, we find not only emoticons like U+1F632 (ASTONISHED FACE) in the standard but

also ‘MOUNT FUJI’, TOKYO TOWER, STATUE OF LIBERTY, SILHOUETTE OF JAPAN. On the other hand, in one of our older

projects we still have to provide some tweak for the unary minus (as when discussing scientific calculators used in math

lessons) a distinction has to be made with a regular minus sign. And there are no symbols to refer to use of media

(simulation, applet, etc.) and there is as far as I know no emoticon for a student asking a question. Somehow it’s hard to

defend that the Planck constant is as different from a math italic h as a ‘GRINNING FACE’ is from a ‘GRINNING FACE

WITH SMILING EYES’, but the last both got a code point. I wonder with an UNAMUSED FACE.

Of course we can argue that this is all too visual to end up in UNICODE, but the main point that I want to make is that

as a TEX community (which is also related to education) we are of not that much importance and influence. Maybe it is

because we always had a programmable system at hand, and folks who could make fonts, and were already extending and

exploring before the web became a factor. Anyhow, in CONTEXT we solve these issues by making mechanisms extensible.

TUG 2013 71

30

For instance we can extend fonts with virtual glyphs and add features to existing fonts on the fly. Simple examples are

adding some glyphs and properties to math fonts or adding color properties to whatever font. More complex examples

are implementing paragraph optimizers using feature sets of fonts (most noticeably the upcoming Husayni font for

advanced arabic typesetting). And, math typesetting is a speciality anyway.

Upcoming extensions to UNICODE and OPENTYPE will demonstrate that the TEX community could have been a bit more

demanding and innovative, given that it had known what to demand. Interesting is that some innovation already hap-

pened by providing special fonts and macros and engines, but I guess much gets unnoticed. On the other hand, I must

admit that experimenting and providing solutions independent of evolving technology also has benefits: it made (and

makes) some user group meetings interesting to go to and creates interesting niches of users. Without this experimental

playground I for sure would not be around.

1.19 Tracing

Tracing is available for nearly all mechanisms and math is no exception. Most tracing happens at the LUA end and can

be enabled with the tracker mechanism. Users will seldom use this, but for development the situation is definitely more

comfortable in MKIV. Of course it helps that the penalty of tracing and logging has become less in recent times because

memory as well as runtime is hardly influenced.

We provide several styles (modules) for generating lists and tables of characters and extensibles, visualizing features

and comparing fonts. Here we benefit from LUA because we can use the database embedded in CONTEXT and looping

and testing is more convenient in this language. Of course the rendering is done by TEX, so this is a typical example of

hybrid usage.

1.20 Conclusion

It is somewhat ironic that while CONTEXT is sometimes tagged as ‘not to be used when you need to do math typesetting’

it is this macro package that drives the development of LUATEX with its updated math engine, which in turn influences

the updated math engine in XƎTEX, that is used by other macro packages. In a similar fashion the possibility to process

OPENTYPEmath fonts in LUATEX triggered the development of such fonts as follow up on the Latin Modern and TEX Gyre

projects. So, the fact that in CONTEXT we have a bit more freedom in experimenting with math (and engines) has some

generic benefits as well.

I think that overall we’re better off. The implementation at the TEX end is much cleaner because we no longer have to deal

with different math encodings and multiple families. Because in CONTEXT we’re less bound to traditional approaches

and don’t need to be code compatible with other engines we can follow different routes than usual. After all, that was

also one of the main motivations behind starting the LUATEX project: clean (better understandable code), less mean (no

more hacks at the TEX end), even if that means to be less lean (quite a lot of LUA code). Between the lines above you can

read that I think that we’ve missed some opportunities but that’s a side effect of the community not being that innovative

which in turn is probably driven by more or less standard expectations of publishers, as they are more served by good

old stability instead of progress. Therefore, we’re probably stuck for a while, if not forever, with what we have now. And

a decent CONTEXT math implementation is not going to change that. What matters is that we can (still) keep up with

developments outside our sphere of influence.

I don’t claim that the current implementation of math in MKIV is flawless, but eventually we will get there.

Hans Hagen

PRAGMA ADE

Hasselt NL

June-August 2013

72 TUG 2013

TUGboat, Volume 0 (9999), No. 0 1001

Typesetting and Layout in Multiple
Directions — Outline

John Plaice

Abstract

I propose a new, general way of looking at typeset-
ting and layout in multiple directions. It subsumes
the left-to-right and right-to-left horizontal writing
used in most of the world, as well as the vertical
writing used in East Asia. The generality allows the
development of layout schemes for situations when
several writing directions appear on the same page.

The key to the approach is that managing mul-
tidirectional text requires a separation of writing
style from box direction. It turns out that there are
only three different kinds of writing style, and eight
kinds of directional box, and that simple rules can
be used to define how these different writing styles
may appear in different kinds of box.

Outline

There have been numerous attempts to create lay-
out rules for multidirectional text. Some have fo-
cused on mixing left-to-right writing with vertical
writing, as is commonly needed in East Asia, others
have focused on mixed left-to-right and right-to-left
writing, as is commonly needed in the Middle East.

My previous endeavor in this direction, when
working on the Omega system, came up with 32 pos-
sible writing directions, taking into account the di-
rection in which successive lines followed each other
on the page, the direction in which successive lines
followed each other on a line, and the direction in
which each individual glyph looked “up”.

Notwithstanding the impressive number of pos-
sible writing directions, the proposed solution was
not sufficiently general, as it did not make provi-
sions for phenomena such as typesetting to a curve.

In this paper, a completely separate approach,
both simpler and more general, is taken: when type-
setting, a particular writing style (there are three)
is used, and the text will be placed in a secondary
(text) box, of which there are four kinds. Secondary
boxes are lined up in a primary box.

The three writing styles are as follows:

• In axial writing (A), there is an axis flowing
through the glyphs, typically in the middle, and
the glyphs are pinned onto the axis, one af-
ter the other. The vertical typesetting used in
Japan, China and Korea is axial writing.

• In left-to-right baseline writing (BL), there is
a baseline upon which the glyphs are sitting,
and successive glyphs are placed to the right of

previous ones. Most alphabetic scripts use this
form of writing.

• In right-to-left baseline writing (BR), there is
also a baseline, but in which successive glyphs
are placed to the left of previous ones. This
form of writing is used for Arabic and Hebrew,
but one can also consider the Uighur and Mon-
golian vertical scripts to be using the same style.

Note that with this notation, there is no notion of
writing direction. As a result, one could use any of
these three styles in a box of a given direction, but
also when typesetting onto a curve. Furthermore,
we can do Greek boustropheidon typesetting, with
alternate writing directions for successive lines.

When using rectangular boxes, we generalize
the TEX vboxes and hboxes: we call these primary
boxes and secondary boxes. For each of these boxes,
there is a primary direction and a secondary direc-
tion, which must be orthogonal. The directions are
defined by a side of the page: hence TL means a
box whose primary direction is top-down and whose
secondary direction is left-to-right, while RT means
a box whose primary direction is right-to-left and
whose secondary direction is top-down. There are
therefore eight different direction pairs.

Text is placed inside secondary boxes, each with
one or more lines going through the entire length.
For each secondary box, upon creation, its base writ-
ing style must be defined.

Should this style be axial, then the secondary
box will have a principal axis, and there can also be
a left axis and a right axis, parallel to the principal
axis. These supplementary axes can be used to place
furiganas or other forms of annotation, as is common
in Japanese and Chinese, or could also be used to
place long braces to bracket certain parts of text.

Should this style be one of the two baseline
styles, then the secondary box will have a princi-
pal baseline, and there can also be an upper baseline
and a lower baseline, which serve the same purpose
as the left and right axes above.

Any piece of text can be embedded into a text
of another style, and into any kind of secondary box,
but may need to be rotated or mirrored so that it
can fit. The talk and the full paper will give the pa-
rameterizations for this infrastructure to work, and
explain how existing TEX engines can be adapted
appropriately.

� John Plaice
Montreal, Canada
UNSW, Sydney, Australia
johnplaice (at) gmail dot com

plaice.web.cse.unsw.edu.au

Typesetting and Layout in Multiple Directions — Outline

TUG 2013 73

TUGboat, Volume 0 (9999), No. 0 1001

Tsukurimashou: a Japanese-language font
meta-family

Matthew Skala

Abstract

METAFONT-based font projects for the Chinese,
Japanese, and Korean (CJK) languages have been
announced every few years since the early 1980s,
even predating the current form of the METAFONT

language. Except for a few non-parameterized con-
versions of fonts that originated in other formats, in
30 years every METAFONT CJK font has been aban-
doned at or before the 8-bit barrier of 256 kanji,
nowhere near the thousands required for practical
typesetting. In this presentation I describe the first
project to break that barrier: Tsukurimashou (http:
//tsukurimashou.sourceforge.jp/), currently at
over 1500 kanji (as well as kana, Latin, and Korean
hangul) and steadily growing. I discuss technical
and human challenges facing this kind of project,
how to solve them, and spin-off technologies such as
the IDSgrep kanji structural query system.

1 Introduction

The Han script, used by the Chinese, Japanese, and
Korean (CJK) languages among others, includes
very many characters. Just counting them is tricky,
but a human being might typically need to know a
few thousand for basic literacy in a Han-script lan-
guage. The list of 2136 characters taught in the
Japanese school system (the jouyou kanji) is one
benchmark, near the low end. Chinese requires
more, and a typesetting system may require more
still, because of rare characters found in names, his-
torical contexts, and so on. A human being can
get away with failing to read the occasional char-
acter; typesetting systems need to be able to print
nearly all of them. Computer fonts considered us-
able for Japanese typically cover between six and
twelve thousand characters. Databases of rare char-
acters used in linguistic research cover tens or hun-
dreds of thousands.

The sheer number of characters that go into a
CJK font, and the quantity of work implied by that
number, is daunting. Considering the difficulty of
building even a simple Latin font with METAFONT,
it may be no surprise that there are no complete
METAFONT-native CJK typefaces. But on the other
hand, examination of Han-script text (even, or es-
pecially, by someone who cannot read it) quickly re-
veals that characters can be decomposed into
smaller parts, as shown in Figure 1. Computer sci-
entists who examine Figure 1 are likely to believe

..語.

⿰

.
U+8A9E

go
“language”

.

言

.

U+8A00
i

“speak”

.

吾

.

⿱

.

U+543E
ware

“myself”

.

五

.

U+4E94
go
“five”

.

口

.

U+53E3
kuchi
“mouth”

Figure 1: Breaking a character into its parts.

they understand it. “Of course,” one supposes, “the
tens of thousands of Han characters are just a small
vocabulary of primitive shapes, perhaps only a few
dozen of those, which combine in straightforward
ways according to a spatial grammar to form tree
structures!”

Computer scientists know how to deal with such
things. It should be only the work of a week or
two for a good programmer to lash together a pro-
totype CJK font generator. Each primitive shape
can be a subroutine; there can be other subroutines
expressing the combining operations such as “place
this one above that one”; a few parameters applied
to the low-level shapes can allow for creating a wide
range of styles; and the only real challenge is look-
ing in the dictionary that lists the tree decomposi-
tions of all the characters. That book must exist
in China, so we’ll get it by interlibrary loan. This
project might even be easier than building a Latin
font meta-family.

The earliest METAFONT CJK project I know of
was LCCD, the Language for Chinese Character De-
sign, described in a 1980 Stanford technical report
by Tung Yun Mei [11]. The METAFONT language in
its current form did not exist at the time, but Mei
collaborated with Knuth and based LCCD on the
early METAFONT work. Even in 1980, many of the
ideas were already in place that a present-day com-
puter scientist would naturally think of on viewing
Figure 1. Mei’s report includes images of 346 “basic
strokes and radicals,” and 112 completed characters.

Subsequent work on METAFONT-native CJK

fonts includes that of Hobby and Guoan in 1984,
who created 128 characters [5]; Hosek in 1989, char-
acter count unknown but two are displayed in the
TUGboat article [6]; Yiu and Wong in 2003, in a
project that targeted on-demand creation of rare

Tsukurimashou: a Japanese-language font meta-family

74 TUG 2013

1002 TUGboat, Volume 0 (9999), No. 0

characters rather than a font as such [16]; and La-
guna circa 2005, with 130 characters in the last
available version [10]. All these used a relatively
small number of basic components, combining ac-
cording to a spatial grammar to form more compli-
cated characters.

I listed published METAFONT-related projects.
Similar ideas have also been used behind closed
doors in commercial font foundries (CDL from Wen-
lin Institute seems to be an example [15]), and non-
METAFONT research projects like the LISP-based
Wadalab toolkit [13]. The Wadalab font project
ran during the 1990s; much of the work was lost or
withdrawn after hard drive failures and copyright in-
fringement concerns that came to light in 2003, but
some of its fonts survived to become widely used
in the free software world. These kinds of projects
use grammars of character parts, but they lack the
full parameterization that METAFONT users expect.
There has also been work on using CJK fonts from
other sources in TEX documents, sometimes includ-
ing METAFONT incidentally in the workflow, but
again without parameterization. For instance, the
Poor Man’s Chinese and Japanese package [12] con-
verts bitmap fonts into METAFONT code that ren-
ders scaled versions (without smoothing!) at arbi-
trary resolution.

It may be difficult to create fonts in META-
FONT in general, regardless of the script; but human
beings have done it. Several if not many META-
FONT-native Latin fonts exist, and we can typeset a
wide range of documents in Latin-script languages
with parameterized METAFONT-native fonts. So af-
ter more than three decades of work, why are there
no usable, parameterized, METAFONT-native CJK

fonts at all?

2 Scaling issues

It is no coincidence that past attempts to build CJK

fonts in METAFONT have been abandoned at the
same stage in development, around 120 characters.
That is the roughly the size of a Latin font. META-
FONT was designed to build fonts with sizes on that
order, and METAFONT users have built expertise
and developed tools for building fonts the size of
Latin fonts. When fonts get larger, unforeseen diffi-
culties show up like nurikabe — the plaster wall mon-
sters of Japanese folklore blamed for delaying trav-
ellers by night.

2.1 Technical limitations

Many font file formats are limited to 256 glyphs by
their use of 8-bit character codes. People who at-
tempt to typeset CJK documents in classical TEX

use elaborate workarounds involving slicing their
fonts into 256-glyph sub-fonts. Handling the input
encoding for documents written in large character
sets with these slicing schemes is a tough problem
too, but fortunately not one we must solve as font
designers. There are extended versions of the TEX
interpreter designed to use longer character codes
directly (X ETEX is one), and those may also be able
to work with font formats that store tens of thou-
sands of glyphs per file and don’t need to be sliced;
but there is no similarly extended METAFONT to
produce fonts in such formats.

Thousands of glyphs in a font does not just
mean a bigger file. It also means more time spent
compiling, and more memory consumption. One run
of METAFONT may run out of memory or other re-
sources trying to process an entire multi-thousand-
glyph CJK font, and the user may run out of pa-
tience recompiling the whole thing after changing
one glyph. To succeed at the thousand-glyph level,
a project must have build tools allowing separate
compilation of parts of the project. There should be
tracking of dependencies among the different parts.
Just being able to find pieces of code in a project this
size — answering questions like “what was the name
of the subroutine for such and such a shape?” — is
an issue. These are elementary problems in software
engineering, but there is little or no previous work
on them in the METAFONT context because nobody
has built systems this size in METAFONT before.

Classical METAFONT is designed to produce
bitmap fonts, but bitmap fonts are no longer such a
desired commodity. A present-day CJK font project
will presumably target a vector format, but mak-
ing METAFONT or some variation of it produce vec-
tor fonts requires additional layers of software, all of
which are to some extent experimental. Bugs in the
beyond-METAFONT software, previously undetected
because previous fonts were smaller, will show up
and need to be fixed. Keeping a handle on the bugs
requires a test suite. The need for multiple steps in
font compilation underscores the need for a capable
build system. Human designers cannot be expected
to issue five or six different commands in the right
order to recompile every font, every time.

Earlier work on METAFONT CJK fonts has con-
centrated on writing code in METAFONT to draw
the shapes of Han characters, as if that were the
only problem to solve. Infrastructure that can scale
to the size of the finished product is at least as sig-
nificant.

Matthew Skala

TUG 2013 75

TUGboat, Volume 0 (9999), No. 0 1003

2.2 Human factors

It is easy to underestimate how much work is in-
volved in building a CJK font. We know how much
work it is to design a Latin font. We know a CJK

font has about 30 times as many glyphs. But it is
easy to think, looking at Figure 1, that the CJK font
should actually only be something like two or three
times as much work as the Latin font (or even less),
because so much code can be reused. In fact, less
work is saved by code reuse than one might hope:
every glyph requires some human attention. In com-
puter science terms, font design is not much less
than Ω(n).

Once it becomes clear that a human being must
spend time on every single glyph — it gets easier as
more code exists to reuse, but there is no break
point after which hundreds of characters will sud-
denly come for free — it is natural to hope for that
human being not to be oneself. If we can just build
a sufficiently good, easy to use set of tools, we can
put them on the Web, maybe use a Wiki, and have
many people in the community build a few glyphs
each. Many hands make light work, once the infra-
structure exists.

But to hope for someone else to build the actual
glyphs after the tools are designed is to ignore why
people participate in free software projects in the
first place. Designing tools for glyph construction
is fun. Going through a list of 6000 glyphs one by
one, doing simple repetitive tasks on each of them,
is work. It is not easy to get volunteers for that
sort of thing at the best of times, let alone when
the volunteers must also have proficiency in an ob-
scure programming language. The most successful
large-scale collaboration is probably GlyphWiki [9],
which sacrifices parameterization for a more purely
graphical approach that demands less from the par-
ticipants.

Finally, many of the potential rewards of a
METAFONT CJK project, such as academic publi-
cations, can be had at the start, before the boring
part; and then there are no more rewards until the
end, and few then. You can publish one paper about
your innovative techniques for building fonts; and
you can publish one paper saying you have finished,
years later. There is little in between. Knowing
that this is the reward structure makes it tempting
to write only the first paper and then start work on
something else.

2.3 The script itself

The Han script itself may be the most ferocious
nurikabe. Figure 1 with its clean decomposition
of “language” into “speak,” “five,” and “mouth,”

..林.

⿰

.
U+6797
hayashi
“forest”

.

木

.

U+6728
ki

“tree”

.

木

.

U+6728
ki

“tree”

.

林

.

林

.

林
Figure 2: A forest is not two identical trees.

is deceptive. Many characters can be described as
simply as that, but many others cannot. Consider
Figures 2, 3, 4, and I could draw many more.

In Figure 2, “forest” is two copies of “tree”
placed side by side. But the “tree” on the left is
different from the “tree” on the right. If you make
the two sides of “forest” look identical, readers will
still know that you meant to write “forest,” but it
will not look right. For a high-quality font, it has got
to look right. This entails either creating two differ-
ent primitives for the two trees, or having a smarter
tree that knows how to change itself when it is on the
left. Many character components change when they
appear on the left. The modifications made when a
component appears on the left are partially system-
atic, so we might hope to write code that can de-
rive the left side shape automatically from the other
shape, but it will not be simple, it will require man-
ual supervision, and some projects have not gotten
as far as noticing that it was an issue in the first
place.

In Figure 3, the left side of “outlook,” in ad-
dition to not being a character in its own right, is
some kind of hard to describe combination of “ar-
row” and “old bird.” It is not good enough to just
print a scaled copy of “arrow” on top of “old bird”
and hope for the best; getting it right requires mod-
ifying and deleting strokes in both parts. A generic
overlap operation is unlikely to be flexible enough to
do the right thing here. Every character that con-
tains this sort of thing will require specific human

Tsukurimashou: a Japanese-language font meta-family

76 TUG 2013

1004 TUGboat, Volume 0 (9999), No. 0

..観.

⿰

.
U+893B
kan

“outlook”
.

観

.

⿻

.

[unknown]

.

矢

.

U+77E2
ya

“arrow”

.

隹

.

U+96B9
furutori
“old bird”

.

見

.

U+898B
mi
“see”

Figure 3: Combining operations are not always
simple.

..及.

Kaku

.及.
Mincho

Figure 4: Two styles of U+53CA (oyo, “reach”).

attention to adjust it beyond just saying “overlap.”
If the components change parametrically, then mak-
ing sure they look right for all parameter values be-
comes even more complicated.

In Figure 4, two different styles of the same
character are topologically different: one contains
a single zigzag stroke that in the other is made up
of two separate pieces. It is not easy to parameterize
that in a way that will look good at every step in
between, and if we make it a binary choice, giving
up on the idea of interpolation, this difference will
require some sort of “if” statement in the charac-
ter description. A straightforward implementation
of the grammar of shapes and combining operations
suggested by Figure 1 would not provide for “if”
statements.

These issues in the Han writing system point
to an important conclusion: a simple grammar of
parts and combining operations is not enough for
building parametric fonts, even though it may be a
useful starting point. Many characters can be de-
composed into parts in the clean way implied by
Figure 1, and such decompositions may be enough

to support dictionary searches. It is easy to find
enough well-behaved characters to put together a
slide show or grant application, and to fool others
or even oneself into thinking the whole character set
will be easy.

But in order to produce high-quality fonts with
full parameterization, with all the characters needed
to typeset real documents, we must be able to over-
ride the simple descriptions and combinations of
parts in arbitrarily complicated ways — per charac-
ter and depending non-linearly on the parameters.
To work at full scale, the font description language
must have the power of a general-purpose program-
ming language.

3 Tsukurimashou

My own attempt at building a METAFONT CJK font
family is called the Tsukurimashou Project. The
name means “Let’s make something!”; it is an anime
reference. As of version 0.8, released 26 August
2013, Tsukurimashou covers 1502 Japanese kanji
(Han script) characters including all those taught
in Japanese schools through Grade Four, as well
as essentially complete coverage of kana (Japanese
phonetic script), Latin, hangul (Korean alphabetic
script), punctuation, and some miscellaneous orna-
ments and graphical characters. This is the work
of one person, on a hobby basis while doing other
things full-time for pay, since late 2010. It remains
far from being a complete font family usable for
typesetting general documents in Japanese, but it is
already far past the point reached by any previous
parameterized METAFONT-native CJK font project,
and I believe my project is the first with a credible
prospect of eventually reaching complete coverage.

Here are some terms of reference distinguish-
ing Tsukurimashou from other projects already dis-
cussed:

• Tsukurimashou is a parameterized meta-family,
not a single font or a collection of independent
fonts.

• Tsukurimashou is a font project, not primarily
a dictionary of characters.

• Tsukurimashou is code, not data.

• Tsukurimashou is intended to achieve full cov-
erage, at least of the characters needed for basic
literacy in Japanese; it is not a proof of concept.

• Tsukurimashou is one person’s non-commercial
project; not a for-profit corporate or large-scale
collaborative effort.

Tsukurimashou is hosted as a free software
project on SourceForge Japan, with the bilingual
project home page at http://tsukurimashou.

Matthew Skala

TUG 2013 77

TUGboat, Volume 0 (9999), No. 0 1005

sourceforge.jp/ featuring downloadable packages,
a Subversion repository for the source code, a bug
tracker, mailing list, and so on. The package as a
whole is distributed under the GNU General Pub-
lic License, version 3, with a clarifying paragraph
added to explicitly permit embedding the fonts in
documents.

3.1 Motivation

The issues of human labour described in the previ-
ous section make it difficult for a CJK METAFONT

project to reach complete coverage. Tsukurima-
shou’s solution to the amount of work involved in
font design is to redefine that large amount of work
as the main goal of the project instead of an unfor-
tunate cost of the project. This point alone seems to
be largely responsible for Tsukurimashou’s success
to date.

I want to learn to read Japanese. Learning
to read entails spending some time practicing and
studying every character. But just studying a book
and tracing copies on paper, as well as being boring,
is not a particularly effective way to learn. I would
also like to become skilled at using METAFONT and
related font technologies. I believe I acquire skills
best by completing tasks that require the skills. De-
signing a font family for Japanese, as a project that
requires knowledge of the kanji and of METAFONT,
including concentration on every character in turn,
is a good way to acquire that knowledge. And from
that point of view, the actual finished fonts are not
even important. The fonts are my excuse for spend-
ing time thinking about every character, which is the
real goal. With that goal in mind, avoiding human
attention to every character stops being necessary
or even desirable.

Of course, the project may have desirable side
effects. Work on Tsukurimashou has required me to
invent new technology that may be useful in other
projects. Some of it is publishable research in com-
puter science, certainly welcome for someone hop-
ing to establish an academic career. And because
it places heavy (in some cases unprecedented) de-
mands on other free software systems, Tsukurima-
shou has proven useful in the development of those
systems. Given that I am already committing to
spend some time per character on learning the lan-
guage, the hope is to make that time pay off in as
many ways as possible.

3.2 A brief tour of the fonts

Tsukurimashou as a software package generates
OpenType font files as its main output. Those are
intended for use in general typesetting and word pro-

Tsukurimashou Font Meta-Family
さてさて、何が出来るかな？

Kaku 角 Extra Light 白字
Mincho 明朝 Light 軽字
Maru 丸 Normal 本
Bokukko 僕女 Demibold 半太字
Monospace Bold 太字
Proportional Extra Bold 黒字
TsuIta Atama PS ツイタ頭 ＰＳ

TsuIta Soku PS ツイタ足 ＰＳ
Jieubsida 지읍시다 Dodum 돋움
Batang 바탕 Sun-Moon 선문

Figure 5: A sample of the Tsukurimashou
meta-family of fonts.

cessing, not only within the TEX world. I most often
use them with X ETEX. The OpenType fonts are di-
vided up into families, of which the main supported
ones are named Tsukurimashou, TsuIta, and Jieub-
sida; then there is parameterization within each fam-
ily for overall style, boldness, and monospace or pro-
portional spacing. The main supported styles for
the Tsukurimashou family are “Kaku” (a traditional
sans-serif style), “Maru” (sans-serif with rounded
stroke ends), “Mincho” (a less traditional version
of the common Mincho serif style), and “Bokukko”
(which somewhat resembles handwriting with a felt-
tipped pen). Finer-grained parameters are used in-
ternally and could be made visible by modifying the
code, much in the way that Computer Modern has
internal parameters like “stem_corr” as well as pre-
set styles like “Roman.” Figure 5 shows a sample of
the font styles; Figure 6 shows more of the Japanese
characters in the Mincho style. Version 0.8 with all
options enabled will build a total of 120 OpenType
files, including some that are experimental and not
intended for actual use.

These are outline fonts intended for
high-resolution printing. They contain hinting for
bitmap conversion, but it is done automatically and
not expected to be extremely high quality. Japanese-
language typesetting has traditionally used mono-
space metrics, simple scaling (i.e., no corrections
for optical weight), and no slanting or italicization;
Tsukurimashou currently offers a choice between
monospace or proportional, no optical weight fea-
tures, and italics for the Latin script only.

Tsukurimashou: a Japanese-language font meta-family

78 TUG 2013

1006 TUGboat, Volume 0 (9999), No. 0

わらやまはなたさかあ ワラヤマハナタサカア
ゐり みひにちしきい ヰリ ミヒニチシキイ
　るゆむふぬつすくうん ルユムフヌツスクウン
ゑれ めへねてせけえ ヱレ メヘネテセケエ
をろよもほのとそこお ヲロヨモホノトソコオ
　一七三上下中九二五人休先入八六円出力十千
　口右名四土夕大天女子字学小山川左年手文日
　早月木本村林校森正気水火犬玉王生田男町白
　百目石空立竹糸耳花草虫見貝赤足車金雨青音

Figure 6: Kana and Grade One kanji in
Tsukurimashou Mincho.

Although the largest use of Tsukurimashou
fonts to date has been for typesetting the project’s
own documentation in English, the design of the
Tsukurimashou Latin glyphs, especially in the Min-
cho style, is intended primarily for setting the short
fragments of English that sometimes occur in
Japanese text. Tsukurimashou Mincho used for
pure English text ends up looking like a display face
and might not be appropriate for entire sentences
and paragraphs. Tsukurimashou Kaku is more suit-
able for extended settings in English.

The Jieubsida family (the name is a translation
to Korean of “Tsukurimashou”) is intended to sup-
port Korean hangul (alphabetic) script. Hanja (the
Korean equivalent of kanji) are not included. This
character set is relatively orthogonal: the main se-
quence of 11172 glyphs is algorithmically generated
from a few tens of basic parts, though many less
common letters had to be defined with more human
intervention. Work on these fonts has proven useful
in debugging the infrastructure at full scale, given
that the Tsukurimashou series of fonts will eventu-
ally grow to a significant fraction of the size already
reached by the Jieubsida series.

Beyond the main Tsukurimashou package,
there are several smaller software packages called
“parasites,” which appear in subdirectories of the
distribution or may be detached. Some of these
are font packages that share some of the Tsukuri-
mashou infrastructure without really being part of
the same meta-family; others are related software of
other kinds. The only one discussed here will be the
IDSgrep structural query system.

3.3 The infrastructure

Tsukurimashou’s infrastructure is designed like a
typical free software project. It has source code that
compiles into binary files, it has build scripts to ac-

complish that, and a would-be user can download a
tarball, unpack it, and type ./configure and make.

The build system is based on GNU Autotools.
Choosing which source code files are needed for
which font styles involves doing some logical infer-
ence that would not be convenient to do in a Make-
file, so the Makefiles invoke additional code written
in a subset of Prolog to evaluate the style selec-
tions, then run Perl scripts that scan the META-
FONT sources to look for dependencies. The re-
sults of that computation are written into additional
Makefiles, which guide the actual compilation pro-
cess.

Knuth’s METAFONT was designed with bitmap
fonts in mind, whereas Tsukurimashou’s target is
OpenType outline fonts. There are several META-
FONT variants that can produce outline output from
METAFONT source. I chose MetaType1 [7] for Tsu-
kurimashou. This package originates with the Pol-
ish TEX users group GUST and may be most fa-
mous for its use in the Latin Modern project [8]. It
consists primarily of a macro package for Metapost
and a postprocessing script for GNU awk. One run
of Metapost generates the glyphs of a font as EPS

files; another generates metrics; then the gawk script
merges those and does some rewriting of the Post-
script code to turn them into a single Postscript
Type 1 font.

In recent versions, Tsukurimashou’s version of
MetaType1 has diverged somewhat from the one dis-
tributed by GUST. I started with the (very old)
mtype13 distribution, tried to upgrade it to use the
latest MetaType1 scripts, and ended up rewriting
large sections of code. Many features of MetaType1
are not used in Tsukurimashou (for instance, hint-
ing; the “metrics” pass; and the entire processing
chain in the reverse direction from Postscript back to
METAFONT), and it proved useful to remove them,
streamlining the code considerably. The core flow
of information through Tsukurimashou’s version of
MetaType1 remains similar to that of the original,
however: the Metapost interpreter executes code in
the METAFONT language, writing one EPS file for
each glyph, and then those are postprocessed into
Postscript Type 1 fonts.

Each Postscript font contains up to 256 glyphs
(but usually far fewer than that), corresponding to a
256-character block of the Unicode character space.
Many of these Postscript fonts are needed for each
full-coverage OpenType font. The build system runs
them individually through a
FontForge script that removes overlapping sections
of splines, this being an easier operation in Font-
Forge than on the METAFONT side, and then once

Matthew Skala

TUG 2013 79

TUGboat, Volume 0 (9999), No. 0 1007

all Postscript fonts for an OpenType font have had
their overlaps removed, it runs another FontForge
script to combine them into the final OpenType
font. Doing the overlap removal as a separate step
is an optimization for the common case during de-
velopment where only some of the Postscript fonts
have changed: it reduces the amount of work needed
to reassemble the updated OpenType font.

There are additional stages of processing in
FontForge after the Postscript fonts are merged. The
raw outlines generated by METAFONT may contain
excessive or poorly-located spline control points;
scripts in FontForge attempt to remove those. Sim-
ilarly, some technical rules of the font formats (such
as having points at the x and y extrema of each
curve) need to be enforced. There is another pro-
cessing chain for automated horizontal spacing and
kerning of the proportionally-spaced styles. In that
chain, the build system generates bitmap fonts in
BDF format and a C program calculates spacing cor-
rections, which are then applied back to the merged
OpenType fonts. Other scripts run on the side do
things like constructing OpenType glyph-
substitution tables for Korean hangul support, and
collecting data for proof generation. According to
recent statistics from Ohloh [2], 63% of the project’s
code is written in Metapost (the font descriptions
proper), 8% is in LATEX (documentation), and the
remaining 29% is spread among 11 other program-
ming languages: the infrastructure and some small
spin-off packages.

3.4 The METAFONT code

Here is Tsukurimashou’s code defining the
“language” glyph of Figure 1; three styles of it are
shown at the top of Figure 7. This glyph is of about
average complexity; some are even simpler, and a
few involve much more complicated operations, such
as calculating positions of strokes based on the in-
tersections of other strokes, or doing interpolation
and conditional processing on style parameters.

vardef kanji.grtwo.language =

push_pbox_toexpand(

"kanji.grtwo.language");

build_kanji.level(build_kanji.lr(450,0)

(kanji.grtwo.word)

(tsu_xform(identity yscaled 0.95)

(kanji.grnine.my)));

expand_pbox;

enddef;

This code exists in a file named tsuku-8a.mp,
which covers the Unicode code points U+8A00 to
U+8AFF. A character like this one, which happens
not to be used as part of any other character, is de-

..

語
.五.

Kaku Extra Light

.

語
. 五.

Mincho

.

語
. 五.

Bokukko Bold

Figure 7: Three styles of “language” and “five.”

fined right there in the Unicode-range Metapost file.
Parts that are shared among more than one such
file are moved to other files that can be included in
multiple places; for instance, kanji.grtwo.word is
in gradetwo.mp. Splitting macro definitions across
many files like this makes it easier to avoid recompil-
ing the whole system when something changes, but
it also requires the build system to keep track of all
the inter-file dependencies.

Tsukurimashou frequently uses a sort of func-
tional programming via METAFONT’s concept of
text arguments to macros. There is a global stack
data structure of objects (several kinds) that will
eventually be rendered into the glyph. A macro will
receive one or more arguments that are themselves
fragments of code; it runs them, then examines the
objects they added to the stack and possibly makes
modifications. Macros that create kanji or parts of
kanji normally put them into a square of arbitrary
two-dimensional space defined by the coordinates
from (50,−50) to (950, 850); the outer-level macros
can then shift and scale that square into its final
location in the finished glyph.

The macro build_kanji.lr, for combining
things left-to-right, allows its two arguments to run,
then scales and shifts their results to cover two
smaller rectangles. The numeric arguments (450, 0)
specify that in this case, the dividing line is at x co-
ordinate 450, and the two rectangles overlap by an
amount of 0. So the left side runs from (50,−50) to
(450, 850) and the right side is from (450,−50) to
(950, 850).

Many of the visual adjustments needed when
parts are combined, can be had just by choosing
the right values for the dividing line and overlap
amount. But other macros seen in this sample in-
clude build_kanji.level, which adjusts the stroke
widths in its argument to all be the same (which of-
ten, but not always, looks better) and tsu_xform,
which applies an additional METAFONT transfor-
mation matrix to make kanji.grnine.my a little

Tsukurimashou: a Japanese-language font meta-family

80 TUG 2013

1008 TUGboat, Volume 0 (9999), No. 0

smaller. Even in this very simple glyph, some tweak-
ing was necessary beyond just putting together ex-
isting pieces in a standardized way.

Here is code for the kanji numeral “five,” which
is invoked indirectly by kanji.grtwo.language

when it calls kanji.grnine.my. This glyph is shown
at the bottom of Figure 7. This is typical of the basic
shapes that are not made up of smaller components.

vardef kanji.grone.five =

push_pbox_toexpand("kanji.grone.five");

push_stroke((170,740)--(830,740),

(1.6,1.6)--(1.6,1.6));

set_boserif(0,1,9);

push_stroke((500,740)--(350,20),

(1.6,1.6)--(1.6,1.6));

push_stroke(

(220,410)--(730,410)--(720,20),

(1.5,1.5)--(1.5,1.5)--(1.4,1.4));

set_boserif(0,1,4);

set_botip(0,1,1);

push_stroke((120,20)--(880,20),

(1.6,1.6)--(1.6,1.6));

set_boserif(0,1,9);

expand_pbox;

enddef;

The push_stroke macros save paths on the
stack, with each stroke defined by one path for the
spine of the stroke, and a second path describing how
the stroke weight (eventually translated to “width”
through a style-dependent matrix) changes along
the length of the stroke. Other macros, such as
set_boserif, push other objects on the stack to in-
dicate where serifs (uroko) should be added in styles
that use them. The whole thing, like
kanji.grtwo.language before it, is bracketed by
push_pbox_toexpand and expand_pbox, which re-
spectively save, and adjust the size of, an object
called a “proof box.”

After all the macros for a glyph have run, ren-
dering code unwinds the stack and generates out-
lines for all the objects, writing them to the Post-
script output. This code is where most aspects of the
font style are applied. Styles define the pens used for
stroking, transformations for calculating pen size,
the shape of serifs and whether to use them, and
can potentially override parts of the rendering code
by defining hook macros to apply further effects.

I have never fully understood METAFONT’s tra-
ditional proof system based on greyscale fonts and
“literate” programming, and in any case its reliance
on the standard coordinate array z[] would not
mix well with Tsukurimashou’s object stack con-
cept. Tsukruimashou generates proofs in a com-

pletely different way. When unwinding the stack
the rendering code writes a “proof file,” essentially
a machine-readable log of all the things it is ren-
dering. The build system collects the proof files
and runs them through Perl scripts which gener-
ate TikZ/LATEX files for an illustrated and cross-
referenced edition of the source code. The proof
boxes from push_pbox_toexpand result in annota-
tions on the pictures, showing which part of each
glyph came from which macro. Some information
from the proof files also feeds into the kerning pro-
gram, and is used for purposes like advising Font-
Forge of white-on-black reversed glyphs, which rep-
resent exceptions to the overlap-removal rules oth-
erwise applied.

4 Character datbases and IDSgrep

Adding characters to Tsukurimashou requires know-
ing what is already in the system and what is in the
language: when looking at something like the left
side of “outlook,” I need to know whether such a
thing already exists as a macro somewhere in the
code base; whether many other characters in the
language also include it, which would support the
decision to create a new macro for future use; and
which of its parts may be related to common shapes
that could be used as guides for the new code. There
are also simple coding questions like “What was the
name of that macro?” and “Which source code file
is it in?”

More generally, anyone working with Han char-
acters who does not read them fluently may wish to
search a dictionary on partial descriptions: “What
is this character I don’t recognize that has ‘speak’
on the left and ‘five’ at the upper right?” Existing
dictionaries sometimes offer what is called “multi-
radical” search, whereby the user can specify one or
more components and then see a list of all kanji that
contain all those components. But multi-radical
search features seldom if ever capture structural in-
formation like “on the left”; such a system would
just show all the characters that contain “speak”
in one pile for the user to dig through. In the ini-
tial stages of laying out Tsukurimashou’s kanji sup-
port, I frequently found myself wishing I could use
the power of Unix regular expressions, or something
like them, to make more precise queries: why not
run grep on the writing system itself?

The IDSgrep package attempts to serve that
need. With some irony intended, IDSgrep’s stated
goal is to bring the user-friendliness of grep to Han
character dictionaries. IDSgrep is one of the Tsuku-
rimashou parasites: it comes included with the full

Matthew Skala

TUG 2013 81

TUGboat, Volume 0 (9999), No. 0 1009

【林】⿰木木
【語】⿰言⿱五口
【観】⿰⿻矢隹⿱目儿
【涼】⿰水⿱亠⿱口小
【葉】⿱艹⿱世木

Figure 8: Unicode Ideographic Description Sequences.

distribution in a separate directory, or can be dis-
tributed on its own.

Recall the tree decomposition of Figure 1. That
tree might be rendered into a simple ASCII-based
prefix notation as “[lr](speak)[tb](five)
(mouth)”: it is a left-right combination of two
things, the first of which is “speak” and the second
is a top-bottom combination of “five” and “mouth.”
As argued earlier in this paper, such descriptions
are not enough to render high-quality glyphs; but
maybe if we include a few general catch-all cate-
gories like “overlap,” and accept that not all descrip-
tions will be detailed enough for rendering graphics,
we can come up with a description for every charac-
ter sufficient to offer useful dictionary searches.

The Unicode standard specifies syntax for Ideo-
graphic Description Sequences (IDSes), intended to
support exactly this kind of pursuit [14]. There are
special characters defined in the range U+2FF0 to
U+2FFB to represent the prefix operators. Fig-
ure 8 shows some examples of the notation. Note
the way the IDS notation conceals some details: for
instance, the two sides of “forest” are both denoted
by the same character, even though they look dif-
ferent when rendered. This looks promising: maybe
we could get away with “just running grep” on a
database of such decompositions.

In practice there are some additional challenges.
For theoretical reasons, namely the difference be-
tween regular and context-free languages, a true reg-
ular expression search on these descriptions may be
less than satisfactory. IDSgrep implements a tree-
matching query language in which the user can spec-
ify character components to search for explicitly, or
use matching operators like wildcard, match-
anywhere, Boolean operations, and so on. The IDS

syntax is not quite sufficiently flexible and well-
defined to encompass all the tasks IDSgrep demands
of it, and the special Unicode combining operation
characters are difficult to type (and to typeset in

Computer Modern!); so IDSgrep defines extensions
to the syntax and ASCII synonyms for the special
characters, forming a language of Extended Ideo-
graphic Description Sequences (EIDSes) that sub-
sumes the Unicode IDS syntax.

IDSgrep’s user interface consists of a Unix
command-line utility similar to grep. It reads a
database of trees in EIDS syntax, from files or stan-
dard input, and writes out any that match the
matching pattern specified on the command line:
just like grep. The syntax for matching patterns
is complicated because it is powerful, but no worse
for skilled users than standard regular expressions.
After learning the syntax, a user can easily and
quickly compose queries like “What characters have
this
component in that location, but not that other com-
ponent anywhere?”

The latest version, IDSgrep 0.4, uses Bloom
filters and binary decision diagrams to speed up
searches. Although the full tree-matching algorithm
is not slow, a complete search of hundreds of thou-
sands of kanji dictionary entries may take a few sec-
onds. So during installation, IDSgrep precomputes
bit vector indices for the databases being installed;
when searching those databases, it can do quick tests
on the bit vectors to reject the large majority of
possible matches, running the more expensive tree
match on the candidates that make it past the bit
vector check. The amount of speed-up is variable,
but typically around a factor of 15.

But a critical question remains: where does the
data come from? Databases of kanji marked up with
structural data are not easy to find, let alone in IDS-
grep’s native format. The Tsukurimashou fonts gen-
erate (using information extracted from the proof
files) a dictionary of character decompositions as
the characters appear in the fonts. Querying how
Tsukurimashou decomposes a character is often use-
ful, but Tsukurimashou by definition does not cover
the characters I have yet to add, and its decom-
positions may not reflect traditional etymology and
other concerns. IDSgrep also ships with code to ex-
tract EIDS character decompositions from the Kan-
jiVG Project’s XML files [1] and from the CHISE IDS

database [4]. It can do a “join” of any of the kanji
databases with EDICT2 [3] to create an experimen-
tal dictionary of words and meanings with character
decompositions. None of these databases is perfect;
but especially by searching several at once, users can
usually succeed in finding what they are looking for.

Tsukurimashou: a Japanese-language font meta-family

82 TUG 2013

1010 TUGboat, Volume 0 (9999), No. 0

5 Conclusions and future work

There has been much past CJK METAFONT work,
with few results and no finished fonts. I have de-
scribed my own project, the Tsukurimashou para-
metric font meta-family, which is unfinished too.
However, Tsukurimashou has made more progress
than any similar system to date. I have described
issues facing this kind of project, Tsukurimashou’s
solutions for some of them, and associated technol-
ogy including the IDSgrep kanji structural query
system.

The obvious direction for future work is to com-
plete Tsukurimashou’s kanji coverage. My hope,
however, is that some of the code and ideas from
this project will also be applicable in other languages
and other projects.

References

[1] Ulrich Apel. KanjiVG. Online http://

kanjivg.tagaini.net/.

[2] Black Duck Software. The Tsukurimashou
open source project on Ohloh: Languages
page. Online https://www.ohloh.net/

p/tsukurimashou/analyses/latest/

languages_summary.

[3] Jim Breen. The EDICT dictionary file. On-
line http://www.csse.monash.edu.au/~jwb/

edict.html.

[4] CHISE Project. Home page. Online http://

www.chise.org/.

[5] John D. Hobby and Gu Guoan. A Chinese
meta-font. TUGboat, 5(2):119–136, November
1984.

[6] Don Hosek. Design of Oriental characters with
METAFONT. TUGboat, 10(4):499–502, Decem-
ber 1989.

[7] Bogus law Jackowski, Janusz Nowacki, and Pi-
otr Strzelczyk. Programming PostScript Type
1 fonts using MetaType1: Auditing, enhancing,
creating. TUGboat, 24(3):575–581, 2003.

[8] Bogus law Jackowski and Janusz M. Nowacki.
Latin Modern: Enhancing Computer Mod-
ern with accents, accents, accents. TUGboat,
24(1):64–74, 2003.

[9] Koichi Kamichi. Glyphwiki. Online http:

//en.glyphwiki.org/wiki/GlyphWiki:

MainPage.

[10] Javier Rodŕıguez Laguna. Hóng-Zı̀: A Chinese
METAFONT. TUGboat, 26(2):125–128, 2005.

[11] Tung Yun Mei. LCCD, a language for Chi-
nese character design. Report STAN-CS-80-
824, Stanford University, Department of Com-
puter Science, 1980.

[12] Tom Ridgeway. Poor Man’s Chinese and
Japanese, 1990. Online http://www.ctan.

org/tex-archive/fonts/poorman.

[13] Tetsuro Tanaka. Wadalab-Toolkit. Web page
in Japanese. Online http://gps.tanaka.ecc.

u-tokyo.ac.jp/wadalabfont/.

[14] Unicode Consortium. Ideographic descrip-
tion characters. In The Unicode Stan-
dard, Version 6.2.0, section 12.2. The Uni-
code Consortium, Mountain View, USA, 2012.
Online http://www.unicode.org/versions/

Unicode6.2.0/ch12.pdf.

[15] Wenlin Institute. Character description lan-
guage. Online http://www.wenlin.com/cdl/.

[16] Candy L. K. Yiu and Wai Wong. Chinese
character synthesis using MetaPost. TUGboat,
24(1):85–93, 2003.

� Matthew Skala
Department of Computer Science
E2–445 EITC
University of Manitoba
Winnipeg MB R3T 2N2
Canada
mskala@ansuz.sooke.bc.ca

http://ansuz.sooke.bc.ca/

Matthew Skala

TUG 2013 83

Preprints Preprints

TUG 2013 Preprints 1001

The XΥMTEX System for Publishing
Interdisciplinary Chemistry/Mathematics
Books

Shinsaku Fujita

1 XΥMTEX Version 5.01

I have recently released XΥMTEX Version 5.01 for
drawing chemical structural formulas, where its zip
file (xymtx501.zip) is available from my personal
homepage (http://xymtex.com/). The XΥMTEX
system supports three modes for drawing:

1. the LATEX-compatible mode, which is based on
the LATEX-picture environment along with the
epic package,

2. the PostScript-compatible mode, which is based
on the PSTricks package, and

3. the PDF-compatible mode, which is based on
the pgf/TikZ package.

The three modes can be switched by loading the
xymtex, xymtexps, or xymtexpdf package by using
the Yusepackage command. If structural formulas
of high quality are necessary, the latter two modes
should be selected. A typical template for switching
the three modes is shown below:

Ydocumentclass{article}

%Yusepackage{xymtex}%LaTeX mode

%Yusepackage{xymtexps}%PostScript mode

Yusepackage{xymtexpdf}%PDF mode

Yusepackage{graphicx}

Ybegin{document}

Ycholestane[e]{3B==HO}%XyMTeX command

Yend{document}

The XΥMTEX command Ycholestane with the
arguments [e] and {3B==HO} generates the chemical
structural formula of cholest-5-en-3β-ol as follows:

.....................HO .

H

..

CH3

.

H.

H

.

H

.

CH3

.......

H3C

.

H

.

XΥMTEX commands are equipped with facilities
for drawing complex structures, i.e., the substitution
technique for attaching substituents, the addition
technique for drawing fused rings, and the replace-
ment technique for drawing spiro rings. For exam-
ple, the structure of furo[40,30,20:4,5,6]androstane
is drawn by the addition technique, where the

Yfivefusevi command for drawing a 5-membered
fusing unit is declared in the bond list of the
Ysteroid command for drawing a steroid skeleton:

Ysteroid

[{c{Yfivefusevi[ad]{3==O}{}{e}[a]}}]

{{10}B==Ynull;{13}B==Ynull}

....................

.....
O

.

.

The detailed document of the XΥMTEX system
[1] is available from my homepage located at
http://xymtex.com/.

2 Interdisciplinary
Chemistry/Mathematics Books

The development of the XΥMTEX system highly re-
flects the personal history of my researches aiming
at the integration of chemistry and mathematics,
e.g., the concept of imaginary transition structures
(ITSs) [2], the USCI (unit-subduced-cycle-index)
approach [3, 4], the concept of stereoisograms [5,
6], the proligand method [7], and the concept of
mandalas [8].

2.1 Manual Drawing Without Using the
XΥMTEX System

In 1991, I published an interdisciplinary monograph
for combinatorial enumeration of chemical com-
pounds as three-dimensional structures (the USCI
approach) [9]. This book contains many structural
formulas of organic compounds along with math-
ematical equations because of its interdisciplinary
nature. Such mathematical equations were success-
fully typeset by means of the original utilities of
the TEX/LATEX system. However, the structural
formulas contained in this book were drawn man-
ually and pasted on the camera-ready manuscript,
because the TEX/LATEX system supported no reli-
able utility for drawing structural formulas at that
time and because commercially available systems
such as ChemDraw were too expensive to be used
for personal purposes.

The concept of imaginary transition structures
(ITSs), which serves as computer-oriented represen-
tation of organic reactions, was developed mainly
during the 1980s. Just in 2001, rather belatedly, I
published a monograph on the concept of ITSs [10].
Although such ITSs can be regarded as extended

84 TUG 2013

Preprints Preprints

1002 Preprints TUG 2013

structural formulas with colored bonds (par-bonds,
out-bonds, and in-bonds), the XΥMTEX system at
that time did not support utilities of coloring bonds.
It follows that the ITSs contained in this book were
drawn manually and pasted on the camera-ready
manuscript.

2.2 Drawing by the XΥMTEX System

The XΥMTEX system was developed and released in
1993 as a LATEX tool for drawing structural for-
mulas. The manual was published as a book in
1997 [11]. However, it was not until version 4.00
that the XΥMTEX system supported the PostScript-
compatible mode for drawing structural formulas of
high printing quality [12].

The PostScript-compatible mode was applied
to prepare a book for surveying organic compounds
for color photography [13]. Along with chemical
or mathematical equations, this book contains 480
figures, each of which consists of several structural
formulas drawn by the XΥMTEX system.

The book published in 2007 deals with a new
concept mandalas, which I have proposed as a basis
for rationalizing enumeration of three-dimensional
structures [14]. This book contains many math-
ematical equations as well as structural formulas
because of interdisciplinary nature, where the math-
ematical equations were typeset by the original
TEX/LATEXutilities and the structural formulas were
drawn by the XΥMTEX system.

The book published in 2013 is concerned with
the proligand method, which I have proposed to enu-
merate three-dimensional structures [15]. This book
indicates that the proligand method for enumerat-
ing three-dimensional structures can be degenerated
into the Pólya’s method for enumerating graphs.

Moreover, the on-line manual [1] of the XΥMTEX
system itself provides us with an illustrative example
for publishing a book which contains both chemical
structural formulas and mathematical equations.

Because the XΥMTEX Version 5.01 supports
utilities for coloring structural formulas, the book
published in 2001 would be rewritten with main-
taining bond colors (par-bonds, out-bonds, and
in-bonds). This has been briefly discussed in Section
39.4 in the on-line manual [1].

3 Conclusion

As clarified by the publication of the interdis-
ciplinary chemistry/mathematics books described
above, the XΥMTEX system coupled with the LATEX
system has been proven to be a reliable tool for
publishing books of high printing quality which con-

tain structural formulas along with mathematical
equations.

� Shinsaku Fujita
Shonan Institute of

Chemoinformatics and
Mathematical Chemistry

http://xymtex.com

References

[1] S. Fujita, “XΥMTEX: Reliable Tool for
Drawing Chemical Structural Formulas,”
Shonan Institute of Chemoinformatics
and Mathematical Chemistry, Kanagawa
(2013), http://xymtex.com/fujitas3/xymtex/
indexe.html.

[2] S. Fujita, J. Chem. Inf. Comput. Sci., 26, 205–
212 (1986).

[3] S. Fujita, Theor. Chim. Acta, 76, 247–268
(1989).

[4] S. Fujita, J. Am. Chem. Soc., 112, 3390–3397
(1990).

[5] S. Fujita, J. Org. Chem., 69, 3158–3165 (2004).
[6] S. Fujita, Tetrahedron, 60, 11629–11638 (2004).
[7] S. Fujita, Theor. Chem. Acc., 113, 73–79

(2005).
[8] S. Fujita, J. Math. Chem., 42, 481–534 (2007).
[9] S. Fujita, “Symmetry and Combinatorial

Enumeration in Chemistry,” Springer-Verlag,
Berlin-Heidelberg (1991).

[10] S. Fujita, “Computer-Oriented Representation
of Organic Reactions,” Yoshioka-Shoten, Kyoto
(2001).

[11] S. Fujita, “XΥMTEX—Typesetting Chemical
Structural Formulas,” Addison-Wesley Japan,
Tokyo (1997).

[12] S. Fujita, J. Comput. Chem. Jpn., 4, 69–78
(2005).

[13] S. Fujita, “Organic Chemistry of Pho-
tography,” Springer-Verlag, Berlin-Heidelberg
(2004).

[14] S. Fujita, “Diagrammatical Approach to Molec-
ular Symmetry and Enumeration of Stereoiso-
mers,” University of Kragujevac, Faculty of
Science, Kragujevac (2007).

[15] S. Fujita, “Combinatorial Enumeration of
Graphs, Three-Dimensional Structures, and
Chemical Compounds,” University of Kraguje-
vac, Faculty of Science, Kragujevac (2013).

TUG 2013 85

TUGboat, Volume 0 (9999), No. 0 1001

The Multibibliography Package

Michael Cohen, Yannis Haralambous and
Boris Veytsman

Abstract

Conventional standards for bibliography styles en-
tail a forced choice between index and name-year
citations and corresponding references. We reject
this false dichotomy, and describe a multibibliog-
raphy, comprising alphabetic, sequenced, and also
chronological orderings of references. An extended
inline citation format is presented which integrates
such heterogeneous styles, and is useful even with-
out separate bibliographies. Richly hyperlinked for
electronic browsing, the citations are articulated to
select particular bibliographies, and the bibliogra-
phies are cross-referenced through their labels, link-
ing among them.

1 Introduction

One of the aims of the list of references in an aca-
demic paper or book is to show the reader the cur-
rent state of the field. A good bibliography creates a
narrative, showing the context of the current paper
or book in the general picture of scientific inquiry —
those proverbial “shoulders of giants” on which it
stands.

There are two main ways to organize such a
narrative: either around the ideas or around the au-
thors. In the first case the order of citation follows
the order of their mention in the main text. Thus
the logic of the text is reflected in the bibliography
list. In the second case the order of citations follows
the authorship: we want alphabetic order by au-
thors (with chronological subordering of works by
the same authors). Accordingly, the inline citations
in the first cases are usually numerical, whereas in
the second case they are either numerical or, when
possible, based on the authors’ names and publi-
cation years (perhaps abbreviated or contracted).
This is the main difference between “numerical” and
“named” bibliography styles [Daly, 2011: 1]. Both
these styles have their own advantages and disad-
vantages. It is possible to imagine a third option:
ordering the citation primarily accordingly to pub-
lication year, thus showing the chronology of the
progress in the field.

One may ask, why not use the advantages of
both the currently employed styles, generating down
not one, but multiple lists of references? In the old
days, when bibliographies were created and sorted
manually, such a task was prohibitively expensive.
This is no longer true.

Encouraged by the programmability of biblio-
graphic styles and the flexibility of compiled format-
ting, we propose an extension of academic and sci-
entific bibliographic styles. Conventional inline bib-
liographic citations, indicating full references in a
separated bibliography, are either ordinal numbers
generated according to first appearance in a doc-
ument or a tag composed (perhaps abbreviated or
contracted) of respective authors’ names and publi-
cation year. To reconcile desire to simultaneously
deploy these heretofore mutually exclusive styles,
we introduce a “multibibliography,” combining both
“numerical” and “named” styles. We also add a
chronological list, integrating all the information for
the inline citation. This idea was conceived by the
first author and implemented partly by the second
author and the third author.

Rather than having to choose between citations
generated as

index numbers,

• corresponding to alphabetically sorted au-
thors names, as in BibTEXs “plain” style,

• in order of first appearance in the docu-
ment, as in the “unsrt” style, or

author names and publication year (or some
abbreviation thereof), as in the “alpha” style,

we use both, mixing the two styles, as in “(Suzuki,
2013: 57)”, or, in case of associated page numbers,
“(Suzuki, 2013: 57, p. 45–67)”.

This is admittedly unorthodox, unusual and unique,
but satisfies our desire to have an easily understood
cross-reference (without ambiguity in the case of
name collision) and an ordinal reference (the last en-
try also serving as a cardinal reference count), and
also our preference to be able to see an inline re-
minder of the respective authors. As a bonus high-
lighting such usefulness, a “timeline” bibliography
is also generated in chronological order.

2 Implementation and Invocation

The multibibliography comprises three separate or-
derings. A perl script compiles the multibibliogra-
phy source. Running “perl multibibliography.pl

<fn>,” instead of bibtex (after the 1st-pass “latex
<fn>” and before the usual 2nd and 3rd passes),
generates three .bbl files:

“apalike” style, sorted alphabetically, by first au-
thor’s family name,

“unsrt” style, in order of first appearance in the
document, and with the label adjusted to lead
with the sequence number, and also

“chronological” style, sorted according to date
of publication, as in a timeline.

The Multibibliography Package

86 TUG 2013

1002 TUGboat, Volume 0 (9999), No. 0

This functionality is different from both the multi-
bib package,1 which facilitates having separate bib-
liographies for each chapter in a monograph, and
the multibbl package,2 which facilitates separating
referenced sources by their language [Mori, 2009: 2].

In multibibliography.sty, which should be
loaded at the top of any invoking document, the
“thebibliography” command is redefined and the
“bibliographysequence” and “bibliography-
timeline” commands are newly defined, all of which
respectively redefine the bibitem command accord-
ingly to generate references in the appropriate for-
mat and order. The chronological.bst file in the
package, made with the makebst [Daly, 2007: 3] and
docstrip utilities and using the merlin.mbs generic
bibliography [Daly, 2011: 1], augments the built-in
apalike and unsrt styles.

At the end of the document, the multibibliog-
raphy is rendered thusly:

\renewcommand{\bibname}{Refe rences

so r t ed by name}
\markboth{Refe rences so r t ed by name

}{Refe rences so r t ed by name}
\ b i b l i o g r a p h y s t y l e { a p a l i k e }
\ addconten t s l i n e { toc }{ chapter }{

Refe rences so r t ed by name}
\ b ib l i og raphy { . bib f i l e s }

\ c l ea rpage

\renewcommand{\bibname}{Refe rences

so r t ed by f i r s t appearance}
\markboth{Refe rences so r t ed by

f i r s t appearance }{Refe rences

so r t ed by f i r s t appearance}
\ addconten t s l i n e { toc }{ chapter }{

Refe rences so r t ed by appearance }
\ b ib l i og raphysequence { . bib f i l e s }

\ c l ea rpage

\renewcommand{\bibname}{Refe rences

so r t ed c h r o n o l o g i c a l l y }
\markboth{Refe rences so r t ed

c h r o n o l o g i c a l l y }{Refe rences

so r t ed c h r o n o l o g i c a l l y }
\ addconten t s l i n e { toc }{ chapter }{

Refe rences so r t ed c h r o n o l o g i c a l l y }
\ b i b l i o g r a p h y t i m e l i n e { . bib f i l e s }

(For shorter document styles, such as this article,
\bibname should be changed above to \refname,

1 www.ctan.org/pkg/multibib
2 www.ctan.org/pkg/multibbl

and adjustments to the Table of Contents as well
as the \clearpages may be elided.)

This multibibliography system is copotentiated
by the hypertextual hyperref3 package. When us-
ing them together with an appropriate viewer or
browser (such as xdvi, acrobat, or Adobe Reader),
clicking an inline citation jumps to the respective
entry in one of the reference lists. As illustrated
by Fig. 1, the multibibliography inline hyperref

hotspot is articulated to allow clicking on

the name, which jumps to the corresponding entry
in the alphabetical bibliography;

the index number, which jumps to the respective
entry in the sequential bibliography; or

the date, which jumps to the matching entry in
the chronological bibliography.

Similarly, cross-references among the respective
sub-bibliographies are also hyperlinked, although from
the labels, and not the bibitem bodies of the ci-
tations. The “[backref=page]” hyperref exten-
sion4 is also compatible, generating the familiar and
useful back-references in all three subbibliographies:
lists of clickable page number links associated with
each entry in the bibliography pointing back to the
respective citations (excepting those generated by
nocites). The generation of these back-references,
indicated by the hollow arrowheads in Fig. 1, repre-
sents “closing the loop” on the fully crossed relation
set.

In the future, the date should be articulated
to add the month to the sort.label in the presort
FUNCTION in the chronological.bst file, since it
isn’t one of the built-in keys of the makebst package
[Markey, 2009: 6], as the merlin system didn’t antic-
ipate such fine-grained sortings. As [Markey, 2009: 6,
p. 13] observes, the month is somewhat problematic,
since it is indicated by a character string, but is re-
ally an ordinal. If built-in macros (“jan”, “feb”,
etc.) are used, they can be easily mapped to months
and used for sorting, but if, as is often the case, the
field is reinterpreted to mean date (bimonthly publi-
cations indicated by something like
month = "March & April", quarterly dates as month
= "Autumn", etc.), this scheme will not easily gen-
eralize.

We have not yet experimented with combin-
ing this package with other bibliographic packages
[Patashnik, 1998: 4] such as natbib5 or chapterbib6

[Kopka and Daly, 2003: 5, p. 217–221].

3 www.ctan.org/pkg/hyperref
4 www.tug.org/applications/hyperref/manual.html
5 www.ctan.org/pkg/natbib
6 www.ctan.org/pkg/chapterbib

Michael Cohen, Yannis Haralambous and Boris Veytsman

TUG 2013 87

TUGboat, Volume 0 (9999), No. 0 1003

alphabetical
(authors' names)

chronological
(timeline)

sequential
(first appearance in document)

inline citation::
(Suzuki, 2013: 57)

date

date

name
name

page index

index

page page

Figure 1: Hyperreferential links across document and among the multibibliographies:
Each inline citation, exemplified by the block in the center, is linked to references in
subbibliographies, which are cross-linked to each other and can also be linked back to
the inline callout. Hollow arrowheads represent links provided by hyperref’s backref;
solid arrowheads represent links provided by the multibibliography package.

3 Implications

The extended inline citation style was designed for
the multibibliography, but can be deployed and is
useful even without it. The bibliographic dilation
is perhaps more appropriate or at least more ap-
pealing for electronic dissemination, as traditional
print-based publishers might resent the cost of ex-
tra pages. The fully crossed hyperreferential links
are a convenient way of establishing the context of
references, seamlessly expressing citations’ appear-
ances in the document and in time.

Bibliographic subsections might be sorted by
other ad-hoc keys. Maybe the three “slices” through
the bibliographic database that we have organized
suffice for most ordinary publishing, but presum-
ably someone could make even more styles of bib-
liographic lists, corresponding to special purposes,
sorted by attributes such as number of authors, num-
ber of pages, conference or journal, location, etc. For
simple examples, a subbibliography near the end of
an art book could be sorted by name of artist con-
sidered by each monograph, or music books could
have bibliographies sorted by name of performing
group or family or given name of artist. Of course
all monographs about each artist would be grouped

together in that subbibliography, and each citation
would include page numbers for each call-out within
the text.

Such extended subbibliographies both represent
and also re-present references, showing them in fresh
and useful settings. There are two related activities
encouraged by such recontextualization:

• looking up a particular entry (including page
call-outs), and

• exploiting “locality of reference,” so that other
related sources are likely to be nearby.

Such lists could be explicitly sequenced by an au-
thor, but only painstakingly. However, such con-
cordances would lack the automatic back references
to the call-outs. A modern, flexible scheme enables
various presentations of bibliographic information,
so that each references subsection acts as a kind of
special index, but with granularity not at the topic
level, but at the document level.

The philosophy is to leverage the power of hy-
perreferential idioms to augment reading by consid-
ering a document as a special kind of database that
is indexed in appropriate dimensions, especially in-
cluding the name–value pairs in its associated bib-
liographic information (such as that captured by

The Multibibliography Package

88 TUG 2013

1004 TUGboat, Volume 0 (9999), No. 0

BibTEX files) plus derived information available af-
ter compilation (such as sequence number and ap-
pearance location).

It is our hope that old-fashioned conventions,
established in the context of technological restric-
tions that have now been overcome, may be relaxed.
We anticipate that future schemes will allow dy-
namic reordering, as if the bibliography were a spread-
sheet-like database, which of course it is. We find
this multidimensional presentation useful, are adopt-
ing it at the first author’s university as a recom-
mended style for masters theses and doctoral dis-
sertations, and hereby encourage other institutions
to emulate this innovation, especially for extended
works such as monographs and books.

References sorted by name

[Daly, 2007: 3] Daly, P. W. (2007). Cus-
tomizing bibliographic style files. http:

//mirror.ctan.org/macros/latex/contrib/

custom-bib/makebst.pdf. 1002

[Daly, 2011: 1] Daly, P. W. (2011). A Mas-
ter Bibliographic Style File for numeri-
cal, author–year, multilingual applications.
http://mirror.hmc.edu/ctan/macros/

latex/contrib/custom-bib/merlin.pdf,
http://ftp.jaist.ac.jp/pub/CTAN/macros/

latex/contrib/custom-bib/merlin.pdf,
v. 4.33. 1001, 1002

[Kopka and Daly, 2003: 5] Kopka, H. and Daly,
P. W. (2003). Guide to LaTeX. Addison-Wesley
Professional, 4th edition. 1002

[Markey, 2009: 6] Markey, N. (2009). Tame
the BeaST: The B to X of BibTEX.
ftp://ftp.tex.ac.uk/tex-archive/info/

bibtex/tamethebeast/ttb_en.pdf, v. 1.4. 1002

[Mori, 2009: 2] Mori, L. F. (2009). Managing bib-
liographies with LATEX. TUG: TEX Users Group
Meeting, 30(1):36–48. 1001

[Patashnik, 1998: 4] Patashnik, O. (1998).
BibTEXing. http://mirror.ctan.org/biblio/

bibtex/contrib/doc/btxdoc.pdf. 1002

References sorted by appearance

[1: Daly, 2011] Patrick W. Daly. A Master
Bibliographic Style File for numerical, author–
year, multilingual applications, October
2011. http://mirror.hmc.edu/ctan/macros/

latex/contrib/custom-bib/merlin.pdf,
http://ftp.jaist.ac.jp/pub/CTAN/macros/

latex/contrib/custom-bib/merlin.pdf,
v. 4.33. 1001, 1002

[2: Mori, 2009] Lapo F. Mori. Managing bibliogra-
phies with LATEX. TUG: TEX Users Group Meet-
ing, 30(1):36–48, 2009. 1001

[3: Daly, 2007] Patrick W. Daly. Cus-
tomizing bibliographic style files, 2007.
http://mirror.ctan.org/macros/latex/

contrib/custom-bib/makebst.pdf. 1002

[4: Patashnik, 1998] Oren Patashnik. BibTEXing,
1998. http://mirror.ctan.org/biblio/

bibtex/contrib/doc/btxdoc.pdf. 1002

[5: Kopka and Daly, 2003] Helmut Kopka and
Patrick W. Daly. Guide to LaTeX. Addison-
Wesley Professional, 4th edition, 2003. 1002

[6: Markey, 2009] Nicolas Markey. Tame the
BeaST: The B to X of BibTEX, October 2009.
ftp://ftp.tex.ac.uk/tex-archive/info/

bibtex/tamethebeast/ttb_en.pdf, v. 1.4.
1002

References sorted by year

[Patashnik, 1998: 4] Patashnik, O. BibTEXing.
1998. http://mirror.ctan.org/biblio/

bibtex/contrib/doc/btxdoc.pdf. 1002

[Kopka and Daly, 2003: 5] Kopka, H. and Daly,
P. W. Guide to LaTeX. Addison-Wesley Profes-
sional, 4th edition, 2003. ISBN 0-321-17385-6.
1002

[Daly, 2007: 3] Daly, P. W. Customiz-
ing bibliographic style files. 2007.
http://mirror.ctan.org/macros/latex/

contrib/custom-bib/makebst.pdf. 1002

[Markey, 2009: 6] Markey, N. Tame the
BeaST: The B to X of BibTEX. 2009.
ftp://ftp.tex.ac.uk/tex-archive/info/

bibtex/tamethebeast/ttb_en.pdf, v. 1.4.
1002

[Mori, 2009: 2] Mori, L. F. Managing bibliographies
with LATEX. TUG: TEX Users Group Meeting,
30(1):36–48, 2009. 1001

[Daly, 2011: 1] Daly, P. W. A Master Bibli-
ographic Style File for numerical, author–
year, multilingual applications. 2011.
http://mirror.hmc.edu/ctan/macros/

latex/contrib/custom-bib/merlin.pdf,
http://ftp.jaist.ac.jp/pub/CTAN/macros/

latex/contrib/custom-bib/merlin.pdf,
v. 4.33. 1001, 1002

Michael Cohen, Yannis Haralambous and Boris Veytsman

TUG 2013 89

TUGboat, Volume 0 (9999), No. 0 1005

� Michael Cohen
Spatial Media Group, Computer

Arts Lab.
University of Aizu
Aizu-Wakamatsu, Fukushima

965-8580
Japan
mcohen@u-aizu.ac.jp

www.u-aizu.ac.jp/~mcohen

� Yannis Haralambous
Département Informatique

Télécom Bretagne
Technopôle de Brest Iroise, CS

83818
29238 Brest Cedex 3
France
yannis.haralambous@

telecom-bretagne.eu

international.telecom-bretagne.

eu/welcome/studies/msc/

professors/haralambous.php

� Boris Veytsman
Systems Biology School and

Computational Materials
Science Center

MS 6A2
George Mason University
Fairfax, VA 22030
USA
borisv@lk.net

borisv.lk.net

The Multibibliography Package

90 TUG 2013

Sponsors
Graduate School of Mathematical Sciences, the University of Tokyo （東京大学大学院数理科学研究科）

SANBI Printing Co., Ltd.（三美印刷株式会社）

Gijutsu-Hyohron Co., Ltd.（株式会社技術評論社）

Tokyo Educational Institute Co., Ltd. (Tetsuryokukai)（株式会社東京教育研（鉄緑会））

Green Cherry Ltd.（株式会社 Green Cherry）

PLAIN corporation（株式会社プレイン）

Livretech Co., Ltd.（株式会社リーブルテック）

Top Studio Co., Ltd.（株式会社トップスタジオ）

ULS & Company（株式会社ウルス）

Tatsu-zine Publishing Inc.（株式会社達人出版会）

Ohmsha, Ltd.（株式会社オーム社）

Kato Bunmeisha Co., Ltd.（株式会社加藤文明社印刷所）

Fujiwara Printing Co., Ltd.（藤原印刷株式会社）

Saiensu-sha Co., Ltd.（株式会社サイエンス社）

Suurikougaku-sha Co., Ltd.（株式会社数理工学社）

Enishi Tech Inc.（株式会社えにしテック）

Maruzen Publishing Co., Ltd.（丸善出版株式会社）

Dainippon Hourei Printing inc.（大日本法令印刷株式会社）

Gravel Road Inc.（株式会社グラベルロード）

the TEX Users Group

Korean TEX Society

DANTE e.V.

Thomas Bietenhader ♦ Kosakai Eiichiro（小酒井英一郎）♦ KIEDA Yuwsuke（木枝祐介）♦ SHIBATA Mitsuya
（柴田充也） ♦ FUJIMURA Yukitoshi（藤村行俊） ♦ NARIAI Kyoji（成相恭二） ♦ Hiroki Kanou（狩野宏樹）
♦ SHIKANO Keiichiro（鹿野 桂一郎）

and a lot of anonymous sponsors.

Thanks to all!
ご協力頂いた全ての方へ感謝いたします．

Conference committee:
ABE Noriyuki (Hokkaido Univ.) • Karl BERRY (TUG) • HONDA Tomoaki (SANBI Printing) • ICHII Shingo
(the Univ. of Tokyo) • KUROKI Yusuke • OKUMURA Haruhiko (Mie Univ.) • Steve PETER (TUG) • Norbert
PREINING (JAIST) • TAKAHASHI Masayoshi (Tatsu-zine Publishing) • YAMAMOTO Munehiro (Green
Cherry)

