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Abstract
•

• •

This thesis describes research leading to an improved word hyphenation algo-
rithm for the 153X82 typesetting system. Hyphenation is viewed primarily as a data
compression problem, where we are given a dictionary of words with allowable divi-
sion points, and try to devise methods that take advantage of the large amount of
redundancy present. * «

The new hyphenation algorithm is based on the idea of hyphenating and in-
hibiting patterns. These are simply strings of letters that, when they match in a
word, give us information about hyphenation at some point in the pattern. For
example, 4-tion' and cc-c* are good hyphenating patterns. An important feature of
this method is that a suitable set of patterns can be extracted automatical!/ from

•

the dictionary.
In order to represent the set of patterns in a compart rm

efficient for searching, the author has developed a new data structure called a packed
trie. This data structure allows the very fast search times characteristic of indexed
tries, but in many cases it entirely eliminates the wasted space for null links usually
present in such tries. We demonstrate the versatility and practical advantages of

•

thig data structure by using a variant of it as the critical component of the program
that generates the patterns from the dictionary.

The resulting hyphenation algorithm uses about 4500 patterns that compile
into a packed trie occupying 25K bytes of storage. These patterns find 89% of the
hyphens in a pocket dictionary word list, with essentially no error. By comparison,
the uncompressed dictionary occupies over 500K bytes.

This research was supported in part by the National Science Foundation under grants IST-8£-
01926 and MSC-88-00984, and by the System Development Foundation. 'TjjjX'is a trademark
of the American Mathematical Society,
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Chapter 1

Introduction

The work described in this thesis was inspired by the need for a word hyphen-
ation routine as part ^ Don Knuth's typesetting system [l]. This system was
initially designed in order to typeset Prof. Knuth's seven-volume series of books,
The Art of Computer Programming\ when he became dissatisfied with the qual-
ity of computer typesetting done by his publisher. Since Prof. Knuth's books were
to be a definitive treatise on computer science, he could not bear to see his schol-
arly work presented in an inferior manner, when the degradation was entirely due
to the fact that the material had been typeset by a computer!

•

Since then, T̂ jX (also known as Tau Epsilon Chi, a system for technical text)
has gained wide popularity, and it is being adopted by the American Mathematical
Society, the world's largest publisher of mathematical literature, for use in its jour-

is distinctive among other systems for word processing/document prepa-
ration in its emphasis on the highest quality output, especially for technical mate-
rial. *

• •

One necessary component of the system is a computer-based algorithm for hy-

nals.

phenating English words. This is part of the paragraph justification routine, and it
is intended to eliminate the need for the user to specify word division points explic-
itly when they are necessary for good paragraph layout. Hyphenation occurs rela-
tively infrequently in most book-format printing, but it becomes rather critical in
narrow-column formats such as newspaper printing. Insufficient attention paid to
this aspect of layout results in large expanses of unsightly white space, or (even
worse) in words split at inappropriate points, e.g. new-spaper.

Hyphenation algorithms for existing typesetting systems are usually either rule-
based or dictionary-based. Rule-based algorithms rely on a set of division rules such
as given for English in the preface of Webster's Unabridged Dictionary (2). These in-
elude recognition of common prefixes and suffixes, splitting between double conso-
nants, and other more specialized rules. Some of the "rules" are not particularly

1



7 INTRODUCTION

amenable to computer im elements of a
or. and tfcev i ar

ru
first place can be a difficult an

UTi an
able division points. The obvious disadvantage of this method is the excessive stor-
age required, as well as the slowing down of the justification process when the hy-
phenation routine needs to access a part of the dictio] ary store.

m

, consider Figure lf which shows
a paragraph set in three different ways by T£X. The first example uses TgX's nor-
mal paragraph justification parameters, but with the hyphenation routine turned

is unable to find
momenon known

am

as an "overfull box**

fix this problem
as users: This

creasing the stretch component of spaceskip to .Sera.)
as d
mar is now

as

In the third example, the hyphenation routine is turned on, and everything is
beautiful.

In olden times when wishin-
till helped one, there lived a kin
hose daughters were all beautifi I,
ut the youngest WAS SO bcautifu
hat the sun itself, which has see
0 much, was astonished whenev
t shone in her face. Close b
he king's castle lay a great dar
brest, and under nn oltl lime-trc
n the forest ww a well, and when
he day w;is very warm, the king'
hiM went out into the forest and
at down by the side of the cool
buntain, and when fthr was bore
lie took a golden ball, and thrr
1 up on high and caught it, and]
hit t>al! wai her favorite play t hi

In olden times when wishing
still helped one, there lived a
king whose daughters were al)
beautiful, btit the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone In
her face. Close by the king's
castle lay a great dark forest,
and under c i old lime-tree in
the forest wa« a well, and when
the day was very warm, the
king's child went out into the
forest and snt down by the tide
of the cool fountain, anil when
ehe was bored she took a golden
ball, and threw it up on high
and caught it, and this bat) was
her favorite plaything.

In olden times when wish-
ing stilt helped one, there lived
a king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king's castle
lay a great dark forest, And un-
der an old lime-tree in the forest
was a well, and when the day was
very warm, the king's child went
out into the forest and sat down
by the side of the cool fountain,
nnd when nhc was bored she took
K golden ball, and threw it up on
high and caupht it, and this ball
was her favorite plaything.

* •

Figure 1. A typical paragraph with and without hyphenation.
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sel-fadjoint
Pit-tsburgh
clearin-ghouse
fun-draising
ho-meowners
playw-right
algori-thm
valkth-rough
Re-agan

as-80-ciate

prog-ress

rec-ord
a-rith me-tic
eve-ning
pe-ri-od-ic

in-de-pen-dent
tri-bune

as-so-cl-at«
pro-greeB
re-cord

ar-ith-met-ic
even-ing
per-i-o-dic

• •

in-de-pend-ent
trib-une

Figure S. Difficult hyphenations.

However, life is not always so simple. Figure 2 shows that hyphenation can be
difficult. The first column shows erroneous hyphenations made by typeset-
ting systems (which shall remain nameless). The next group of examples are words
that hyphenate differently depending on how they are used. This happens most
commonly with words that can serve as both nouns and verbs. The last two ex-
am

Webster's vs. American Heritage).
•

E and hyphenation
The original T£jX hyphenation algorithm was designed by Prof. Knuth and

the author in the summer of 1977. It is essentially a rule-based algorithm, with
three main types of rules: (1) suffix removal, (2) prefix removal, and (3) vowel-

•

consonant-consonant-vowel (veev) breaking. The latter rule states that when the
pattern 'vowel-consonant-consonant-vowcl1 appears in a word, we can in most cases
split between the consonants. There are also many special case rules; for example,
"break vowel-qw or "break after ck". Finally a small exception dictionary (about

r
i

300 words) is used to handle particularly objectionable errors made by the above
rules, and to hyphenate certain common words (e.g. pro-gram) that are not split by
the rules. The complete algorithm is described in Appendix H of the old man-

ual.
In practice, the above algorithm has served quite well. Although it does not

find all possible division points in a word, it very rarely makes an error. Tests on a

pocket dictionary word list indicate that about 40% of the allowable hyphen points

are found, with 1% error (relative to the total number of hyphen points). The al-

gorithm requires 4K 36-bit words of code, including the exception dictionary.
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«
goal of the present research was to develop a better hyphenation algo-

an finding more hyphens, with little or no error, and us
ad yp

ary. Thus we can view our task
an an

antial improvement over the straightforward representation.
Another eoal was gn of the algorithm

ansible. The original T]gX algorithm was developed mostly by
deal ôf trial and eiror. Extending such a rule-based scheme to find the
ing hyphens seems very difficult. Furthermore such an effort must be rep<

ain

an

cause pronunciation (and thus hyphenation) tends to change over time, and be-
cause different types of publication may call for different sets of admissible hy-
phens. .

Time magazine algorithm

A number of approaches were considered, including methods that have been dis-
cussed in the literature or implemented in existing typesetting systems. One of the

•

methods studied was the so-called Time magazine algorithm, which is table-based
rather than rule-based.

•

The idea is to look at four letters surrounding each possible breakpoint, namely

two letters preceding and two letters following the given point. However we do not
•

want to store a table of 264 = 456,976 entries representing all possible four-letter
combinations. (In practice only about 15% of these four-letter combinations actu-
ally occur in English words, but it is not immediately obvious how to take advan-
tage of this.)

Instead, the method uses three tables of size 262, corresponding to the two let-
ters preceding, surrounding, and following a potential hyphen point. That is, if
the letter pattern wx-yz occurs in a word, we look up three values correspond-
ing to the letter pairs wx, xy, and yz, and use these values to determine if we can

split the pattern.
What should the three tables contain? In the T:\ae algorithm the table values

were the probabilities that a hyphen could occur after, between, or before two given
letters, respectively. The probability that the pattern wx-yz can be split is then es-

as
dent, which they aren't). Finally the estimated value is compared against a thresh-
old to determine hyphenation. Figure 3 shows an example of hyphenation proba-
bilities computed by this method.
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I

I I I I I

S U P E R C A L I F R A G I I - I S T I C E X P I A L I D O C I O U S

Figure 8. Hyphenation probabilities.

The advantage of this table-based approach is that the tables can be gen-
erated automatically from the dictionary. However, some experiments with the
method yielded discouraging results. One estimate is 40% of the hyphens found,
with 8% error. Thus a large exception dictionary would be required for good per-
formance.

The reason for the limited performance of the above scheme is that just four let-
ters of context surrounding the potential break point are not enough in many cases.
In an extreme example, we might have to look as many as 10 letters ahead in or-
der to determine hyphenation, e.g. dem-on-stra-tion vs. de-mon-stra-tive.

So a more powerful method is needed. «

Patterns
A good deal of experimentation led the author to a more powerful method

based on the idea of hyphenation patterns. These are simply strings of letters that,
when they match in a word, will tell us how to hyphenate at some point in the pat-
tern. For example, the pattern 'tion1 might tell us that we can hyphenate be-
fore the V. Or when the pattern 'cc1 appears in a word, we can usually hy-
phenate between the c's. Here are some more examples of good hyphenating pat-
terns:

.in-d .in-e . in-t .un-d b-s -cia con-s con-t e-ly er-1 er-ra
ex- -ful i t - t i - ty - less 1-ly -ment n-co -ness n-f n-1 n-si
n-v ora-m -sJon s-ly B-nes t i -ca x-p

(The character V matches the beginning or end of a word.)
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Patterns have many advantages. They arc a general form of "hyp
an

an (Actu-
are often more concise than an exception dictionary

gle pattern can handle several variant forms of a word; e.g. pro-gram, pro-grama,
and Dro-irramm

More importantly, the pattern matching approach has proven very effective. An
appropriate set of patterns captures very concisely the information needed to per-
form hyphenation. Yet the pattern rules are of simple enough form that they can»
be generated automatically from the dictionary.

When looking for good hyphenating patterns, we soon discover that almost all
of them have some exceptions. Although - t ion is a very "safe" pattern, it fails on
the word cat-ion. Most other cases are less clear-cut; for example, the common pat-
tern n- t can be hyphenated about SO percent of the time. It definitely seems worth-
while to use such patterns, provided that we can deal with the exceptions in some
manner.

After chooskg a set of hyphenating patterns, we may end up with thousands
of exceptions. The^e could be listed in an exception dictionary, but we soon no-

•

tice there are many similarities among the exceptions. For example, in the orig-
inal T^X algorithm we found that the vowel-consonant-consonant-vowel rule re-
sulted in hundreds <S errors of the form X-Yer or X-Yers, for certain consonant
pairs XY, so we put in a new rule to prevent those errors.

Thus, there may be "rules" that can handle large classes of exceptions. To take
advantage of this, patterns come to the rescue again; but this time they are inhibit-
irg patterns, because they show where hyphens should not be placed. Some good ex-
amples of inhibiting patterns are: b=ly (don't break between b and ly), bs s , scing,

n, =3.8, nna, ns=t, n=ted, =pt, t i=a l , =tly, =ts, and
As it turns out, this «ipproach is worth pursuing further. That is, after ap-

plying hyphenating and inhibiting patterns as discussed above, we might have an-
other »ei of hyphenating patterns, then another set of inhibiting patterns, and
so on. We can think of each level of patterns as being "exceptions to the ex-
ceptions" of the previous level. The current 1^X82 algorithm uses five alternat-
ing levels of hyphenating and inhibiting patterns. The reasons for this will be ex-
plained in Chapter 4.

The idea of patterns is the basis of the new l^X hyphenation algorithm, and
it was the inspiration for much of the intermediate investigation, that will be de-

bcribed.
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Overview of thesis

In developing the pattern scheme, two main questions arose: (l) How can we
represent the set of hyphenation patterns in a compact form that is also reason-
ably efficient for searching? (2) Given a hyphenated word list, how can we gener-
ate a suitable set of patterns?

To solve these problems, the author has developed a new data structure called
a paxked trie. This data structure allows the very fast search times characteris-
tic of indexed tries, but in many cases it entirely eliminates the wasted space for
null links usually present in such tries.

We will demonstrate the versatility and practical advantages of this data struc-

ture *y using it not only to represent the hyphenation patterns in the final algo-

rithm, but also d'j the critical component of the program that generates the pat-

terns from the dictionary. Packed tries have many other potential applications, in-

cluding identifier lookup, spelling checkingj and lexicographic sorting.

Chapter 2 considers the simpler problem of recognizing, rather than hyphenat-

ing, a set of words such as a dictionary, and uses this problem to motivate and ex-

plain the advantages of the packed trie data structure. We also point out the close re-

lationship between tries and finite-state machines.

Chapter 3 discusses ways of applying these ideas to hyphenation. After con-

sidering various approaches, including minimization with don't cares, we return to

the idea of patterns.
Chapter 4 discusses the heuristic method used to select patterns, introduces dy~

w

namic packed tries, and describes some experiments with the pattern generation pro-

gram
Chapter 5 gives a brief history, and mentions ideas for future research.
Finally, the appendix contains the WEB [3] listing of the portable pattern gen-

eration program PATGEN, as well as the set of patterns currently used by 1)3X82.

Note: The present chapter has been typeset by giving unusual instructions to
so that it hyphenates words much more often than usual; therefore the reader

can see numerous examples of word breaks that were discovered by the new algo-

rithm.



Chapter 2 * •

The dictionary problem

In this chapter we consider the problem of recognizing a set of words over an
an

example the Laers A through Z, or the ASCII character set. A word is a sequence
of characters from the alphabet. Given a set of words, our problem is to drsign a
data structure that will allow us to determine efficiently whether or not some word
is in the set.

In particular, we will use spelling checking as an example throughout this
chapter. This is a topic of interest in its own right, but we discuss it here because*
the pattc/n matching techniques we propose will turn out to be very useful in our
hyphenation algorithm.

Our problem is a special case of the general set recognition problem, because the

elements of our set have the additioncil structure of being variable-length sequences

of symbols from a finite alphabet. This naturally suggests methods based on a

character-by-charactcr examination of the key, rather than methods that operate
•

F

on the entire key at once. Also, the redundancy present in natural languages such as
English suggests additional opportunities for compression of the set representation.

We will be especially interested in space minimization. Most data structures for
set ieprescntation, including the one we propose, are reasonably fast for searching.
That is, a search for a key doesn't take much more time than is needed to examine
the key itself. However, most of these algorithms assume that everything is "in
core", that is, in the primary memory of the computer. In many situations, such
as our spelling checking example, this is not feasible. Since secondary memory
access times arc typically much longer, it is worthwhile to try compressing the data

as
In addition to determining whether a given word is in the set, there arc other

ar

insertion M.
performing the union of two sots, partitioning a set according to some criterion,

8
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an
an

For the data structures we consider, we will pay some attention to methods for
insertion and deletion, but we shall not discuss the more complicated operations.

We first survey some known methods for set representation, and then propose
a new data structure called a "packed trie".

•

Data structures

Methods for set representation include the following: sequential lists, sorted
lists, binary search trees, balanced trees, hashing, superimposed coding, bit vec-
tors, and digital search trees (also known as tries). Good discussions of these data
structures can be found in a number of texts, including Knuth [4], Standish [5], and
AHU [6]. Below we make a few remarks about each of these representations,

A sequential list is the most straightforward representation. It requires both
space and search time proportional to the number of characters in the dictionary.

r
m

A sorted list assumes an ordering on the keys, such as alphabetical order.
Binary search allows the search time to be reduced to the logarithm of the size of
the dictionary, but space is not reduced.

A binary search tree also allows search in logarithmic time. This can be thought
of as a more flexible version of a sorted list that can be optimized in various ways.
For example if the probabilities of searching for different keys in the tree arc known,
then the tree can be adapted to improve the expected search time. Search trees
can also handle insertions and deletions easily, although an unfavorable sequence of
such operations may degrade the performance of the tree.

Balanced tree schemes (including AVL trees, 2-3 trees, and B-trees) correct

the above-mentioned problem, so that insertions, deletions, and searches can all
•

be performed in logarithmic time in the worst case. Variants of trees have other* *
nice properties, too; they allow merging and splitting of sets, and priority queue

operations. B-trees are well-suited to large applications, because they are designed

to minimize the number of secondary memory accesses required to perform a search.

However, space utilization is not improved by any of these tree schemes, and in fact

it is usually increased because of the need for extra pointers.

Hashing is an essentially different approach to the problem. Here a suitable

randomizing function is used to compute the location at which a key is stored.

Hashing methods are very fast on the average, although the worst case is linear;

fortunately this worst case almost never happens.
An interesting variant of hashing, called superimposed coding, was proposed

by Bloom [7] (see also (4, §6.5), [8]), and at last provides for reduction in space,
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*
although at the expense of allowing some error. Since this method is perhaps less
well known we give a description of it here.

Superimposed coding

The idea is as follows. We use a single large bit array, initialized to *eros, plus
a suitable set of d different hash functions. To represent a word, we use the hash
functions to compute d bit positions in the large array of bits, and set these bits to
ones. We do this for each word in the set. Note that some bits may be set by more
than one word.

To test if a word is in the set, we compute the d bit positions associated with
the word as above, and check to see if they are all ones in the array. If any of
them are zero, the word cannot be in the set, so we reject it. Otherwise if all of

•

the bits are ones, we accept the word. However, some words not in the set might
be erroneously accepted, if they happen to hash into bits that are all "covered" by
words in the set.

i

It can be shown [7] that the above scheme makes the best use of space when the

density of bits in the array, after all the words have been inserted, is approximately
•

one-half. In this case the probability that a word not in the set is erroneously
daccepted is 2 . For example if each word is hashed into 4 bit positions, the error

•

probability is 1/16. The required size of the bit array is approximately nd\ge%

where n is the number of items in the set, and \ge « 1.44.

In fact Bloom specifically discusses automatic hyphenation as an application

for his scheme! The scenario is as follows. Suppose we have a relatively compact
•

routine for hyphenation that works correctly for 90 percent of the words in a large

dictionary, but it is in error or fails to hyphenate the other 10 percent. We would

then like some way to test if a word belongs to the 10 percent, but we do not have

room to store all of these words in main memory. If we instead use the superimposed

coding scheme to test for these words, the space required can be much reduced. For

example with d = 4 we only need about 6 bits per wcrd. The penalty is that some

words will be erroneously identified as being in the 10 percent. However, this is

acceptable because usually the test word will be rejected and we can then be sure

that it is not one of the exceptions. (Either it is in the other 90 percent or it is not

in the dictionary at all.) In the comparatively rare case that the word is accepted,

we can go to secondary store, to check explicitly if the word is one of the exceptions.

The above technique is actually used in some commercial hyphenation routines.
For now, however, l^X will not have an external dictionary. Instead we will require

that our hyphenation routine be essentially free of error (although it may not achieve
•

complete hyphenation).
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An extreme case of superimposed coding should also be mentioned, namely the
bit-vector representation of a set. (Imagine that each word is associated with a single
bit position, and one bit is allocated for each possible word,) This representation is
often very convenient, because it allows set intersection and union to be performed
by simple logical operations. But it also requires space proportional to the size of
the universe of the set, which is impractical for words longer than three or four
characters.

Tries
The final class of data structures we will consider are the digital search trees,

first described by de la Briandais [9] and Fredkin [10]. Fredkin also introduced the
term "trie" for this class of trees. (The term was derived from the word retrieval,
although it is now pronounced "try".)

Tries are distinct from the other data structures discussed so far because they
explicitly assume that the keys are a sequence of values over some (finite) alphabet,
rather than a single indivisible entity. Thus tries are particularly well-suited for
handling variable-length keys. Also, when appropriately implemented, tries can

•

provide compression of the set represented, because common prefixes of words are
combined together; words with the same prefix follow the same search path in the
trie.

A trie can be thought of as an m-ary tree, where m is the number of characters
in the alphabet. A search is performed by examining the key one character at a
time and using an m-way branch to follow the appropriate path in the trie, starting

•

at the root.
We will use the set of 31 most common English words, shown below, to illustrate

different ways of implementing a trie.

A FOR IN THE
AND FROM IS THIS
ARE HAD I T TO
AS HAVE NOT WAS
AT HE OF WHICH
BE HER ON WITH
BUT HIS OR YOU
BY I THAT

Figure j . The SI moat common English words.

*
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Figure 5. Linked trie for the SI moat eommon English words.
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Figure 5 shows a linked trie representing this set of words. In a linked trie,
the m-way branch is performed using a sequential scries of comparisons. Thus in
Figure 5 each node represents a yes-no test against a particular character. There
are two link fields indicating the next node to take depending on the outcome of
the test. On a 'yes> answar, we also move to the next character of the key. The
underlined characters are terminal nodes, indicated by an extra bit in the node. If
the word ends when we are at a terminal node, then the word is in the set.

Note that we do not have to actually store the keys in the trie, because each
node implicitly represents a prefix of a word, namely the sequence of characters

ad

A linked trie is somewhat slow because of the sequential testing required for
each character of the key. The number of comparisons per character can be as large
as m, the size of the alphabet. In addition, the two link fields per node are somewhat
wasteful of space. (Under certain circumstances, it is possible to eliminate one of
these two links. We will explain this later.)

In an indexed trie} the m-way branch is performed using an array of size m.
The elements of the array are pointers indicating the next family of the trie to
go to when the given character is scanned, where a "family" corresponds to the
group of nodes in a linked trie for testing a particular character of the key. When
performing a search in an indexed trie, the appropriate pointer can be accessed by
simply indexing from the base of the array. Thus search will be quite fast**

ut indexed tries typically waste a lot of space, because most of the arrays have
only a few "valid" pointers (for words in the trie), with the rest of the links being
null. This is especially common near the bottom of the trie. Figure 6 shows an
indexed trie for the set of 31 common words. This representation requires 26 x 32
832 array locations, compared to 59 nodes for the linked trie.

Various methods have been proposed to remedy the disadvantages of linked
and indexed tries. Trabb Pardo fill describes and analyzes the space requirements

+

of some simple variants of binary tries. Knuth [4, ex. 6.3-20] analyzes a composite
method where an indexed trie is used for the first few levels of the trie, switching to

( y

J2J suggests
using a I inary search tree to represent each family of a trie. This requires storage
proportional to the number of "valid" links, as in a linked trie, but allows each
character of the key to be processed in at most logm comparisons. Maly [13] has
proposed a "compressed trie" that uses an implicit representation to eliminate links
entirely. Each level of the trie is represented by a bit array, where the bits indicate
whether or not some word in the set passes through the node corresponding to
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Figure 6. Indexed trie for the SI most common English words,
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urn

am
an
is

that bit. In addition each family contains a field indicating the 3
bits in the array for all nodes to the left of the current family, 80 that we
the desired family on the next level. The storage required for c
reduced to rn + Iogn bits, where n is the total number of keys. However, compressed
tries cannot handle insertions and deletions easily, nor do they retain the speed of
indexed tries, *
Packed tries

Our idea is to use an indexed trie, but to save the space for null links by
packing the different families of the trie into a single large array, so that links from
one family may occupy space normally reserved for links for other families that
happen to be null. An example of this is illustrated below.

A C E

(In the following, we will sometimes refer to families of the indexed trie as
states, and pointers as transitions. This is by analogy with the terminology for
finite-state machines.)

an
pointer actually corresponds to the current family, or if it belongs to some other

family that just happens to be packed in the same location. This is done by ad-

ditionally storing the character indexing a transition along with that transition.

Thus a transition belongs to a state only if its character matches the character we

are indexing on. This test always works if one additional requirement is satisfied,

namely that different states may not be packed at the same base location.

The trie can be packed using a first-fit method. That is, we pack the states

one at a time, putting each state into the lowest-indexed location in which it will

fit (not overlapping any previously packed transitions, nor at an already occupied

base location). On numerous examples based on typical word lists, this heuristic

works extremely well. In fact, nearly all of the holes in the trie are often filled by

transitions from c ther states.
Figure 7 shows the result when the indexed trie of Figure 6 is packed into

a single array using the first-fit method. (Actually we have used an additional
compression technique called suffix compression before packing the trie; this will be
explained in the next section.) The resulting trie fits into just CO locations. Note
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00

0 1 2 3 4 5 6 7 8 9

Bll H30 123

10 012032

20 T33 R14 N 1 W46 T 0 Y37 R 2 S 0 T 0 0 6

30 R 0 A29 U 4 D 0 S 0 E12 Y 0 N 0 F 0 115

40 0 4 H44 S 0 T 0 I 7 A 4 N 0 A15 0 0 E 0

50 R 0 V 2 038 115 H35 136 T 5 U 0

Figure 7. Packed trie for the SI most common English words.

that the packed trie is a single large array; the rows in the figure should be viewed

as
an

parked trie. We associate the values 1 through 26 with the letters A through Z.
The root of the trie is packed at location 0, so we begin by looking at location 8
corresponding to the letter H. Since 'H30' is stored there, this is a valid transition
and we then go to location 30. Indexing by the letter A, we look in location 31,
which tells us to go to 29. Now indexing by V gets location 51, which points to 2.
Finally indexing by E gets location 7, which is underlined, indicating that the word
HAVE is indeed in the set.

Suffix compression
A big advantage of the trie data structure is that common prefixes of words

are combined automatically into common paths in the trie. This provides a good
deal of compression. To save more space, we can try to take advantage of common
suffixes.

•
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way of doing this is to construct a trie in the usual manner, and then merge

tjjix
and working upward

rn
and THIS, both of which test for the letter S an an

combined into a single node. an
am It

an
an

an not be combined— /
even though they both test for E, because one of them goes to a terminal R node
upon success, while the other has no right successor.

With a larger set of words, a great deal of merging can be possible. Clearly all
leaf nodes (nodes with no successors) that test the same character can be combined

•

together. This alone saves a number of nodes equal to the number of words in the
dictionary, minus the number of words that are prefixes of other words, plus at most
26. In addition, as we might expect, longer suffixes such as - ly, -ing, or - t ion can
frequently be combined.

The suffix compression process may sound complicated, but actually it can

be described by a simple recursive algorithm. For each node of the trie, we first

compress each of its subtrics, then determine if the node can be merged with some

other node. In effect, we traverse the trie in depth-first order, checking each node

to see if it is equivalent to any previously seen node. A hash table can be used to

identify equivalent nodes, based on their (merged) transitions.

The identification of nodes is somewhat easier using a binary tree representation

of the trie, rather than an rn-ary representation, because each node will then have

just two link fields in addition to the character and output bit. Thus it will be

convenient to use a linked trie when perfom^ing suffix compression. The linked

representation is also more convenient for constructing the trie in the first place,

because of the ease of performing insertions.

After applying suffix compression, the trie can be converted to an indexed

trie and packed as described previously. (We should remark that performing suffix

compression on a linked trie can yield some addition?1 compression, because trie

families can be partially merged. However such compression is lost when the trie is
converted to indexed form.)

The author has performed numerous experiments with the above ideas. The re-

sults for some representative word lists are shown in Table 1 below. The last three
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columns show the number of nodes in the linked, sufRx-compressed, and packed
tries, respectively. Each transition of the packed trie consists of a pointer, a char-
ncter, and a bit indicating if this is an accepting transition.

word list words characters linked compressed packed

pascal 35 145 125 104 120
murray 2720 19,144 8039 4272 4285

pocket 31,036 247,612 92,339 38,619 38,638
unabrd 235,545 2,250,805 759,045

Table Jf. Suffix-compressed packed tries.

an
are used in TfepC82 to preprocess the set of hyphenation patterns into a packed

antrie used by the hyphenation routine. A WEB description of these algorithms
found in [14].

Derived forms

Most dictionaries do not list the most common derived forms of words, namely

regular plurals of nouns and verbs (-8 forms), participles and gerunds of verbs (-ed

and -ing forms), and comparatives and superlatives of adjectives (-er and -est) .
•

This makes sense, because a user of the dictionary can easily determine when a word

possesses one of these regular forms. However, if we use the word list from a typical

dictionary for spelling checking, we will bo faced with the problem of determining

when a word is one of these derived forms.
w

Some spelling checkers deal with this problem by attempting to recognize af-
fixes. This is done not only for the derived forms mentioned above but other com-
mon variant forms as well, with the purpose of reducing the number of word3 that
have to be stored in the dictionary. A set of logical rules is used to determine when
certain prefixes and suffixes can be stripped from the word under consideration.

However such rules can be quite complicated, and they inevitably make errors.
The situation is not unlike that of finding rules for hyphenation, which should
not be surprising, since affix recognition is an important part of any rule-based
hyphenation algorithm. This problem has been studied in some detail in a series of
papers by Resnikoff and Dolby [15

Since affix recognition is difficult, it is preferable to base a spelling checker on
a complete word list, including all derived forms. However, a lot of additional space
will be required to store all of these forms, even though much of the added data is
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redundant. We might hope that some appropriate method could provide substan-
tial compression of the expanded word list. It turns out that suffix-compressed tries
handle this quite well. When derived forms were added to our pocket dictionary
word list, it increased in size to 49,858 words and 404,946 characters, but the result-
ing packed trie only increased to 46,553 transitions (compare the pocket dictionary
statistics in Table 1).

"Hyphenation programs also need to deal with the problem of derived forms.
In our pattern-matching approach, we intend to extract the hyphenation rules au-
tomatically from the dictionary. Thus it is again preferable for our word list to
include ail derived forms.

an

The author had access to a computer-readable copy of Webster's Pocket Dicti

and definitions. This made it feasible to id
an

Unfortunately the resulting word lists required extensive editing to eliminate many

never-used or somewhat nonsensical derived forms, e.g. informations1 .

Spelling checkers

Computer-based word processing systems Lave recently come into widespread

use. As a result there has been a surge of interest in programs for automatic spelling

checking and correction. Here we will consider the dictionary representations used

by some existing spelling checkers.

ar

the DEC-10 SPELL program written by Ralph Gorin [17]. It uses a 12,000 word

dictionary stored in main memory. A simple hash function assigns a unique 'bucket1

to each word depending on its length and the first two characters. Words in the

same bucket are listed sequentially. The number of words in each bucket is relatively

small (typically 5 to 50 words), so this representation is fairly efficient for searching.

In addition, the buckets provide convenient access to groups of similar words; this

is useful when the program tries to correct spelling errors.

The dictionary used by SPELL does not contain derived forms. Instead some

simple tiffix stripping rules are normally used; the author of the program notes that

these are "error-prone".

Another spelling checker is described by James L. Peterson [18]. His program

uses three separate dictionaries: (1) a small list of 258 common English words, (2)

a dynamic 'cache* of about 1000 document-specific words, and (3) a large, compre-

hensive dictionary, stored on disk. The list of common words (which is static) is

/eprehented using a suffix-compressed linked trie. The dynamic cache is maintained
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using a hash table. Both of these dictionaries are kept in main me ry
ary uses an in-core index, so that at most one disk ac

per search.
4 • •

Robert Nix [19] describes a spelling checker based on the superimposed coding
method. He reports that this method allows the dictionary from the SPELL pro-
gram to be compressed to just 20 percent of its original size, while allowing 0.1%
chance of error.

A considerably different approach to spelling checking was taken by the TYPO

program developed at Bell Labs [20], This program uses digram and trigram fre-
quencies to identify "improbable" words. After processing a document, the words
are listed in order of decreasing improbability for the user to peruse. (Words ap-
pearing in a list of 2726 common technical words are not shown.) The authors
report that this format is "psychologically rewarding", because many errors are

•
•

found at the beginning, inducing the user to continue scanning the list until errors
•

become rare*
In addition to the above, there have recently been a number of spelling checkers

developed for the "personal computer" market. Because these programs run on
small microprocessor-based systems, it is especially important to reduce the size of
the dictionary* Standard techniques include hash coding (allowing some error), in-
core caches of common words, and special codes for common prefixes and suffixes.
One program first constructs a sorted list of all words in the document, and then
compares this list with the dictionary in a single sequential pass. The dictionary
can then be btored in a compact form suited for sequential scanning, where each*
word is represented by its difference from the previous word.

Besides simply detecting when words are not in a dictionary, the design of a
practical spelling checker involves a number of other issues. For example many
spelling checkers also try to perform spelling correction. This is usually done by

an

gested replacements can be presented in an interactive fashion, allowing the user to
see the context from the document and make the necessary changes. The contents
of the dictionary arc of course very important, and each user may want to modify
the word list to match his or her own vocabulary. Finally, a plain spelling checker

grammar

and perhaps semantic an

the text would be necessary.
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Conclusion and related ideas

The dictionary problem is a fundamental problem of computer science, and
it has many applications besides spelling checking. Moat data structures for this
problem consider the elements of the set as atomic entities, fitting into a single com-
puter word. However in many applications, particularly word processing, the keys
are actually variable-length strings of characters. Most of the standard techniques
are somewhat awkward when dealing with variable length keys. Only the trie data
structure is well-suited for this situation.

We have proposed a variant of tries that we call a packed trie. Search in a
packed trie is performed by indexing, and it is therefore very fast. The first-fit
packing technique usually produces a fairly compact representation as well.

We have not discussed how to perform dynamic insertions and deletions with a

ffix
•ry.

The idea of As mentioned, Peterson's spelling
checker uses this idea also. But in fact, if we view our trie as a finite-state machine,
suffix compression is equivalent to the well-known idea of state minimization. In

our case the machine is acyclic^ that is, it has no loops.

Suffix compression is also closely related to the common subexpression problem

from compiler theory. In particular, it can be considered a special case of a problem

called acyclic congruence closure, which has been studied by Downey, Sethi, and

Tarjan [21]. They give a linear-time algorithm for suffix compression that does not

use hashing, but it is somewhat complicated to implement and requires additional

data structures.

The idea for the first-fit packing method was inspired by the paper "Storing a

sparse table*1 by Tarjan and Yao [22]. The technique has been used for compressing

parsing tables, as discussed by Zeigler [23] (see also [24]). However, our packed

trie implementation differs somewhat from the applications discussed in the above

references, because of our emphasis on space minimization. In particular, the idea

of storing the character that indexes a transition, along with that transition, seems

to be new. This has an advantage over other techniques for distinguishing states,

such as the use of back pointers, because the character requires fewer bits.

The paper by Tarjan and Yao also contains an interesting theorem character-

izing the performance of the first-fit packing method. They consider a modification
suggested by Zeigler, where the states are first sorted into decreasing order based
on the number of non-null transitions in each state. The idea is that small states,
which can be packed more easily, will be saved to the end. They prove that if the
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distribution of transitions among states satisGcs a "harmonic decay" condition, then
essentially all of the holes in the first-fit packing will be filled.

More precisely, let n(l) be the total number of non-null transitions in states with
more than / transitions, for / > 0. If the harmonic decay property n{l) < n/{l + 1)
is satisfied, then the first-fit-decreasing packing satisfies 0 < b[i) < n for all i, where
n = n(0) is the total number of transitions and b{%) is the base location at which
the xth state is packed.

The above theorem does not take into account our additional restriction that

no two states may be packed at the same base location. When the proof is modified

to include this restriction, the bound goes up by a factor of two. However in practice

we seem to be able to do much better.

The main reason for the good performance of the first-fit packing scheme is

the fact that there are usually enough single-transition states to fill in the holes

created by larger states. It is not really necessary to sort the states by number of

transitions; any packing order that distributes large and small states fairly evenly

will work well. We have found it convenient simply to use the order obtained by

traversing the linked trie.
•

Improvements on the algorithms discussed in this chapter are possible in certain

cases. If we store a linked trie in a specific traversal order, we can eliminate one

of the link fields. For example, if we list the nodes of the trie in preordcr, the left

successor of a node will always appear immediately after that node. An extra bit is

used to indicate that a node has no left successor. Of course this technique works
for other types of trees as well.

If the word list is already sorted, linked trie insertion can be performed with

ry
antage if we are are processing

a large dictionary and cannot store the entire linked trie in memory.
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Hyphenation

Let us now try to apply the ideas of the previous chapter to the problem of
hyphenation. T)gX82 will use the pattern matching method described in Chapter 1,
but we shall first discuss some related approaches that were considered.

machines w

We can modify our trie-based dictionary representation to perform yp
by changing the output of the trie (or finite-state machine) to a multiple-valued
output indicating how the word can be hyphenated, instead of just a binary yes-no

,ry,
associating a single bit with eacli trie transition, we would have a larger "output"
field indicating the hyphenation "action" to be taken on this transition. Thus on
recognizing the word hy-phen-a-tion, the output would say "you can hyphenate
this word after the second, sixth, or seventh letters".

To represent the hyphenation output, we could simply list the hyphen positions,

or we could use a bit vector indicating the allowable hyphen points. Since there

are only a few hundred different outputs and most of them occur many times, we

can save some space by assigning each output a unique code and storing the actual

hyphen positions in a separate table.
•

To conveniently handle the variable number of hyphen positions in outputs,

we will use a linked representation that allows different outputs to share common

portions of their output lists. This is implemented using a hash table containing
pairs of the form (output, next), where output is a hyphenation position and next

is a (possibly null) pointer to another entry in the table. To add a new output list

to the table, we hash each of its outputs in turn, making each output point to the

previous one. Interestingly, this process is quite similar to suffix compression.

The trie with hyphenation output can be suffix-compressed and packed in the

same manner as discussed in Chapter 2. Because of the greater variety of out-

puts more of the subtries will be distinct, and there is somewhat less compression.

23
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From our pocket dictionary (with hyphens), for example, we obtained a packed trie
occupying 51,699 locations.

We can improve things slightly by "pushing outputs forward". That is, we can
output partial hyphenations as soon as possible instead of waiting until the end of
the word. This allows some additional suffix compression.

For example, upon scanning the letters hyph at the beginning of a word, we
can already say "hyphenate after the second letter" because this is allowed for all
words beginning with those letters. Note we could not say this after scanning j .

y? •yp an
yphenate after the sixth letter".

When implementing this idea, we run into a small problem. There are quite

a few words that are prefixes of other words, but hyphenate differently on the

letters they have in common, e.g. ca - re t and care- tak-er , or a s -p i - r i n and as-

p i r - ing . To avoid losing hyphenation output, we could have a separate output

whenever an end-of-word bit appears, but a simpler method is to append an end-of-

word character to each word before inserting it into the trie. This increases the size

of the linked trie considerably, but suffix compression merges most of these nodes

together.

With the above modifications, the packed trie for the pocket dictionary was
reduced to 44,128 transitions.

Although we have obtained substantial compression of the dictionary, the result

is still too large for our purposes. The problem is that as long as we insist that

only words in the dictionary be hyphenated, we cannot hope to reduce the space

required to below that needed for spelling checking alone. So we must give up this

restriction.

For example, we could eliminate the end-of-word bit. Then after pushing out-

puts forward, we can prune branches of the trie for which there is no further output.

This would reduce the pocket dictionary trie to 35,429 transitions.

Minimization with don' t cares
In this section we describe a more drastic approach to compression that takes

advantage of situations where we "don't care" what the algorithm dors.

As previously noted, most of the states in an indexed trie are quite sparse;

that is, only a few of the characters have explicit transitions. Since the missing

transitions arc never accessed by words in our dictionary, we can allow them to be

filled by arbitrary transitions.



HYPHENATION 25

This should not be confused with the overlapping of states that may occur in
the trie-packing process. Instead, we mean that the added transitions will actually
become part of the state.

•

There are two ways in which this might allow us to save more space in the min-
imization process. First, states no longer have to be identical in order to be merged;

•

they only have to agree on those characters where both (or all) have explicit transi-
•

tions. Second, the merging of non-equivalent states may allow further merging that
was not previously possible, because some transitions have now become equivalent.

For example, consider again the trie of Figure 5. When discussing suffix com-

an
merged together, but that the parent chains, each containing transitions for A, E,
an

these two states can be merged. Note that such a merge will require that the DY

state below the first A be merged with the T below the second A; this can be done

because those states have no overlapping transitions.

As another example, notice that if the word AN were added to our vocabulary,

then the NRST chain succeeding the root A node could be merged with the NST chain

below the initial I node. (Actually, it doesn't make much sense to do minimization

with don't cares on a trie used to recognize words in a dictionary, but we will ignore

that objection for the purposes of this example.)

Unfortunately, trie minimization with don't cares seems more complicated than

the suflix-compression process of Chapter 2. The problem is that states can be
m

merged in more than one way. That is, the collection of mergcable states no longer

forms an equivalence relation, as in regular finite-state minimization. In fact, we

can sometimes obtain additional compression by allowing the same state to appear

more than once. Another complication is that don't care merges can introduce

loops into our trie.

Thus it seems that finding the minimum size trie will be difficult. Pfleeger

25] has shown this problem to be NP-complete, by transformation from graph
•

coloring; however, his construction requires the number of transitions per state to
be unbounded. It may be possible to remove this requirement, but we have not
proved this.

So in order to experiment with trie minimization with don't cares, we have

made some simplifications. We start by performing suffix compression in the usual

manner. We then go through the states in a bottom-up order, checking each to

see if it can be merged with any previous state by taking advantage of don't cares.

\Tote that puch merges may require further merges among states already seen.
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We only try xplicit ti
are very

mergeable, but such merges may constrain us unnecessarily at a later stage of the
minimization. In addition, we will not consider having multiple copies of states.

Even this simplified algorithm can be quite time consuming, so we did not try it
on our pocket dictionary. On a list of 2726 technical words, don't care minimization
reduced the number of states in the suflix-compressed, output-pruned trie from
1685 to just 283, while the number of transitions was reduced from 3627 to 2427.
However, because the resulting states were larger, the first-fit packing performed
rather poorly, producing a packed trie with 3408 transitions. So in this case don't
ar an p

Also, the behavior of the resulting hyphenation algorithm on words not in the
dictionary became rather unpredictable. Once a word leaves the "known" paths of
the packed trie, strange things might happen!t

We can assumption one step
an d

and trie link). Words in the dictionary will always index the correct
transitions, but on other words we now have no way of telling when we have reached
an invalid trie transition.

m

It turns out that the problem of state minimization with don't cares was studied
in the 1960s by electrical engineers, who called it "minimization of incompletely
specified sequential machines" (sec e.g. [26]). However, typical instances of the
problem involved machines with only a few states, rather than thousands as in
our case, so it was often possible to find a minimized machine by hand. Also, the
emphasis was on minimizing the number of states of the machine, rather than the
number of state transitions.

In ordinary finite-state minimization, these are equivalent, but don't care min-
imization can actually introduce extra transitions, for example when states are
duplicated. In the old days, finite-state machines were implemented using combina-
tional logic, so the most important consideration was to reduce the number of states.

•

In our trie representation, however, the space used is proportional to the number

of transitions. Furthermore, finite-state machines are now often implemented using

PLA's (programmed logic arrays), for which the number of transitions is also the

best measure of space.

Pa t te rn matching
Since trie minimization with don't cares still doesn't provide sufficient compres-

sion, and since it lead • to unpredictable behavior on words not in the dictionary,
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we need a different approach. It seems expensive to insist on complete hyphenation
ary

or to be , we could allow some hyphens to be missed.
W

further guments as antageous are given below.
fir as

an

in the final hyphenation algorithm yp
aracter position.

an
an of the resulting algorithm. For am

of error by using patterns that aren't always safe (but that presumably do find
many correct hyphens).

We can also restrict ourselves to partial hyphenation in a natural way. That*
is, it turns out that a relatively small number of patterns will get a large fraction of
the hyphens in the dictionary. The remaining hyphens become harder and harder
to find, as we axe left with mostly exceptional cases. Thus we can choose the most
effective patterns first, talcing more and more specialized patterns until we run out
of space.

•

In addition, patterns perform quite well on words not in the dictionary, if those

words follow "normal" pronunciation rules.

Patterns are "context-free"; that is, they can apply anywhere in a word. This

seems to be an important advantage. In the trie-based approach discussed earlier

in this chapter, a word is always scanned from beginning to end and each state of

the trie Remembers' the entire prefix of the word scanned so far, even if the letters

scanned near the beginning no longer affect the hyphenation of the word. Suffix

compression eliminates some of this unnecessary state information, by combining

states that are identical with respect to future hyphenation. Minimization with

don't cares takes this further, allowing 'similar* states to be combined as long as

they behave identically on all characters that they have in common.

However, we have seen that it is difficult to guide the minimization with don't

cares to achieve these reductions. Patterns embody such don't care situations nat-

urally (if we can find a good way of selecting the patterns).

The context-free nature of patterns helps in another way, as explained below.

Recall that we will use a packed trie to represent the patterns. To find all patterns

that match in a given word, we perform a search starting at each letter of the word.

Thus after completing a search starting from some letter position, we may have to
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back up in the word to start the next search. By contrast, our original trio-based
approach works with no backup.

•

Suppose we wanted to convert the pattern trie into a finite-state recognizer
that works with no backup. This can be done in two stages. We first add "failure
links" to each state that tell which state to go to if there is no explicit transition
for the current character of the word. The failure state is the state in the trie that
we would have reached, if we had started the search one letter later in the word.

Next, we can convert the failure-link machine into a true finite-state machine
by ̂ filling in the missing transitions of each state with those of its failure state. (For
more details of this process, see [27], [28].)

However, the above state merging will introduce a lot of additional transitions.
Even using failure links requires one additional pointer per state. Thus by perform-
ing pattern matching with backup, we seem to save a good deal of space. And in
practice, long backups rarely occur.

Finally, the idea of inhibiting patterns seems to be very useful. Such patterns

extend the power of a finite-state machine, somewhat like adding the "not" operator

to regular expressions.



Chapter 4

Pattern generation

We now discuss how to choose a suitable set of patterns for hyphenation. In or-
der to decide which patterns are "good", we must first specify the desired properties
of the resulting hyphenation algorithm.

We obviously want to ax
an ample, we could try

to an
antities constant and optimize the others.

1^82 , we wan

ments. The algorithm should use only a moderate amount of space (20-30K bytes),
including any exception dictionary; and it should find as many hyphens as possible,
while making little or no error. This is similar to the specifications for the original

algorithm, except that we now hope to find substantially more hyphens.
Of course, the results will depend on the word list used. We decided to base

the algorithm on our copy of Webster's Pocket Dictionary, mainly because this was

the only word list we had that included all derived forms.

We also thought that a larger dictionary would contain many rare or specialized

words that we might not want to worry about. In p* ticular, we did not want such

infrequent words to affect the choice of patterns, because we hoped to obtain a set

of patterns embodying many of the "usual" rules for hyphenation.

In developing the 1^X82 algorithm, however, the word list was tuned up con-
siderably. A few thousand common words were weighted more heavily so that they
would be more likely to be hyphenated. In fact, the current algorithm guarantees
complete hyphenation of the 676 most common English words (according to [29]),
as well as a short list of common technical words (e.g. al-go-rithm).

In addition, over 1000 "exception" words have been added to the dictionary,
•

to ensure that they would not be incorrectly hyphenated. Most of these were found
by testing the algorithm (based on the initial word list) against a larger dictionary
obtained from a publisher, containing about 115,000 entries. This produced about

29
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10,000 errors on words not in the pocket dictionary. Mo9t of these were specialist

technical terms that we decided not to worry about, but a few hundred were em-
barrassing enough th

(bio-rhythm) that probably did not exist in 1966, when our pock
originally put online.

ames (Af-ghan-i-stan)1 and new words

it dictionary was

Afi

an
seemed to converge after a few iterations.

Heuristics

rns m an 'optimal* way seems very difficult. The problem
is that rcveral patterns may apply to a particular hyphen point, including both
hyphenating and inhibiting patterns. Thus complicated interactions can arise if
we try to determine, say, the minimum set of patterns finding a given number of
hyphens. (The situation is somewhat analogous to a set cover problem.)

Instead, we will select patterns in a series of "passes" through the word list.

account only the effects of patterns chosen in previous
passes. Thus we sidestep the problem of interactions mentioned above.

In addition, we will define a measure of pattern "efficiency1* so that we can use
a greedy approach in each pass, selecting the most efficient patterns.

Patterns will be selected one level at a time, starting with a level of hyphenating
patterns. Patterns at each level will be selected in order of increasing pattern length.

Furthermore patterns of a given length applying to different intercharacter

an

the dictionary. Thus the patterns of length n at a given level will be chosen in n + 1

passes through the dictionary.

At first we did not do this, but selected all patterns of a given length (at a

given level) in a single pass, to save time. However, we founJ that this resulted in

considerable duplication of effort, as many hyphens were covered by two or more

patterns. By considering different intercharacter positions in separate passes, there

is never any overlap among the patterns selected in a single pass.

In each pass, we collect statistics on all patterns appearing in the dictionary,

counting the number of times we could hyphenate at a particular point in the

pattern, and the number of times we could not.

For example, the pattern t i o appears 1793 times in the pocket dictionary, and

in 1773 cases we can hyphenate the word before the t, while in 20 cases we can
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not. (We only count instances where the hyphen position occurs at least two letters
from either edge of the word,)

These counts are used to determine the efficiency rating of patterns. For exam-
ar considering only "safe" patterns, that is, patterns that an

hyphenated at a particular position, then a reasonable rating is simply the number
of hyphens found. We could then decide to take, say, all patterns finding at least a
given number of hyphens.

However, most of the patterns we use will make some error. How should these

an
them in an exception dictionary. Assuming that one unit of space is required to
represent each pattern as well as each exception, the "efficiency" of a pattern could
be defined as ef = good/

an

(The space used by the final algorithm really depends on how much compression
is produced by the packed trie used to represent the patterns, but since it is hard to
predict the exact number of transitions required, we just use the number of patterns
as an approximate measure of size.)

By using inhibiting patterns, however, we can often do better than listing the
exceptions individually. The quantity bad in the above formula should then be
devalued a bit depending on how effective patterns at the next level are. So a
better formula might be .

good
1 -f had j bad^eff

where bad-tjj is the estimated efficiency of patterns at the next level (inhibiting

errors at the current level).

Note that it may be difficult to determine the efficiency at the next level, when

we are still deciding what patterns to take at the current level! We will use a pattern

selection criterion of the form ejf > thresh, but we cannot predict exactly how many

patterns will be chosen and what their overall performance will be. The best we

can do is use reasonable estimates based on previous runs of the pattern generation

program. Some statistics from trial runs of this program are presented later in this

chapter.

Collecting pat tern statistics
So the main task of the pattern generation process is to collect count statistics

about patterns in the dictionary. Because of time and space limitations this becomes

an interesting data structure exercise.
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an or 263,
ar

patterns, this is impractical.

Here's the first approach we used for longer patterns. In a pass through the
dictionary, every occurrence of a pattern is written out to a file, along with an indi-
cation of whether or not a hyphen was allowed at the position under consideration.
The file of patterns is sorted to bring identical patterns together, and then a pass
is made through the sorted list to compile the count statistics for each pattern.

iis approach makes it feasible to collect statistics for longer length patterns,
and was used to conduct our initial experiments with pattern generation. However
it is still quite time and space consuming, especially when sorting the large lists of
patterns. Note that an external sorting algorithm is usually necessary.

Since only a fraction of the possible patterns of a particular length actually
occur in the dictionary, we could instead store them in a hash tabb or one of the
other data structures discussed in Chapter 2. It turns out that a modification of
our packed trie data structure is well-suited to this task. The advantages of the
packed trie are very fast lookup, compactness, and graceful handling of variable
length patterns.

Combined with some judicious "pruning" of the patterns that are considered,
the memory requirements are much reduced, allowing the entire pattern selection
process to be carried out "in core" on our PDP-10 computer.

"pruning" patterns we mean the following. If a pattern contains a shorter
pattern at the same level that has already been chosen, the longer pattern obviously*
need not be considered, so we do not have to count ics occurrences. Similarly, if
a pattern appears so few times in the dictionary th^t under the current selection
criterion it can never be chosen, then we can mark the pattern as "hopeless" so
that any longer patterns at this level containing it need not be considered.

Pruning greatly reduces the number of patterns that must be considered, es-

pecially at longer lengths.

Dynamic packed tries
Unlike the static dictionary problem considered in Chapter 2, the set of patterns

an
the patterns being considered in a pass through the dictionary, we need some way

to dynamically insert new patterns into the trie.

For any pattern, we start by performing a search in the packed trie as usual,
following existing links until reaching a state where a new trie transition must be
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added. If we are lucky, the location needed by tie new transition
in the packed trie, otherwise we will have to do some repacking.

Note that we will not be using suffix compression, becaua
W. would need back pointers or reference counts to determine

lmerged, and we would need a hash table or other auxiliary

added nodes. Furthermore, suffix

will be dealing with.
great deal of compression on the relatively short rn

The simplest way of resolving the packing conflict caused by the addition of a
new transition is to just repack the changed state (and update the link of its parent
state). To maintain good space utilization, we should try to fit the modified state
among the holes in the trie. This can be done by maintaining a dynamic list of
unoccupied cells in the trie, and using a first-fit search.

However, repacking turns out to be rather expensive for ar
unlikely to fit into the holes in the trie, unless the axray is very sparse. We can
avoid this by packing such states into the free space immediately to the right of
the occupied locations- The size threshold for attempting a first-fit packing can be
adjusted depending on the density of the array, how much time we are willing to
spend on insertions, or how close we are to running out of room.

After adding the critical transition as discussed above, we may need to add
some more trie nodes for the remaining characters of the new pattern. These new
states contain just a single transition, so they should be easy to fit into the trie.

The pattern generation program uses a second packed trie to store the set of
patterns selected so far. Recall that, before collecting statistics about the patterns
in each word, we must first hyphenate the word according to the patterns chosen in
previous passes. This is done not only to determine the current partial hyphenation,
but also to identify pruned patterns that need not be considered. Once again, the
advantages of the packed trie are compactness and very fast "hyphenation11 •

At the end of a pass, we need to add new patterns, including "hopeless" pat-
terns, to the trie. Thus it will be convenient to use a dynamic packed trie here as
well. At the end of a level, we probably want to delete hopeless patterns from the
trie in order to recover their npace, if we are going to generate more levels. This
turns out to be relatively easy; we just remove the appropriate output and return

any freed nodes to the available list.
Below we give some statistics that will give an idea of how well a dynamic

packed trie performs. We took the current set of 4447 hyphenation patterns, ran-
•

domized them, and then inserted them one-by-one into a dynamic packed trie.
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(Note that in the situations described above, there will actually be many searches
per insertion, so we can afford some extra effort when performing insertions.) The
patterns occupy 7214 trie nodes, but the packed trie will use more locations, de-

•

pending on the setting of the first-fit packing threshold. The columns of the table
ax

— w T

of locations used in the final packed trie*

first-fit procedure
1, and the number

thresh pack Grstjfit unpack triejmax

oo C113 877,301 2781 9671
13 COCO 7C1,228 2728 9458
9 C074 559,835 2742 9C06
7 C027 359,537 2C95 9G06
5 5803 147,408 2531 10,3C6
4 5746 63,181 2414 11,209
3 5563 33,320 2231 13,296
2 5242 19,885 1010 15,009
1 4847 8050 1515 10,536
0 4577 C073 1245 18,628

Table 2. Dynamic packed trie statistic*.

Experimental results
We now give some results from trial runs of the pattern generation program,

and explain how the current T^X82 patterns were generated. As mentioned earlier,
the development of these patterns involved some augmentation of the word list.
The results described here are based on the latest version of the dictionary.

' At each level, the selection of patterns is controlled by three parameters called
good-tut, bad.wt, and thresh. If a pattern can be hyphenated good times at a partic-
ular position, but makes bad errors, then it will be selected if

good* yood.wt — bad* bad.wt > thresh.

Note that the efficiency formula given earlier in this chapter can be converted into

the above form.
We can first try using only safe patterns, that is, patterns that can always be

hyphenated at a particular position. The table below shows the results when all
bafe patterns finding at least a given number of hyphens are chosen. Note that
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parameters patterns hyphens percent

l o o 40 401 31,083 35.2%

l o o 20 1024 45,310. 51.3%
1 oo 10 2272 58,580 66.3%
1 oo 5 4603 70,014 79.2%
1 oo 3 7052 76,236 86.2%

1 oo 2 10,456 83,450 94.4%

1 oo 1 16,336 87,271 98.7%

Table S. Safe hyphenating patterns.

an infinite bad.wt ensures that only safe patterns are chosen. The table shows the

number of patterns obtained, and the number and percentage of hyphens found.

We see that, roughly speaking, halving the threshold doubles the number of

patterns, but only increases the percentage of hyphens by a constant amount. The
m

last 20 percent or so of hyphens become quite expensive to find.

n order to save computer time, we have only considered patterns of length

6 or less in obtaining the above statistics, so the figures do not quite represent all

patterns above a given threshold. In particular, the patterns at threshold 1 do not

find 100% of the hyphens, although even with indefinitely long patterns there would

still be & few hyphens that would not be found, such as re-cord.)

The space required to represent patterns in the final algorithm is slightly more

than one trie transition per pattern. Each transition occupies 4 bytes (1 byte each

for character and output, plus 2 bytes for trie link). The output table requires
an additional 3 bytes per entry (hyphenation position, value, and next output),

•

but there are only a few hundred outputs. Thus to stay within the desired space

limitations for l^pC82, we can use at most about 5000 patterns.

We next try using two levels of patterns, to see if the idea of inhibiting patterns

actually pays off. The results are shown below, where in each case the initial level

of hyphenating patterns is followed by a level of inhibiting patterns that remove

nearly all of the error.

The last set of patterns achieves 86.7% hyphenation using 4696 patterns. By

contrast, the 1 oo 3 patterns from the previous table achieves 86.2% with 7052

patterns. So inhibiting patterns do help. In addition, notice that we have only used
M8afeM inhibiting patterns above; this means that none of the good hyphens are lost.

We can do better by using patterns that also inhibit some correct hyphens.

After a good deal of further experimentation, we decided to use five levels

of pattern* in the current T\^i82 algorithm. The reason for this is as follows. In
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parameters patterns hyphens percent

1 20 20 816 51,359 505 58.1% 0.6%

315 0 463 58.1% 0.1%

1 10 10 1510 64,893 1694 73.5% 1.9%

oo 1 824 0 1531 73.5% 0.2%

1 5 5 2573 76,632 5254 86.7% 5.9%
1 oo 1 2123 0 4826 86.7% 0.5%

Table 4* Two levels of patterns.

addition to finding a high percentage of hyphens, we also wanted a certain amount of

guaranteed behavior. That is, we wanted to make essentially no errors on words in
,ry, an yp

To accomplish this, we use a final level of safe hyphenating patterns, with
the threshold set as low as feasible (in our case 4). If we then weight the list of
irn ortant words by a factor of at least 4, the patterns obtained will

them completely (except when a word can be hyphenated in two different ways).

To guarantee no error, the level of inhibiting patterns immediately preceding

the final level should have a threshold of 1 so that even patterns applying to a single

afi

the final level will pick up all hyphens that should be found.

The problem is, if there are too many errors remaining before the last inhibiting
level, we will need too many patterns to handle them. If we use three levels in all,

•

then the initial level of hyphenating patterns can allow just a small amount of error.
antaece of yp

patterns that allow a greater percentage of error. So instead, we will use an initial

level of hyphenating patterns with relatively high threshold and allowing consider-

able error, followed by a 'coarse* level of inhibiting patterns removing most of the

initial error. The third level will consist of relatively safe hyphenating patterns with

a somewhat lower threshold than the first level, and the last two levels will be as

described above.

The above somewhat vague considerations do not specify the exact pattern

selection parameters that should be used for each pass, especially the first three

passes. These were only chosen after much trial and error, which would take too long

to describe here. We do not have any theoretical justification for these parameters;

they just seem to work well.
The table below shows the parameters used to generate the current set of

patterns, and the results obtained. For levels 2 and 4, the numbers in the "hyphens
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level parameters patterns hyphens percent

1 1 2 20 (4) 458 67,G04 14,156 76.6% 16.0%
2 2 1 8 (4) 509 7407 11,942 68.2% 2.5%
3 1 4 7 (5) 985 13,198 551 83.2% 3.1%
4 3 2 1 (6) 1647 1010 2730 82.0% 0.0%
5 1 oo 4 (8) 1320 6428 0 89.3% 0.0%

m

Table 5. Current TRX82 patterns.

column show the number of good and bad hyphens inhibited, respectively. The
numbers in parentheses indicate the maximum length of patterns chosen at that

level.

A total of 4919 patterns (actually only 4447 because some patterns appear more

than once) were obtained, compiling into a suffix-compressed packed trie occupying

5943 locations, with 181 outputs. As shown in the table, the resulting algorithm

finds 89.3% of the hyphens in the dictionary. This improves on the one and two

level examples discussed above. The patterns were generated in 109 passes through

the dictionary, requiring about 1 hour of CPU time.

Examples
The complete list of hyphenation patterns currently used by 1^X82 appears in

•

the appendix. The digits appearing between the letters of a pattern indicate the

hyphenation level, as discussed above.
•

Below we give some examples of the patterns in action. For each of the following

words, we show the patterns that apply, the resulting hyphenation values, and the

hyphenation obtained. Note that if more than one hyphenation value is specified for
•

a given intercharacter position, then the higher value takes priority, in accordance

with our level scheme. If the final value is odd, the position is an allowable hyphen

point.

computer 4mlp pu2t Bpute putSer Co4m5pu2t3er com-put-er

algorithm Ilg4 Igo3 lgo 2ith 4hm allg4o3r2it4hm al-go-rithm

hyphenation hy3ph he2n hena4 henBat lna n2at i t io 2io

hy3phe2n5a4t2ion hy-phen-ation

concatenation o2n onlc lea lna n2at i t io 2io

co2nlcateln2alt2ion con-cate-na-tion

mathematics math3 athSern th2e ima atlic 4ce

math5elrnatli4c8 math-e-mat-ics
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typesetting ty?e3 els2e 4t3t2 2tlin type3o2e4t3t2ing

type-set-ting

program pr2 lgr pr2olgram pro-gram

supercalifragilisticexpialidocious

ulpe rlc lea alii agii gil4 illi il4iet islti Bt21 sltic

lexp x3p pi3a 2iia i2al 2id ldo lei 2io 2ue

sulperlcaliifraglil4i8lt2iciex3p2i3al2ildolc2io2uB

eu-per-cal-ifrag-ilis-tic-ex-pi-ali-do-cious
s

k

<* Below, we show a few interesting patterns. The reader may like to try figuring
out what words they apply to* (The answers appear in the Appendix.)

ain5o
ayBal
earBk
e2mel

hach4
hBelo

if4fr

lBogo

n3uin
nyp4

5spai

4tarc
o5a51es 4todo

orew4 uir4m

And finally, the following patterns deserve mention:

3tex fon4t highB
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History and Conclusion

advances in the history
ancient rhoenician an

fact that, centuries later, the problem of word hyphenation would become a major
headache for computer typesetters all over the world.

Most cultures have evolved a linear style of communication, whereby a train
of thbught is converted into a sequence of symbols, which arc then laid out in neat
rows on a page and shipped off to a laser printer.

The trouble was, as civilization progressed and words got longer and longer!
it became occasionally necessary to split them across lines. At first hyphens were
inserted at arbitrary places, but in order to avoid distracting breaks such as the-
rapist, it was soon found preferable to divide words at syllabic boundaries.

Modern practice is somewhat stricter, avoiding hyphenations that might cause
the reader to pronounce a word incorrectly (e.g. considera-tion) or where a single
letter is split from a component of a compound word (e.g. cardi-ovascular).

The first book on typesetting, Joseph Moxon's Mechanick Exercises (1683),
mentions the need for hyphenation but does not give any rules for it* A few dictio-

•

naries had appeared by this time, but were usually just word lists. Eventually they
began to show syllabic divisions to aid in pronunciation, as well as hyphenation.

With the advent of computer typesetting, interest in the problem was renewed.
Hyphenation is the 'H* of (!I & J1 (hyphenation and justification), which are the
basic functions provided by any typesetting system. The need for automatic hy-
phenation presented a new and challenging problem to early systems designers.

Probably the first work on this problem, as well as many other aspects of com-
puter typesetting, was done in the early 1950s by a French group led by G. D.

•

afour. They developed a hyphenation algorithm for French, which was later
adapted to English [U.S. Patent 2,702,485 (1955)

Their method is quite simple. Hyphenations arc allowed anywhere in a
except among the following letter combinations: before two consonants, two

39
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or x; between two vowels, consonnjit-h, e-r, or s-a; after two consonants where the
first is not 1, mf n, r, or «; or after c, j , q, v, consonant-w, mm, lr , nbf nf, nl, nra,
nn$ or nr.

We tested this method on our pocket dictionary, and it found nearly 70 percent
of the hyphens, but also about an equal amount of incorrect hyphens! Viewed in

•

another way, about 65% of the erroneous hyphen positions are successfully inhibited,

ary appear

along with 30% of the correct hyphens. It turns out that a simple algorithm like
this one works quite well in French; however for English this is not the case.

Other early work on automatic hyphenation is described in the proceedings of
various conferences on computer typesetting (e.g. [30]). A good sumn
in [31], from which the quotes in the following paragraphs were taken.

At the Los Angeles Times, a sophisticated logical routine was developed
on the grammatical rules given in Webster's, carefully refined and adapted for com-
puter implementation. Words were analyzed into vowel and consonant patterns

an
an

edly u85-95 percent accurate", while the hyphenation logic occupies "only 5,000
positions of the 20,000 positions of the computer's magnetic core memory, less
space than would be required to store 500 8-lettcr words averaging two hyphens per
word.11

Perry Publications in Florida developed a dictionary look-up method, along*
with their own dictionary. An in-core table mapped each word, depending on its
first two letters, into a particular block of words on tape. For speed, the dictionary
was divided between four tape units, and "since the RCA 301 can search tape in
both directions," each tape drive maintained a "homing position" at the middle of
the tape, with the most frequently searched blocks placed closest to the homing

itipositions.
In addition, they observed that many words could be hyphenated after the 3rd,

5th, or 7th letters. So they removed all such words from the dictionary (saving some
space), and if a word was not found in the dictionary, it was hyphenated after the
3rd, 5th, or 7th letter.

A hybrid approach was developed at the Oklahoma Publishing Company. First
some logical analysis was used to determine the number of syllables, pud to check
if certain suffix and special case rules could be applied. Next the probability of
hyphenation at each position in the word was estimated using three probability

tables, and the most probable breakpoints were identified, (This seems to be the
î iu of the Time magazine algorithm described in Chapter 1.) An exception
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dictionary handles the remaining cases; however there was i
as to the size of the dictionary required to obtain satisfac ry

ary
other projects to develop hyphenation algorithms have remained pro-
were never published. For example, IBM alone worked on "over 35

and hyp
an industry stan

rithm would exist. Indeed Berg's survey of computerized typesetting [32] contains
a description of what could be considered a "generic" rule-based hyphenation algo-
rithm (he doesn't say where it comes from). However, we have seen that any logical
routine must stop short of complete hyphenation, becauoe of the generally illogical
basis of English word division.

The trend in modern systems has been toward the hybrid approach, where a
logical routine is supplemented by an extensive exception dictionary. Thus the in-
core algorithm serves to reduce the size of the dictionary, as well as the frequency
of accessing it, as much as possible.

A number of hyphenation algorithms have also appeared in the computer sci-
ence literature. A very simple algorithm is described by Rich and Stone [33]. The
two parts of the word must include a vowel, not counting a final e, es or ed. The
new line cannot begin with a vowel or double consonant. No break is made between
the letter pairs sh, gh, p, ch, th, wh, gr, pr, cr, tr, wr, br, f r, dr, vowel-r, vowel-n,
or om. On our pocket dictionary, this method found about 70% of the hyphens with
45% error.

The algorithm used in the Bell Labs document compiler Roff is described by
Wagner [34]. It uses suflix stripping, followed by digram analysis carried out in a
back to front manner. In addition a more complicated scheme is described using four
classes of digrams combined with an attempt to identify accented and nonaccented
syllables, but this seemed to introduce too many errors. A version of the algorithm is
described in [35]; interestingly, this reference uses the terms "hyphenating pattern"
(referring to a Snobol string-matching pattern) as well as "inhibiting suffix".

Ockcr [3G], in a master's thesis, describes another algorithm based on the rules
in Webster's dictionary. It includes recognition of prefixes, suffixes, and special
letter combinations that help in determining accentuation, followed by an analysis

•

of the "liquidity" of letter pairs to find the character pair corresponding to the
greatest interruption of spoken sound.

•

Moitra et al (37] use an exception table, prefixes, suffixes, and a probabilistic
break-value table. In addition they extend the usual notion of affixes to any letter

-
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pattern that helps in hyphenation, including 'root words' (e.g. l in t , pot) intended
to handle compound words.

Pa t te rns as paradigm

Our pattern matching approach to hyphenation is interesting for a number
of reasons. It has proved to be very effective and also very appropriate for the
problem. In addition, since the patterns are generated from the dictionary, it is
easy to accommodate changes to the word list, as our hyphenation preferences
change or as new words are added. More significantly, the pattern scheme can be
readily applied to different languages, if we have a hyphenated word list for the
language.

The effectiveness of pattern matching suggests that this paradigm may be use-

ful in other applications as well. Indeed more general patter^ matching systems

and augmented tran
(ATN's) are often used in artificial intelligence applications, especially natural lan-

guage processing. While AI programs try to understand sentences by analyzing

word patterns, we try to hyphenate words by analyzing letter patterns.

One simple extension of patterns that we have not considered is the idea of
an

rithmic approaches to hyphenation. This may seem like a serious omission, because

a potentially useful meta-pattern like Vowel-consonant-consonant-vowel* would then

expand to 6 X 20 x 20 x C = 14400 patterns. However, it turns out that a suffix-
compressed trie will reduce this to just 6 -f- 20 + 20 + 6 = 52 trie nodes. So our
methods can take some advantage of such "mcta-patterns".

In addition, the use of inhibiting as well as hyphenating patterns seems quite
powerful. These can be thought of as rules and exceptions, which is another common
AI paradigm.

Concerning related work in AI, we must especially mention the Meta-DENDRAL
program [38], which is designed to infer automatically rules for mass-spectrometry.
An example of such a rule is N—C—C—C —• N—C * C—C, which says that if the
molecular substructure on the left side is present, then a bond fragmentation may

occur as indicated on the right side. Meta-DENDRAL analyzes a set of mass-spectral

data points and tries to infer a set of fragmentation rules that can correctly predict

the spectra of new molecules. The inference process starts with some fairly general

rules and then refines them as necessary, using the experimental data ixs positive or

negative evidence for the correctness of a rule.
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an
ar "pattern" can

an

an ore,
there are usually extra constraints on the form of rules, both to constrain the

an

angenerated. Still, there are some striking similarities between these ideas
pattern-matching approach to hyphenation.

Packed tries
Finally, the idea of packed tries deserves further investigation. An indexed

trie can be viewed as a finite-state machine, where state transitions are performed
by address calculation based on the current state and input character. This is
extremely fast on most computers.

However indexing usually incurs a substantial space penalty because of space
reserved for pointers that are not used. Our packing technique, using the idea of
storing the index character to distinguish transitions belonging to different states,
combines the best features of both the linked and indexed representations, namely
space and speed. We believe this is a fundamental idea.

There are various issues to be explored here. Some analysis of different packing
methods would be interesting, especially for the handling of dynamic updates to a
packed trie.

Our hyphenation trie extends a finite-state machine with its hyphenation "ac-

tions". It would be interesting to consider other applications that can be handled by

extending the basic finite-state framework, while maintaining as much of its speed
as possible.

Another possibly interesting question concerns the size of the character an

pointer fields in trie transitions. In our hyphenation trie half of the space is occupied
by the pointers, while in our spelling checking examples from one-half to three-
fourths of the space is used for pointers, depending on the size of the dictionary.
In the latter case it might be better to use a larger "character" size in the trie, in
order to get a better balance between pointers and data.

When performing a search in a packed trie, following links will likely make us
jump around in the trie in a somewhat random manner. This can be a disadvantage,
both because of the need for large pointers, and also because of the lack of locality,
which could degrade performance in a virtual memory environment. There are
probably ways to improve on this. For example, Frcdkin [lOj proposes an interesting
'n-dimcntiional binary trie1 idea for reducing pointer size.
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k
h special emon

results with other compression techniques, such as Huffman coding. Also, perhaps
am >unt of information present in a hyphenated word list, as

a lower bound on the size of any hyphenation algorithm.
•

Finally, our view of finite-state machines has been based on the underlying
assumption of a computer with random-access memory. Addressing by indexing
seems to provide power not available in some other models of computation, such
as pointer machine > or comparison-based models. On the other hand, a 'VLSI' or
other hardware model (such as programmed logic arrays) can provide even greater
power, eliminating the need for our perhaps contrived packing technique. But then
other communication issues will be raised.

If all problems of hyphenation have not been solved,
at least some progress has been made since that night,

when according to legend, an RCA Marketing Manager
received a phone call from a disturbed customer.

His 301 had Just hyphenated "God".

Paul E. Justus (1972)

•
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f2fy
4fh
lfi
fi3a
2f3ic.
4f3ical
f3ican
4ficate
f3icen
fi3cer
fic4i
Bficia
Bfici*
4fica
fi3cu
fiBdel
fights
filSi
fillSln
4fily
2fin
Bfina
fin2dS
fi2ne
flin3g
fin4n

f412
fBless

J

4fa
4fn
Ifo
hi on
fon4de
fon4t
fo2r
toBrat
forBay
iore&t
for4i
fortSa
fos5

fra4t
f 5rea
irosSc
fri2
fril4

2f3s
2ft

3fu
fuSol

fu4rain
fuBne
fu3ri
fusi4

4futa
lfy
lga
gaf4
Bgal.
3gali
ga31o
2gaa
gaBrnet
g&ano
ganBia
ga3niz
ganiBzi
4gano
gar&n4
gast 4
gath3
4gatiT
4gaz
g3b
gd4

2ged
geoz4
ge!4in

Bliz8
4gely
Igen
ge4nat
go&niz

4geno
4geny
lgeo
ge3om
g4ery
Bgeei
gethS
4geto
ge4ty
ge4T
4glg2

g3ger
ggluS
ggo4
gh3in
ghSout
gh4to
6gi.
Igi4a
giaSr
glic
Sgicia
g4ico
gienS
Bgies.
gil4
g3imen
3g4in.
ginBge
Bg4ina

3gir
gir41
g3isl
gi4u
Bgir
3gi»

gla4
gladfii
Sglaa

gli4b
g31ig
3glo
glo3r
gin
g4my
gn4a

gnet4t
glni
g2nln
g4nio
glno
g4non
igo
3go.
gobS
Bgoe
3g4o4g
go3ia
gon2
4g3o3na
gondoS

V

go3ni
Bgoo
goBriz
gorBou
Bgoa.
gOTl
g3p

4grada
g4rai

Bgraph.
gBrapher
Bgraphic
4graphy
4gray
gre4n
4gresa.
4grit
g4ro
gruf4
g'2
g5st«
gth3
gu4a
3guard
2gue
BgulSt
3 gun
3gna
4gu4t

2gBy3n
gyBra
h3ab41
hach4
hae4a
hae4t
hBagu
ha31a
haltSa
ha-'m
han4ci
han4cy
Bhand.
han4g
hangBer
hangBo
hBaBnis
han4k
han4t«
hap31
hapBt
ha3ran
haBraa
har2d
hard3e
har41e
harpBen
harBUir
haiBa
haun4
Shaz
hai3a
hlb
v/

lhead
3hear
he4caa
hBecat
h4ed
heBdoS
ho314i
hel41ia
hel41y
hBelo
hem4p
he2n
hena4
henSat
heoBr
hepB
h4era
hera3p
her4ba
heroBa
h3ern
hBerou
h3ery
hies
he2sBp
he4t
het4ed
hou4
hlf
hlh
hiBan
hi4co
highS
h4112
hlnor4
h41na
hion4e
hi4p
hir41
hi3ro
hir4p
hir4r
hia3el
hia4a
hlthSer
hi2r
4hk
4hll4
hlan4
h21o
hlo3rl
4hla
hmot4
2hln
hBodii
hoods
ho4g
hoge4
holBar
3hol4a
ho4na
hoae3
hon4a
hoSny
3heod
hooa4
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horBat
hoBrlt
hort3e
hoSru
hoMe
hoBsen
houlp
lhou*^
houte3
hovBel
4h6p
4hr4
hreoB
hroBnlx
hro3po
4hl*2
h4«h
h4tar
htlen
htSei
h4ty
hu4g
hu4i&ln
htinSke
hun4t

hu4t
hlw

hy3pe
hy3ph
hy2f
211a
12al
Iam4
Iam5ete
12an
4ianc
ian31
41an4t
iaBpe
Iaes4
14atir
Ia4trlc
14ata
Ibe4
ib3era
lbSert
ibSia
ib31n
ibBit.
ibBite
llbl
Ib31i
15bo
ilbr
12b5ri
ISbun
4ican
Eicap
4icar
14car.
14car»
lca»6
14cay

41ceo
4ich
2icl
iBcld
icSina
12cip
ic3ipa
14cly
12c6oc
411cr
Blcra
14cry
Ic4te
ictu2
Ic4t3uft
ic3ula
Ic4ua
IcBuo
13cur
2id
14dal
idSanc
id5d
ide3al
Ide4s
12dl
ldBlan
Idl4ar
16die
Id31o
idiB rt
idlit
idSiu
13dle
14doa
Id3ov
14dr
12du
idBuo
21e4
Ied4e
SleBga
Ield3
Ien5a4
Ien4e
IBenn
iSenti
Her.
13eic
llest
13et
4if.
ifBero
iffSen
i*4*r
4iflc.
13*
13*1
4i*t

igaBb
ig3era
ight31
4igl
13gib
1(311

ig3in
Ig3it
I4g41
12go
ig3or
igBot
ISgre
iguBi
igiur
13h
41514
13j
4ik
Ilia
113a4b
141ade
1215am
ll&Bra
131eg
illor
ilov4
116*
1111
113ia
1121b
113io
1141st
2ilit
112iz
HlBab
411n
113oq
114ty
116ur
113T
14mag
Im3age
imaBry
inentaSr
4imet
imll
Im5ida
imiSle
ISminl
4imit
Im4nl
13mon
12mu
im3ula
2in.
14n3au
41naY
inct-14
In3cer
4ind
inBdling
2ine
13nee
iner4ar

•J

41nga
4inge
inSgen
4ingi
inSgling
4ingo

4ingu
2ini
iBni.
i4nia
in3io
inlls
iBnite.
Binitio
In3ity
4ink
41nl
2inn
2ilno
14no4c
Ino4fl
14not
2in«

'in3se
insurBa
2int.
2in4th
inlu
IBnus
4iny
2io
4io.
iogo4
io2gr
ilol
Io4m
ion3at
ion4ery
ion3i
ioBph
ior3i
i4ofi
ioEth
IBoti
io4to
14our
2ip
ipe4
iphras4
ip3i
ip4ic
ip4re4
ip3ul
13 qua
iqBuef
Iq3uid
Iq3ul3t
4ir
lira
Ira4b
14rac
ird5e
irelde
14ref
14rel4
14res
irBgi
irli
lriSdo
ir4is
iri3tu
615r2iz

ir4min
iro4g
Biron*
irBul
21i.
isBag
i«3ar

2islc
Is3ch
41se
l«3er
Sis*
isBhan
iR3hon
ishBop
is3ib

IBsis
lsBitiv
4is4k
Islan4

12co

ieip
is2pi
is4py
4isls
Is4sal
icsen4

is4ta.
Islte
ialti
iet41y
4istral

4ita.
iU4bi
14tag
4itaBm
13tan
13tat
2ite
it3era
iBteri
it4ei
2ith
ilti
4itia
4i2tic
it3ica
SiBtick
it3ig
itBill
12tin
2itio
4itis
14tism
12t5o5m

•

4iton
14trao
itSry
4itt

it3uat
lBtud
it3ul
4itx.
ilu
2iv
iv3ell
iv3en.
14v3er.

lrBil.
ivBio
iTiit
ISvore
Iv3o3ro
14v3ot
4iBv
Iz4o
4iy
4izar
izi4
51zont
5ja
jac4q
ja4p
lje
jerBs

4jesty

jo4p
Bjudg

k3ab
kBag
kai«4
kal4
klb
k2ed
lkoe
ke4g
keSli
k3en4d
kler
kes4
k3est.
ke4ty
k3*
kh4
kll
Ski.
5k2ic
k4ill
kilo5
k4ia
k4in.
kin4de
kSlneac
kin4g
ki4p .
kifl4
kSish
kk4
kll
4kley
4kly

J

kla
kBnei
Ik2no
koBr
kosh4
k3ou
kro5n
4kls2
k4tc
ks41

31eig

k5t
klw
Iab3ic
14abo
Iaci4
14ade
Ia3dy
Iag4n
Iam3o
31and

lanSet
Ian4te
Iar4g
Iar3i
Iaa4e
Ia5tan
41ateli
41atir
41ar
Ia4r4a
211b
Ibln4
411c2
Ice4
13ci
21d
12de
Id4ere
Id4eri
Idi4
ldBli
13dr
14drl
Ie2a
Ie4bi
Ie*t5
Bleg.
Slegg
Ie4jnat
lemSatlc
4len.
31enc
Slene.
llent
Ie3ph
Ie4pr
Iera5b
Ier4e
31erg
314erl
14ero

leBaco
Slesq

13oTa
Ier4er.
leT4era
Ier4ers
31ey
41 eye
21*
16*r
411g4
lBga
Igar3

Igo3
213h
114ag
112aa
liarBli
114as
114ato
HBbi
Slicio
114cor
411C0
41ict.
14icu
13icy
13ida
HdBor
Slidi
li*3er
141**
114*1
Sligate
31igh
H4gra
311k
414141
Iln4bl
11B31
114ao
14ia4p
14ina
114ine
Iin3oa
Iin31
linkSer
llBog
414iq
H«4p
lilt
12it.
Blitica
ISiStici
Iir3er
Ills

Ika3
13kal
Ika4t
111
141aw
121e
ISlea
131

131eg
131el
131e4n
131e4t
1121
1211n4
lSlina
114o
lloquiS
llBout
ISlov
21a
IBnet

14aod
Iaon4
211n2
sio.
lobSal
Io4ci
41of
31ogic
ISogo
31ogn
Ioa3er
Blong
Ion4i
13o3nii
loodS
Slope.
Iop31
13opa
Iora4
Io4rato
loSrle
lorBoa
Blot. «
lotSet
Slotophls
Blo«ophy
Ioi4t
Io4ta
lounBd
21out
41or
21p
lpaSb
13pha
15 phi
ipBlng
13pit
14pl
ISpr
411r
211«2
14ic

14fle
41t
It5ag

lite

Itera4
1U31

J
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Itit4
lltr
Itu2
Itur3a
luSa
Iu3br
Iuch4
Iu3ci
Iu3en
Iuf4
lnSid
In4ma
Sluai
lSumn.
Sluonla
Iu3o
Itxo3r
41np
luf«4
Ius3t«
llut
15ren
16vet4
21iw
lly
41ya
41yb
lySme
Iy3no
21yM *
ISyte
lma
2mab
aa2ca
ma5chin«
ma4cl
jcagBin
Smagn
2mah

i

4mald
ca31ig
E,a51in
aal41i
nal4ty
Snania

san3iz
4map
ina&rine.
nsaSrii
mar41y
nar3T
ma5sc«
mas4e
mas It
5mate
nath3
na3tif
4matixa
4nlb
Dba4tS

n4b3ing

4»«.
2aed
4aed.
Smedia
neddie
nSeSdy
ffle2g
melSon
mel4t
me2a
nenlo3
lnen
men4a
menSac
nen4de
4mene
mcn4i
nen*4
men*u6
3ment
sten4te
meSon
mSersa
2me«
Smesti
me4ta
net3al
melte
me5thi
m4etr
Smetric
meStrie
me3try
ne4T
4mlf
2mh
Sal.
mi3a
mid4a
nid4g
Kig4
Smilit
m5151i«
m4ill
sin4a
Sraind
m5ineo
n4ingl
min5gli
m5ingly
oin4t
m4inu
miot4
»2ii
nis4er.
ulsSl
mis4ti
nSittry
4nith
u2it
4mk
4n.ll
» 1 A

Kir.aSrr
w

mnift /

n4nin
mn4o
lmo
4raocr
Emocratiz
mo2dl
mo4go
moi«2
moi5ie
4mok
moSlest
Eo3ne
nonSet
mon5ge
moni3a
mon4isa
mon4ist
mo3nlz
nonol4
mo3ny.
mo2r
4aora.
nos2
rcoSeey .
ino3sp
moth3
raSouf
3mous
IDO2T

4nilp
mpara5
inpa5rab
mparSi
n3pet
ropha*4
m2pi
mpi4a
mpSiee

sSpir
mp5is
mpo3ri
mpo85ite
»4pout
mpovS
np4tr
n2py
4o3r
4n>lv2
m4sh
m5si
4mt
lfflU
mula5r4
Sroult
multi3
3mum
mun2
4nup
mu4u
4aw
Ina
2nla2b
n4abu
4nac.
na4ca

nSact
nag5er.
nak4
na41i
naSlia
4nalt
na5mit
n2an
nanci4
nan4it
nank4
nar3c
4nare
nar3i
nar41
nSarm
n4ai
nas4c
nas5ti
n2at
na3tal
natoSmiz
n2au
nau3se
3naut
nav4e
4nlb4
ncarS
n4ces.
n3cha
nScheo
r*5chil
n3chis
nclin
nc4it
ncourSa
nlcr
nlcu
n4dai
n5dan
nlde
nd5o8t.
ndi4b
n5d2if
nldit
r,,3diz
n5duc
ndu4r
nd2we
2ne.
n3ear
ne2b
neb3u
r.o2c
Sneck
2ned
ne4gat
neg5atir
5nege
ne41a
nel5iz
no5mi
ne4mo
lnon
4nene
3neo

ne4po
ne2q
nler
neraSb
n4orar
n2ere
n4er5i
ner4r
lnes
2nea.
4nesp
2nest
ĈL T̂ i ft J3 T̂ t
TB • m ̂ Cr (9 VV

3netic
ne4v
n5eve
ne4w
n3f
n4gab
n3gel
nge4n4e
n5gere
n3geri
ng5ha
n3gib
nglin
n5git
n4gla
IlgO74

ng6sh
nlgu
n4gum
n2gy
4nlh4
nh?4
nhab3
pho4
3n4ia
ni3an
ni4ap
ni3la
ni4ol
ni4d
niSdi
ni4er
ni2fi
niSficat
n5igr
nik4
nlim
ni3rniz
nlin
5nine.
nin4g
ni4o
5nis.
nie4ta
n2it
n4ith
3nitio
n3itor
ni3tr
nlj
4nk2
n5kero
n3ket

nk35n
nlkl

•

4nll
nBra
nmo4
nmot4
4nln2
nne4
nni3al
nni4v
nob41
no3ble
n5ocl
4n3o2d
3noe
4nog
noge4
noisSi
no514i
5nologi«
3noroic
n5o5miz
no4mo
no3my
no4n
non4ag
nonSi
n5oniz

•

4nop
5nop5o51i
norSab
no4rary
4nosc
nos4e
nos5t
no5ta
lnou
3noun
nov3el3
nowl3
nlp4
npi4
npre4c
nlq
nlr
nru4
2nis2
ns5ab
nsati4
ns4c
n2se
n4s3o«
neidl
nsig4
n2sl
ne3m
n4soc
ns4pe
nSspi
nsta5bl
nit
nta4b
nter3i
nt2i
n5tib
nti4or

nt!2f
n3tine
n4t3ing
nti4p
ntrolBli
nt4«
ntu3me
nula
nu4d
nu5en
nuf4fe
n3uin
3nu3it
n4um
nulme
n&umi
3nu4n
n3uo
nu3tr
nlT2
nlw4
nyn4
nyp4
4nz
n3za
4oa
oad3
o5a51ef
oard3
cas4o
oastS©
oatSi
ob3a3b
oSbar
obe41
olbi
o2bin
obSing
o3br
ob3ul
olce
och4
o3chet
ocif3
o4cil
o4clan
o4cod
oc3rac
ocSratii
ocre3
5ocrit
octorSa
oc3ula
o5cure
odSded
od3ic
odi3o
o2do4
odor3
od5uct.
odSuct*
o4el
o5eng
o3er
oe4ta
O3OT

o2fi
ofSite
ofit4t
o2g5aCr
ogBatir
o4gato
olge
o5gen«
o5geo

c3gie
lolglt
og3it
o4gl
o5g21y
3ogniz
o4gro
ogu5i
logy
2ogyn
olh2
ohabS
oi2
oic3e«
oi3der
oiff4
oig4
oiSlet
o31ng
ointSor

•

oSlsm
oiSson
oietBen
oi3ter
o5j
2ok
o3ken
okSle
clla
o41an
olaei4
ol2d
oldie
ol3er
o31esc
o31et
ol4fi
6121

•

c31ia
o31ice
olSid.
o3114f
oSlil
ol3ing
o51io
o51it.
ol3ish
oSlite
oSlitio
o51iv
olH4e
olSogiz
olo4r
olSpl
ol2t
ol3ub

ol3um«
ol3nn
o&luf
ol2r
o21y

w

om5ah
oroaSl
om5atia
om2be
oro4bl
o2ma
om3ena
om5ert«
o4met
om5etrr
o3mia
Ott3ic.
Offl3ica
o5nld
omlin
oSaini
Sommend
otoo4ge
o4non
on3pi
omproS
o2n
onla
on4ac
o3nan
onlc
3oncil
2ond
onSdo
o3nen
onBofit
on4gu
onllc
c3nio
cnlif
o5niu
on3koy
on4odi
on3oay
on3i
on&pi4
onspirSa
ontu4
onten4
on3t4i
ontifS
onSum
onra5
oo2
ood5e
oodSi
oo4k
oop3i
o3ord
OO8t5

o2pa
opeSd
opler
3opera
4operag
2oph



©r>pn»ji
©Sphar
©p31ng
©3pit
©Spon
©4poai
©lpr
oplu
opy5
©lq
©Ira
©Bra,
o4r3ag
orBalii
©rBanga
©r*3a
©Braal
orSei
oraBah
©rBeat.
©raw4
or4gu
4oBria
©r34C4
©Bril
orlin
oirio
or3ity
o3rin
or2mi
orn2a
oBrof
or3oug
orBpa
Sorrh
or4aa
oraBen*
orat4
oi3thi
or3thy
©r4ty
oSrum
olry
o«3al
oa2c
oi4ca
o3acop
4oacopi
oBacr
oa414a
oaBitiT
oa3ito
os3ity
G*14U

©841
o2ao
oa4pa
os4po
©a2ta
©Satati
oaBtil
OdLtit
o4tan
oU>le4g
ot3er.
ot5era
J

4oth
•

©thSeai
oth3i4
©t3ic.
otBica
o3tica .
©3tif
©3tia
©toBa
©u2
ou3bl
ouchBi
©uBat
ou41
ouncBar
oun2d
OUBT
ov4en
©Tar4na
c?ar3a
or4art
o3via
©Titi4
o5v4ol
©w3dar
ow3al
owBeat
owli
ovnBi
©4Y©

oyla
Ipa
pa4ca
pa4ca
pac4t
p4ad
Bpagan
p3agat
p4ai
pain4
p4al
pan4a
pan3el
pan4ty
pa3ny
palp
pa4pu
paraBbl
parBaga
parBdi
3para
parfcel
p4a4ri
par4ia
pa2ta
pa&tar
Bpathic
paBthy
pa4tric
pav4
3pay
4plb
pd4
4pe.
3pe4a

J

peir41
pa2c
2p2ed
Speda
3pedi
padia4
pad4ic
p4aa
pea4d
pek4
p©41a
pali4a
pa4nan
p4enc
pen4th
paSon
p4ara.
paraBbl
p4arag
p4eri
pariBat
per4mal
permaS
p4arn
parSo
par3ti
paBru
par I T
pe2t
paBtan
paBtiz
4pf
4pg
4ph.
pharSi
phe3no
ph4er
ph4es.
phlic
Bphie
phBing
Bphisti
3phiz
ph21
3phob
3phona
Bphoni
pho4r
4pha
ph3t
Bphu
lphy
pi3a
pian4
pi4cia
pi4cy
p4id
pSida
pi3de
Bpidi
3piec
pi3en
pi4grap
pi31o
pi2n
p4in.

pind4
p4ino
3pjlo
pion4
p3ith
piStha
pi2tu
2p3k2
Ip212
3plan
plaaBt
pli3a
pliBer
4plig
pli4n
pl©14
plu4m
piurn4b
4plm
2p3n
po4c
Spod.
poBem
po3etS
6po4g
poin2
Bpoint
polySt
po4ni
po4p
Ip4or
po4ry
Ipoa
posts
p4ot
po4ta
Spoun
4plp
ppaSra
p2pe
p4ped
pBpel
p3pen *
p3per
p3pet
ppoSeita
pr2
pray4a
Bpreci
preBco
pre3em
prefSac
pre41a
pre3r
p3resa
3press
preBten
pre3v
Bprl4e
prin4t3
pri4a
pris3o
p3roca
profSit
pro31
pros3a

pr©lt
2pla2
p2aa
pa4h
p4aib
2plt
ptSa4b
p2ta
p2th
pti3«
ptu4r
p4tv
pub3
pua4
puf4
pulSc
pu4a
pu2n
pur4r
Bpua
pu2t
Sputa
put3ar
pu3tr
put4tad
put4tin
p3w
qu2
quaBr
2 qua.
3quer
Squat
2rab
ra3bi
rach4a
r5acl
rafSfi
raf4t
r2ai
ra41o
ran3et
r2aml
raneSo
ran4ge
r4ani
ra5no
rap3er
3raphy
rarBc
rare4
rarBef
4raril
r2aa
ration4
rau4t
raBvai
rav3el
raSzia
rib
r4hab

•

x4bag
rbi2
rbi4f
r2bin
rBbina
rbSlng.
y

rb4o
rlc
r2ca
rcan4 ^A
r3cha^" '
rch4ar
r4cl4b
rc4it
rcu»3
r4dal
rd2i
rdi4a
rdi4ar
rdin4
rd3ing
2ra.
ralal
re3an
raBarr
Braar
ra4aw
rSebrat
recSoll
recBompa
re4cre
2r2ad
relda
re3dis
radSit
re4fac
re2fe
reBfar.
re3/i
re4fy
reg3ia
resit
relli
re51u
r4en4ta
ren4ta
relo
roBpin
re4poai
relpu
rler4
r4eri
rero4
reBru
r4aa.
re4spi
reaaSib
rea2t
reBstal
re3atr
ro4ter
re4ti4z
re3tri
reu2
reSuti
rev2
re4val
rev3el
rSevSer.
reBvera
reSvaru
raSyil

J

raySolm
ra4vh
rlf

LL rf U4
r4fy
rg2
rg3ar
r3gat
rSgic
rgi4n
rg3ing
rBgia
rSgit
rlgl
rgo4n
r3gu
rh4
4rh.
4rhal
ri3a
ria4b
rl4ag
r4ib
ribSa
ricBaa
r4ica
4rici
Sricid
ri4cia
r4ico
ridBar
ri3enc
rl3ent
rilar
riSat
rigBan
Srigi
ril3ix
Briman
rimSi
3rino
rim4pa
r2ina
Brina.
rin4d
rin4e
rin4g
rilo
Briph
riphBa
ri2pl
ripSlic
r4iq
r21a
r4ia.
ria4c
r3iah
ris4p
ri3ta3b
rSited.
ritBer,
ritSera
rit3ic
ri2tu
ritBur
rivSel

ri*3at
rivSt
rSj
r3kat
rk41a
rk41ia
rll
rla4
r21ad
r41ig
r41ia
rlBiah
r31o4
rll
rsaBc
r2aa
rSnan
r»Bara
r»3ing
r4singt
r4mio
rSmit
r4ny
r4nar
rSnal
r4nar
rBnat
r3nay
rSnic
rlnia4
r3nit
r3nir
rno4
r4non
r3nu
robSl
r2oc
roScr •
ro4a
rolfa
roBfil
rok2
r©Bkar
Brola.
rosSeta
r©m4i
r©n4p
ron4al
ron4e
ro5n4ia
ron4ta
lr©oa
Sroot
ro3pel
rop3ic
ror3i
roBro
rosSpar
ros4a
ro4tha
ro4ty •
ro4ra
rovBal
rox5
rip
r4poa

rBprtt
rpSar.
r3p«t
rp4h4

aj

rpSing
r3po
rlr4
rra4c
rra4f
r4rao
rra4at
rrl4o
rrl4?
rro&4
rroa4
rrya4
4ra2
rlaa
raaBti
ra4c
r2aa
rSaac
raa4cr
raSar.
ra3aa
raaSrS
rlah
r5aha
rial
r4ai4b
raon3
rlap
r5aw
rtach4
r4tag
rStab
rton4d
rtaBo
rlti
rtSib
rti4d
r4tiar
r3tig
rtil3l
rti!41
r4tily
r4tlat
r4tiT
r3tri
rtroph4
rt4ah
ru3a
ru3e41
ru3en
ru4gl
ru3ia
rum3pl
ru2n
runkS
run4ty
rBuac
rutlSn
rv4a
rval41
r3ven
r?Ber.

3



HYPHENATION PATTERN*

rSanad
r3rey
r3ric
rri4r
T3TO

rl»
ry4c
Brynga
ry3t
ta2
2tlab
5t«ck
«ac3ri
t3act

tilir4

taSlo
tal4t
Saanc

tlap
eaSta
5sa3tl©
satSu
0au4
ta5ror

405b
8can4tS
0ca4p

4 cod
4scai
4cet
ch2

14cho

58cln4d
0cla5
•4cli
0cof4

8cour5a
0lca
4i5d
4te.
0a4a

sea5v
0e2c3o
3sect

0eg3r
5aal

Eeelf
SfiblT

tfcanin
4tantd
4tentl
tep3a3

4arl
0er4o
4tarvo
fla40
teSth
re* 5t

5«6T

few4i

4t3f
2f3g
02h
20h.
thlar

thlin
0h31o
30hlp
0hiT5
0ho4
0h5old
0hoa3
0hor4
shortS
4thr
sllb
051cc
Siida.
5sid68
5sidi
8l5dlz
4cigna
0ll4a
40lly

821na
5eine.
03ing
l0lo
Ssion
eion5a
8l2r

I8i0
3titio
5tiu
lfllT
50lz
0k2
4 ska
§3kat

skSlng
• 112
031at
021a
tllthS

J

t3ma
8mall3
t«an3

tSnen
Ssmlth
tmol5d4
0ln4
100

0oft3
0o41ab
80l3d2
to31ic

SfOB

3c4cn.
0ona4
ton4g
04op
Stophlc
rSophix
05ophy
0or5c
0or5d
4fOT
o5ri

2tpa
Bspai
0pa4n
epen4d
2s5peo
2sper
*2phe
3spher
0pho5
0pll4
0p51ng
4spio
04ply
s4pon
spor4
4spot
0qual41
sir
280
0I01

• 2B5G

• 3ael
s5eeng
84060.

lei

taSlly
040I
00411
t4en
8spend4
ts2t
88ur5a

t2tag
t2tal
ttatn41
5stand
04ta4p
5etat.

0tarn51
05taro

y

0tev5a
03 the
0t21
•4tl.
tStia
title
Sttick
s4tia
03tif
0t31ng
50tlr
• ltla
Satock
0tom3a
5*tone
t4top
Sstora
0t4r
04trad
Eetratu
a4tray
»4trid
4 8 try
4st3w
s2ty
lsu
sulal
su4b3
8u2g3
su51s
»uit3
84ul
8u2m *
8UT&31
su2n
8u2r
4ST

sw2
4 B wo
s4y
4eyc
3syl
eynSo
cySrin
lta
3ta.
2tab
ta5bla«
5tabollz
4tacl
ta5do
4taf4
talSlo
ta21
ta51a
talSen

talSl
4talk
tal41l8
ta51og
ta5no
tan4da
tantaS
ta5per
taBpl
tar4a
4 tare
4tare
ta3rlz
ta*4a
ta5ty
4tatlc
ta4tur
taun4
tat4
2taw
tax41f
2Mb
4tc
t4ch
tch5et
4tld
4te.
tead41
4 teat
teco4
Stect
2tlad
te5di
ltea
teg4
te5gar
teSgi
3tel.
teli4
5t©l»
te2ma2

3tenan
3tenc
3tend
4tenes
Itent
ten4tag
Iteo
te4p
te5pa
torSc
5ter3d
Iteri
ter5ia0
ter3is
ter!5za
Starnit
ter5v
4 tot.
4 test
t3oB0.
toth5a
3tou
3 tax
4t©y

2tlf
4Ug
2th.
than4
th2a
4thaa
th3ei0
thoSat
tha3l0
Sthat
thSlc.
thSlca
4thil
Sthink
4thl
th5oda
Sthodlc
4thoo
thorSlt
tho&rlz
2th0
ltla
t!4ab
t!4ato
2tl2b
4tick
t4ico
t41cla
5tldi
Stien
tlf2
ti5fy
2tig
Stlgu
tillSin

4tlmp
timSul
2tlin

3tine.
3tini
Itio
tiSoc
tionSeo
5tiq
t!3sa
3tlse
tls4m
tiSso
ti«4p
5tl8tlca
t!3tl
t!4u
It I T
tlv4a
ltiz
tl3za
tl3zon
2tl
t51a
tlan4
3tla.
3tled
3tlet.
t51et.

t51a
4tla
tna4
2tln2
lto
to3b
toScrat
4 to do
2tof
to2gr
toBlc
to2aa
tom4b
to 3 my
ton4all
to3nat
4tono
4 tony
to2ra
toSria
torSlz
tO02
5 tour
4 tout
toSwar
4tlp
ltra
traSb
traBch
traci4
trac41t
trac4ta
trat4
traSvan
travSatS
treSf
tre4m
tremSl
Etria
tr!5ce0
Strlcla
4trlc0
2trim
trl4v
troSml
tronSi
4trony
troSph
tro3sp
tro3r
tru5i
tru04
4tl02
t4sc
tsh4
t4cw
4t3t2
t4tet
tSto
ttu4
ltu
tula
tu3ar
tu4bl
tud2
4tua

4Uf4
5tu31
Stua
tu4nl8
2t3up.
3tura
Sturl
tur3l8
turSo

2ul2

3tU0
4tT
tv4
4tlwa
twl04
4 two
Ity
4tya
2tyl
typaS
ty5ph
4ts

4uab
uac4
uaSna

uarEant
uar2d
uar3i
uarSt
ulat
uar4
ub4e
u4bal
u3ber
u4bero
ulb41
u4b5ing

. u3ble.
u3ca
ucl4b
uc41t
ucle3
u3cr
u3cu
u4cy
udSd
ud3er
ud5e«t
udev4
uldlc
ud3ied
ud31e0
udSi0
u5dit
u4don
ud4ti
u4du
u4ena
uens4
uen4ta
uer411
3ufa
u3fl
ugh3en

ullng
ulr4a
ulta4
U!T3

4nk
nlla
ulaSb
uSlatl
ulch4
Eulcha
ulSdar

ullea
u!4gl

uElU

ulSlah
ul41ar
ul4114b
xxl41i0
4ul3m
ull4o
4ul0

ulltl
ultraS
4ultu
u31u
ul6ul
U 1 6 T

um5ab
um4bl
um4blj
ulai
u4m31ng
umorSo
iun2p
unat4
u2na
un4ar
ulni
un4ia
u2nin
unSith
uni3r
un3t4
un4ow
unt3ab
un4tar.
un4ta8
unu4
un5y
un5i
u4or0
u5o0
uloa
ulpa
upor60
u5pla
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opMng
o3pl
xip3p
opport5
upt51b
optu4
xilra
4ura.
u4rag

ur4b«
urc4
urld
ureSat

ur4fr
o3rif
uri4fic
urlin
uSrio
ulrit
ur3ix

urlEing,
ur4no

ur4pe
ur4pi
urt5ar

xir3tha
urti4
ur4tia

2ut

tis4ap

viSci

us41in
uslp
us 5el

ualtr
u2sa

u3tat

4utel
4ut€»n
ut«n4i
4ult2i

u5ton
u4tou
ut*4
u3u
uu4«

lya
5va*
2Yla4b
YacSil
rac3u

Ya51i«
YalSo
Yallu
riSmo
YaSnix
YaSpi
YarSied
Srat
4 TO.

4ved
YOgS
Y3el.

Te41o

Yen3o«
Y5enue
Y4erd
Syera*

Y3eren
YerSenc

Yer3ie
Yerni4n
3yer*e
Y©r3th

4T60.

Ye4ta
Yet3er

TiSali

Sride.
&Yided
4Y3iden
Evides
5Yidi
Y3if

6vilit
Y31311X

Ylln

Y21nc
YlnSd

Yio31
Y31o4r
vilou

viSro
Yis3it

Y13»U

4Yiti
Yit3r

Svir
6vo.
YOi4
SYOIC
ro41a
YSola
5volt
SYOIY
Y0B5i
Yor5ab
yori4

Yo4ta

4VY4

w5abl
2vac
va5ger
vagSo
*ait5
v5al.

var4t

walte

wlb
veaSria
Yeath3
ved4n
veet3
TeeSv

wler

whi4
wi2

*1115in
vln4de
vin4g
wir4

with3
viz5

vl3in
v4no
Iwo2
VOBI

J

w5p

wri4

vs41

w5s4t
4¥t

xla
xac5a
x4ago
xam3
x4ap
xat5
x3c2
xla
xe4cuto
x2ed
xer4i
xoSro

xhi2
xhilS
xhu4
x31
xi5a
xi5c
xi5di
x4imo
xi5miz
x3o
x4ob"
x3p

xpectoS
xpe3d
xlt2
x3ti
xlu
xu3a
xx4
y5ac
3yar4
y5at
ylb
yic

ycSer
y3ch

ycott4
ycot4
yld
y5ea
yler
y4erf

ye4t

4y3h

y31a
ylla5bl
y31o

J

y51u
ymbol5

ynp«3
yn3chr
yr\5d
yn5g
ynSic
5ynx
ylo4
yo5d
y4o5g

yo5nat
y4om
y4of
y4pod
ypar5
yp3i
y3po
y4poc
yp2ta
y5pu
yraSa
yrSia
73ro
yr4r
yt4c

yt3io

y4so
y8>4
yslt
ys3ta
ysur4.
y3thin
yt3ic

zal
z5a2b

4zb

ze4n

zler
ze3ro
zet4
2zli

z4is
5zl

lzo

zoBol
zte4
4zlz2
z4zy



Answers

moun-tain-ous vil-lain-ous
be-tray-al de-fray-al por-tray-al

hear-ken
ex-treme-ly su-preme-ly

tooth-aches
bach-e-lor ech-e-lon

anal-o*goua ho-mol-o-gous

gen-u-ine
any-place
co-a-lesce
fore-warn fore-word

de-spair
ant-arc-tic corn-starch

•

mast-odon

squirmed

82
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