

Special joint user group publication of the EuroTEX 2005 proceedings

DANTE Deutschsprachige Anwendervereinigung TEX e.V.
Die TEXnische Komödie
18. Jahrgang Heft 2/2006 April 2006
ISSN 1434-5897

CervanTEX Grupo de Usuarios de TEX Hispanohablantes

GUST Grupa Użytkowników Systemu TEX

GUT Groupe francophone des utilisateurs de TEX

NTG Nederlandstalige TEX Gebruikersgroep

TUG TEX Users Group

UKTUG UK TEX Users’ Group

Editor Volker RW Schaa

Printed by Konrad Triltsch Print und digitale Medien GmbH
D-97199 Ochsenfurt-Hohestadt
Germany

Paper coated paper Allegro, 80 g/m2

Cover coated paper Allegro, 250 g/m2

Printed copies 5000

Contents

Preface i

Forewords . iii

Schedule . vi

Pictures . ix

Talks 1

A Taxonomy of Automated Typesetting Systems . 1

MP2GL: prototyping 3D objects with Metapost . 5

Metapost Developments . 25

From RTF to XML to LATEX . 33

The TEI/TEX Interface . 38

LATEX3 News . 50

Typographic Perfection with OpenType? . 55

Namespaces for εXTEX . 67

contextgarden.net: The ConTEXt Wiki . 71

Panel discussion with Hermann Zapf and Donald Knuth: ‘With a little help from the wizards’ 76

ProTEXt, a new TEX-Collection for Beginners . 78

La machine à formulaires (The Forms’ Machine) . 81

ŞäferTEX: Source Code Esthetics for Automated Typesetters . 86

Mem. A Multilingual Environment for LATEX with Aleph . 92

Omega Becomes a Sign Processor . 99

Designing an Implementation Language for a TEX Successor . 111

CTAN Plans . 117

Verbatim Phrases and Listings in LATEX . 120

TEX Forever! . 140

The 16 Faces of a Dutch Math Journal . 150

Experiences with Micro-Typographic Extensions of pdfTEX in Practice 159

NewMath and Unicode . 165

Latin Modern fonts: how less means more . 172

Bibliography Styles Easier with MlBibTEX . 179

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac 193

The Bigfoot Bundle for Critical Editions . 199

Appendices 205

List of Authors . 205

Participants List . 206

EuroTEX 2006 212

Preface iii

Let’s TEX together – EuroTEX 2005 Proceedings

Klaus Höppner Fabrice Popineau

April 2006

EuroTEX 2005 was a special conference, celebrating
the 16th anniversary of both DANTE and GUTenberg,
with the theme “Let’s TEX together”. It took place
from March 7 to March 11, 2005, in the French-German
border region at the Abbaye des Prémontrés, in Pont-
à-Mousson.

This proceedings aim to give you an impression of
the TEXnical contents of the conference. Though it’s
death is sometimes predicted, TEX and related type-
setting tools are still alive. We are sure the following
articles are a good evidence for it. On the other hand,
the TEX community is a big family grown over decades.
So please enjoy many color photos taken on the confer-
ence during the sessions, coffee breaks, meals and the
banquet.

When DANTE and GUTenberg started to think
about a place for the conference we were inspired by
conferences like EuroTEX 2001 in Kerkrade, Nether-
lands, or BachoTEX in Poland. A conference with all
participants at one place looked promising. Though the
organization of accommodation for 128 persons wasn’t
easy and the versions of the Excel sheet with the occu-
pations of rooms are uncounted, it was a success after
all. The abbaye was a nice place—at least the reno-
vated part—and the hotels where quite a lot of partic-
ipants had to stay were nearby. France is famous for
its food, and so even the daily meals were some kind of
celebration.

We are glad that it was one of the largest and most
fruitful TEX conference in the last years. We are thank-
ful for contributions from user groups that made spe-
cial conference rates and support for participants from
Eastern Europe possible, namely TUG and GuIT for
financial aid and NTG and GUST for organizing the
bus from Poland to France.

Special renowned guests were Donald E. Knuth and
Hermann Zapf. They volunteered to participate in a
moderated panel discussion of about two hours. We
thank Taco Hoekwater who supplied his notes of the
session—unfortunately the reader has to imagine the
visual part where Hermann Zapf drew several samples
of glyphs on the blackboard, e. g. showing the improve-
ments of Optima Nova against Optima.

Unforgotten is the social highlight of the conference,
the banquet taking place in the old church of the abb-
eye. After a gala dinner, surrounded by some speeches

of user groups representatives and house made music—
a Polish chorus and David Kastrup’s guitar play—it
ended with two big cakes, with ornaments added by
Hermann Zapf and served by Donald E. Knuth.

The content of the conference was equally wide-
ranging, with research papers on multilingual typeset-
ting and other areas, reports on current developments
in the TEX world, and examinations of the TEX sys-
tem in practice. Many well-known TEX luminaries con-
tributed, and we were especially glad to welcome many
relative newcomers as well.

Since the conference was special, we wanted the pub-
lication to also be special. Thus, this proceedings mark
the first occasion of a single volume being simulta-
neously published by many of TEX user groups and
distributed as a benefit for their respective member-
ships. This proceedings act both as issue 2/2006 of
DANTE’s journal Die TEXnische Komödie and issue
1/2006 of the TUGboat and are distributed by the fol-
lowing user groups: CervanTEX, GUST, GUTenberg,
NTG and UKTUG.

We are all very happy to collaborate in this endeavor,
and hope it will be the first of many. So while the title
of the conference was «Let’s TEX together», for this
proceedings it should be read as:

Let’s publish together!

The proceedings has been organized and edited by
Volker RW Schaa of DANTE. Physically, it contains
about 25 papers (some in slide form), and a large num-
ber of color pages. The logistics were considerable! The
cover was prepared by Hans Hagen, who made valuable
contributions to this proceedings.

We hope you find this special joint user group publi-
cation of the EuroTEX 2005 proceedings enjoyable and
valuable.

We thank Karl Berry for help preparing these intro-
ductory remarks and for corrections.

With best regards

Klaus Höppner Fabrice Popineau

main organizeres of the EuroTEX 2005 conference

iv Preface

Let’s publish together! – EuroTEX 2005 Proceedings

Volker RW Schaa

April 2006

I have chosen Karl Berry’s motto as a title for my an-
notations and acknowledgements. A successful confer-
ence and as a result these proceedings are the result of
long preparation work by many people. I want to thank
the program committee members who invested their
time in many email exchanges and sometimes even in
direct communications with authors and presenters.

Programme Committee

Volker RW Schaa
Fabrice Popineau

Jacques André
Giuseppe Bilotta
Włodzimierz Bzyl

Daniel Flipo
Steve Grathwohl

Hans Hagen
Bogusław Jackowski

Bernd Raichle
Petr Sojka

The other team was the organizing committee, which
assured all logistics questions of the event. It started by
finding the perfect place for the conference, arranging
the accommodations, organizing all the important bits
and pieces: from technical equipment over order of the
menu for the gala diner to TEXnical goodies for the
participants. I like to name two people who spent an
enormous amount of time to make this conference such
a success: Fabrice Popineau and Klaus Höppner.

Organizing Committee

Volker RW Schaa
Fabrice Popineau
Klaus Höppner
Sarah Grimaud

Hans Hagen
Michèle Jouhet
Maurice Laugier

Jerzy Ludwichovski
Gilles Pérez-Lambert

The inclusion of so many conference pictures was
only possible by people providing their ‘shots’. I was
lucky to have more than 750 pictures to choose from,
provided by Hartmut Henkel, Harald König, Bernd
Reichle, Volker RW Schaa, Petr Sojka, Ulrik Vieth, and

Zofia Walczak. I hope you like the selection, which tries
to cover the place, the people, the exceptional food, the
atmosphere, and a bit of the TEX talks and presenta-
tions.

For EuroTEX 2005 we had several special lion draw-
ings by Duane Bibby, the main one is shown in color
on the first page. Two drawings where dedicated to
Hermann Zapf and Donald Knuth.

On the left you see a lion juggling with pens, brushes,
ink pots, and other requisites of the typographic art,
even Hermann’s special black ink is mentioned as »Noir
Zapf«. On the right there is a lion juggling with Zeros
and Ones, each carrying Don’s initials (DEK).

A special thank you goes to Hans Hagen, who made
valuable contributions to the conference, the abstract
booklet and this proceedings. He also designed the
cover. The background has the blue color of the Eu-
ropean flag, the 128 stars represent the participants,
with two golden stars (in yellow) for our special guests
Hermann Zapf and Donald Knuth.

Last but not least I like to thank all participants who
gave a talk or tutorial. I’m happy that we got with one
exception all presented papers or slides for this pro-
ceedings. Several audio recordings were made during
the panel discussion “With a little help from the wiz-
ards” with Hermann Zapf and Donald Knuth. Maybe
a transcription will be printed in a future edition of a
joint user group publication like this.

With best regards

Volker RW Schaa

Preface v

Monday, March 7

09:00 Welcome

09:15 MOT01 Javier Bezos
Mem. A Multilingual Environment for LATEX with Aleph

09:45 MOT02 Yannis Haralambous, Gábor Bella
Omega Becomes a Sign Processor

10:30 – 11:00 Coffee Break

11:00 MOT03 Joachim Schrod, Chris Rowley, Christine Detig
A Taxonomy of Automated Typesetting Systems

11:45 MOT04 David Kastrup
Designing an Implementation Language for a TEX Successor

12:30 – 14:00 Lunch

14:00 MOT05 Jim Hefferon
CTAN Plans

14:30 MOT06 Denis Roegel
MP2GL: prototyping 3D objects with Metapost

15:00 MOT07 Taco Hoekwater
Metapost Developments

15:30 – 16:00 Coffee Break

16:00 MOT08 Péter Szabó
Verbatim Phrases and Listings in LATEX

16:30 MOT09 Stephan Lehmke, Arne Jans, Andre Dierker
From RTF to XML to LATEX

17:00 MOT10 Jonathan Fine
TEX Forever!

17:30 DANTE e.V. General Meeting
GUTenberg General Meeting

20:30 Diner
22:00 – 23:00 BoF sessions

Tuesday, March 8

09:00 TUT01 The TEI/TEX Interface
Sebastian Rahtz

09:45 TUT02 Frank Mittelbach, Chris Rowley
LATEX3 News

10:30 – 11:00 Coffee Break

11:00 TUT03 Hans Hagen
The 16 Faces of a Dutch Math Journal

11:45 TUT04 Adam Twardoch
Typographic Perfection with OpenType?

12:30 – 14:00 Lunch

vi Preface

14:00 TUT05 Gerd Neugebauer
Namespaces for εXTEX

14:30 TUT06 Patrick Gundlach
contextgarden.net: The ConTEXt Wiki

15:00 TUT07 Thành Hàn Thế
Experiences with Micro-Typographic Extensions of pdfTEX in Practice

15:30 – 16:00 Coffee Break

16:00 TUT08 Johannes Küster
NewMath and Unicode

16:30 TUT09 Bogusław Jackowski, Janusz M. Nowacki
Latin Modern fonts: how less means more

17:00 – 19:00 TUT10 Panel discussion with Hermann Zapf and Donald Knuth
‘With a little help from the wizards’

20:00 Gala Diner

Wednesday, March 9

8:30 WET01 Thomas Feuerstack
ProTEXt, a new TEX-Collection for Beginners

9:00 WET02 Jean-Michel Hufflen
Bibliography Styles Easier with MlBibTEX

9:30 WET03 Antoine Lejay
La machine à formulaires (The Forms’ Machine)

10:00 WET04 Frank-René Schäfer
ŞäferTEX: Source Code Esthetics for Automated Typesetters

10:30 – 11:00 Coffee Break

11:00 WET05 Jérôme Laurens
The TEX Wrapper Structure: A Basic TEX Document Model Implemented in
iTEXMac

11:30 WET06 Stephan Lehmke
Case Study of TEX in Commercial Data Based Publishing: Completely Automatic
Typesetting of a Large Product Catalogue

12:00 WET07 David Kastrup
The Bigfoot Bundle for Critical Editions

12:30 – 14:00 Lunch

14:00 Excursion
19:30 Lunch
22:00 – 23:00 BoF sessions

Preface vii

Thursday, March 10

09:00 – 12:30 THT01 Sebastian Rahtz, Hans Hagen
XML to PDF, where does TEX fit in

09:00 – 10:30 THT02 Stephan Lehmke
TEXPower – Dynamic Presentations with LATEX

10:30 – 11:00 Coffee Break

11:00 – 12:30 THT03 Gerd Neugebauer, Michael Niedermair
εXTEX – Under the Hood

12:30 – 14:00 Lunch

14:00 – 17:30 THT04 Denis Roegel
Metapost

14:00 – 15:30 THT05 Staszek Wawrykiewicz
TEXLive 2004 Windows Installer

15:30 – 16:00 Coffee Break

16:00 – 17:30 THT06 David Kastrup
Installing and using Emacs, AUCTEX, RefTEX, preview-latex

19:30 Diner
22:00 – 23:00 BoF sessions

Friday, March 11

09:00 – 10:30 FRT01 Hans Hagen
ConTEXt

09:00 – 10:30 FRT02 N.N.
Advanced LATEX

10:30 – 11:00 Coffee Break

11:00 – 12:30
FRT01

continuing
FRT02

12:30 – 14:00 Lunch
14:00 Farewell

viii Preface

Preface ix

x Preface

Preface xi

xii Preface

Preface xiii

xiv Preface

Preface xv

xvi Preface

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

A Taxonomy of

Automated Typesetting Systems

Joachim Schrod Christopher A. Rowley Christine Detig

EuroTEX 2005 Pont-à-Mousson, France

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Vision
Strategy
Tactics
High-Level Classification

Not Another Project

Vision

Formal model of document formatting

Emphasis on text typesetting

Investigate and document, what is automated typesetting?

Restore automated (high-quality) typesetting to be a vigorous
topic of research and development

Why

Counterpoint to the hype of hypertext

There is more than online publishing

Literature is old: hence no description of current systems

Previous work is empirical: no systematic generalisation

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Vision
Strategy
Tactics
High-Level Classification

Strategy

What

First steps—work in
progress!

Informal but precise
description of existing
document formats

Focus on text typesetting

Describe capabilities of
formatters

What not

Multimedia,
multi-channel publishing

Word processing

Authoring environments,
e.g., spell checkers

Graphics manipulation

Calligraphy

Font design

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Vision
Strategy
Tactics
High-Level Classification

Short Term Goals

Find a vocabulary

Find categories

Classify systems

Find common ground for reasoning

Discuss current and future system capabilities

Built up some abstractions

Present results independent of software artefacts

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

M
O

T
0
3

A
T
a
x
o
n
o
m

y
o
f
A

u
to

m
a
te

d
T
y
p
e
s
e
ttin

g
S

y
s
te

m
s

J
o
a
c
h
im

S
c
h
ro

d
,
C

h
ris

R
o
w

le
y,

C
h
ris

tin
e

D
e
tig

1

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Vision
Strategy
Tactics
High-Level Classification

Tactics

Don’t describe and focus on the functionality of 7th sub-sub-menu
of 3rd subsystem’s dialog —

Intention of the creator is what counts!

Identify underlying models

Aim of classification demands decision criteria

Find discriminators

Real Danger: How many angels can be on a 1sp rule?

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Vision
Strategy
Tactics
High-Level Classification

High-Level Classification

Document

Representation

Formatting

Model

Objects

Composition

Pagination

Micro-

typography

Text & markup

generation

Table

typesetting

Special area

typesetting

Observer

Output
Input

Graphics

Integration

Graphics

Inclusion

Colour &

Painting

User

Interface

Style

Style

Sheets

Import of

non-native

documents

Character

/ glyph

representation

Formatted

document

representationFont

Models

User

Views

Multi-channel

publication

Visuals

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Formatting Model Categories
Examples

The Guts: Formatting Model

Categories for formatting model

Formatting objects

Composition

Pagination

Micro-typography

Text & markup generation

Table typesetting

Special purpose typesetting

Observers

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Formatting Model Categories
Examples

Examples: Formatting Objects

“Lines” – New term needed

Abstraction: Sequence of characters along one direction

“Paragraphs” – There’s more to a term

E.g.: TEX with its simple paragraph abstraction cannot handle

Medieval scripts (inline paragraphs separated by ¶)

First fit (word-processor style paragraphs)

“Grids / Glue” – Intention of creator

Systems can often be coerced to do both

Creator had a clear intent—and we want to capture that

Examples: QuarkXPress, TEX

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

M
O

T
0
3

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

2
A

T
a
x
o
n
o
m

y
o
f
A

u
to

m
a
te

d
T
y
p
e
s
e
ttin

g
S

y
s
te

m
s

J
o
a
c
h
im

S
c
h
ro

d
,
C

h
ris

R
o
w

le
y,

C
h
ris

tin
e

D
e
tig

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Formatting Model Categories
Examples

Examples: Micro-Typography, Observers

Micro-typography: separation of concerns

Punctuation

Text input methods (alphabetic, syllabic, sinographemes)

Segmentation (words, sub-words, . . .)

Oft’ forgotten: text symbols

Observers: missing abstractions

Observers in current systems are not systematic, most are very
limited —
e.g., page number of current text position, but no line number

Missing: object model, with an observer interface

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

The Border: Document Representations

Categories for document representations

Interfaces to the outside:

User interface style

Character / glyph representation

User views of the document

Representation of the formatted document

Import of non-native material

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Overview
Graphics Integration

Shiny Stuff: Visuals

Graphics

Inclusion

Graphics

Integration

Font Usage
Colour and

Painting

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Overview
Graphics Integration

Example: Problems with Graphics Integration

Primary Site

Application Data

Files

Database

Configuration

Application Programs

System Programs

Hardware

Redundant Network Infrastructure

Backup Site

Application Data

Files

Database

Configuration

Application Programs

System Programs

Hardware

Replication

Synchronize

Provisioning

Provisioning

Sizing

Redo-Log Shipping

File Mirroring

Sync Back

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

M
O

T
0
3

A
T
a
x
o
n
o
m

y
o
f
A

u
to

m
a
te

d
T
y
p
e
s
e
ttin

g
S

y
s
te

m
s

J
o
a
c
h
im

S
c
h
ro

d
,
C

h
ris

R
o
w

le
y,

C
h
ris

tin
e

D
e
tig

3

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

Overview
Graphics Integration

Example: Text Flow and Graphics

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

The Brain: Style Sheets

Design interface

Vocabulary: what is a style sheet

Integration: relation of style sheets to documents

Examples: Word — LATEX — XSLT/FOP

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

What have we learnt?

Far bigger than Joachim thought!

Far more interesting than Chris thought!

Far less current literature than Christine thought!

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

Not Another Project
The Guts: Formatting Model

The Border: Document Representations
Shiny Stuff: Visuals

The Brain: Styles

What Have You Learnt?

Wrap Up

Classification is possible and sensible

Classification has many different facets

More than one way to format a document

More than one way to model the formatting of a document

New names are needed for old ideas

New ideas are needed for old names

Clarification of vocabulary is important

Much work needed on classification and formalisation

Much work needed on investigating current systems

Joachim Schrod, Christopher A. Rowley, Christine Detig Typesetting Systems’ Taxonomy

M
O

T
0
3

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

4
A

T
a
x
o
n
o
m

y
o
f
A

u
to

m
a
te

d
T
y
p
e
s
e
ttin

g
S

y
s
te

m
s

J
o
a
c
h
im

S
c
h
ro

d
,
C

h
ris

R
o
w

le
y,

C
h
ris

tin
e

D
e
tig

MP2GL: prototyping 3D objects

with METAPOST and OpenGL

Denis Roegel
LORIA, Nancy (France)

7 March 2005

Abstract

METAPOST was created with 2D graphics in mind, and in spite of various extensions added during
the last few years, it doesn’t seem well adapted for 3D technical graphics. However, there are cases where
simple but realistic 3D graphics are needed, for instance for inclusion in an article, and there are also cases
where 3D objects are mere 2D objects with added depth. In such cases, an approach combining METAPOST

with an OpenGL environment proves very useful and allows for interesting applications, in particular the
prototyping of 3D objects for use independently from METAPOST. Such an approach is also a smooth way
to get introduced to OpenGL. MP2GL is our first attempt towards this direction.

1 Introduction

METAPOST is a language aimed at the description of technical drawings, and is adapted from METAFONT [8, 7].
With METAPOST, one describes a two-dimensional drawing with primitive objects such as points and paths
connecting these points. The language of METAPOST is very rich and a number of extensions have been written,
in particular for handling graphs, or objects.

1.1 Limitations of METAPOST

However, METAPOST is not a 3D engine. 3D objects can be defined in the language, but doing so is tedious.
Moreover, the representation of a 3-dimensional scene requires an algorithm for hidden faces removal, which
is time-consuming. Currently, the few existing 3D extensions to METAPOST only handle special cases. For
instance, our own 3d extension was able to handle convex polyhedra, but not always when they were overlap-
ping [11]. But even if a general hidden faces removal algorithm were implemented, it wouldn’t be the end of
the story. METAPOST has known numerical limitations and such an algorithm, as well as other features like
shading, would stretch it to its limits.

It appears therefore desirable, either to extend the core METAPOST and include native 3D support, or to
use an external processor for the 3D computations. With the first approach, one is led to rebuild all the 3D
algorithms which are already available elsewhere. It may be a sound approach, and it may provide inherent
advantages, but there is a long way to go.

With the second approach, on the contrary, an existing 3D engine is used and combined with METAPOST.
This may lead to some inefficiencies, for instance when the 3D engine doesn’t know about internal METAPOST

parameters, but the advantages seem to far outweigh the limitations, at least for the time being.
The second approach, however, leads us to a crucial question: if we use METAPOST with a 3D engine, do

we need METAPOST at all? In other words, why would we want to use METAPOST for 3D drawings? We come
to the motivations of our work.

1.2 Motivations of this work

Among the main reasons for using 2D-METAPOST in a TEX environment are that:

• it is a natural partner of TEX;

• it can produce high-quality and accurate technical drawings;

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

5

• it produces vector graphics;

• it has a nice declarative approach, where equations can be used to specify points;

• it has nice types, especially the path type;

• and it is fun to use!

The main reasons for using 3D-METAPOST should at least include the previous ones. In particular, we are
looking for a way to produce 3D vector graphics, while at the same time retaining the declarative approach and
the ability to use types such as paths.

But we also want more. With 3D come more needs. Consider first a planar drawing. The coordinates of the
origin of such a drawing are actually irrelevant. Whether a square is drawn with its lower left corner at (0, 0)
or at (1, 1) doesn’t make a difference, as long as the bounding box of the visible part of the drawing is used for
insertion.

With 3D, we have a camera (or an observer), and its location determines the point of view. But with 3D,
there is also the legitimate desire to have motion, or animations. Such was actually the motivation of the 3d

METAPOST package we wrote in 1997 [11]. With it, small GIF animations could be produced.

But these animations were not interactive. Now, we want interaction, so that a 3D scene created with META-
POST can be animated, and the best point of view chosen, something that is often best done interactively. Once
the point of view is found, a vector snapshot should be produced.

Since 3D vector graphics can be obtained by other tools than METAPOST, the answer to our question on the
need of 3D-METAPOST at all is therefore that it is only needed if we want to retain an homogeneous framework
common with 2D-METAPOST, and if we want to be able to have a smooth integration with TEX.

2 MP2GL

MP2GL is the bridge we have developped between METAPOST on one side, and OpenGL on the other. Such
a bridge is interesting not only for producing 3D figures for inclusion in articles, but also for 3D objects
independent of articles. We will see that linking METAPOST to OpenGL isn’t that catastrophic in terms of loss
of critical information, because METAPOST could reuse later outputs.

Figure 1: A TEX logo produced with MP2GL. This scene combines an object built from METAPOST paths (the
‘T’ with the three holes) and a predefined OpenGL icosahedron in solid output, to which a slightly larger wire
frame icosahedron was superimposed.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

6 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

2.1 OpenGL

OpenGL is an API for 3D graphics, which has become a standard in the industry [18]. There are OpenGL
libraries for many languages and many applications are using such a library for their advanced graphics. Various
games (for instance Quake) also use OpenGL.

OpenGL provides functions for the rendering of 3D scenes, and these can include lights, shading, and various
other effects. The scene is drawn on a screen and adapted to its resolution. An OpenGL frame is a bitmap.
OpenGL uses the z-buffer algorithm for hidden parts removal and this is done seamlessly.

We can therefore envision producing 3D bitmaps, but fortunately there are also ways to save a 3D scene,
not as a bitmap, but as a vector graphics, which is independent of the screen size. This is made possible by the
GL2PS library [2] (figure 2) 1.

MetaPost code OpenGL code (3D) PostScript code

(2D) PostScript code animation JPEG

MP2GL GL2PS

GL2PS

Figure 2: From METAPOST to 3D-PostScript.

2.2 Overview and scope of MP2GL

MP2GL currently provides a limited interface to OpenGL, and tries to be faithful to the motivations given
above 2.

Our aim so far has been to show the feasibility of this approach, and we have therefore only coded a few
representative features. It is hoped that this approach will be extended if it proves useful.

More specifically, it occurred to us that most 3D objects that one wants to build are:

• either geometrically very simple (for instance a cube, a sphere, ...),

• or obtained simply from 2D objects (a cube, a prism, ...),

• or composed of simpler 3D objects.

In other words, we think that the greatest amount of time when building 3D objects will normally be spent
on adding depth to 2D shapes. The reason behind this observation lies of course in either the manufacturing
process of the objects we want to reconstruct, or in the way they function. For instance, almost every moving
object is actually moving in translation or around an axis (consider a car, a steering wheel, etc.), and this
usually is reflected in the shape of the object.

MP2GL is not limited to such objects, but it has facilities for handling them. In particular, MP2GL makes
it possible to use paths for specifying shapes used in 3D objects.

The main features of MP2GL (in this experimental version) are:

• METAPOST input language;

• structures for points and homogeneous coordinates;

• interface to OpenGL objects (for instance polyhedra);

• ability to build low-level objects made of faces;

• ability to use METAPOST paths as a basis for prisms, including non-convex prisms with holes;

• equations can be used for positioning objects in space;

1However, GL2PS has several limitations, and this will have as a consequence that there are 3D scenes which are constructible
with MP2GL, but which cannot be saved in PostScript.

2MP2GL has only been tested on linux, but should be easy to adapt to other platforms, provided GL2PS is ported there.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

7

• C code using the OpenGL library is produced, with a minimal animation interface;

• from a given point of view, either a bitmap or a PS output can be produced;

• TEX labels can be added and adjusted after the PS production;

• the C output can be edited and extended;

• the objects created with MP2GL can be used without METAPOST;

• objects can also be created in OpenGL for use by MP2GL.

The animation produced by MP2GL provides a standard set of lights and a standard position for the
observer. These can easily be changed, but not yet from MP2GL in this preliminary version 3.

For some of the objects, the METAPOST interface is very simple. This is, for instance, the case for the
regular polyhedra. Other objects require more work.

The reasons why an object should be coded in METAPOST or in OpenGL have to do with the need to use a
METAPOST structure (for instance a path value), or with a greater familiarity of the user with one of these two
languages. MP2GL should actually be seen as a gateway from METAPOST to OpenGL, both for the code which
is translated in OpenGL, and for the user who can seamlessly learn about OpenGL and try to make changes to
the produced code.

3 Elements of OpenGL

3.1 Objects

The scene itself is made of objects, which are themselves made of faces. For instance, a cube is made of six
faces. Objects or faces are built using points in a given referential. OpenGL provides means to change the
referential. The basic transformations in OpenGL are:

• translation: glTranslatef(x,y,z)

• rotation: glRotatef(α,x,y,z)

• scaling: glScalef(x,y,z)

• saving a position: glPushMatrix()

• restoring a position: glPopMatrix()

Building an object amounts to moving to where the object should be set, and then calling the appropriate
function. For instance, building a tetrahedron at coordinates (−4.1, 5, 12.3) is done as follows:

glTranslatef(-4.1,5,12.3);

glutSolidTetrahedron();

Building a square face at coordinates (0, 0, 0), (1, 0, 0), (1, 1, 0) and (0, 1, 0) is done as follows:

glBegin(GL_POLYGON);

glNormal3f(0,0,1);

glVertex3f(0,0,0);

glVertex3f(1,0,0);

glVertex3f(1,1,0);

glVertex3f(0,1,0);

glEnd();

The glVertex3f calls specify the vertices and the glNormal3f call specifies a normal to the face, which is
necessary for correct shading with lights.

Such a square can be put anywhere in space by the appropriate use of transformations before glBegin.

3It should be stressed that many features are very easy to add, since they are a mere interface to OpenGL. The main difficulty
is to get the file organization right.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

8 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

3.2 Projections

The main OpenGL projections are the perspective and orthographic projections. In both cases a frustum is
defined and all elements outside the frustum are not drawn. In the perspective projection, a camera has to be
defined.

4 The MP2GL interface to OpenGL

MP2GL can be used either to create 3D objects using the high-level OpenGL objects library, or it can create
objects by a low-level approach.

We distinguish therefore an OpenGL objects library (OL) and a METAPOST objects library (ML).

In either case, objects can be set anywhere in space, and the handling of coordinates is done by mimicking
the OpenGL operations. Although in many cases we do not really need to know where we are, but only how we
came there, we provide means to obtain an exact location from relative motions (translations and rotations).

4.1 Coordinates and coordinate transformations

Coordinates are seen as triples, but are actually manipulated as vectors in a 4-dimensional space. Nevertheless,
we use a 3-dimensional structure to store points, namely the color structure, renamed Point.

def Point = color enddef;

def Xpart = redpart enddef;

def Ypart = greenpart enddef;

def Zpart = bluepart enddef;

Internal transformations involve 4× 4 matrices which are stored as 2-dimensional arrays of numerics.

The user need not care about matrices, even less in METAPOST than in OpenGL. The only transformations
needed are the following:

• ResetPosition: return to the origin.

• ResetLocalPosition: return to the local origin.

• PushPosition: save the current position.

• PopPosition: restore the formerly saved position (if there was one).

• Translate(x,y,z): move by (x, y, z)

• TranslateV(v): move by (vx, vy, vz)

• RotateX(a): rotate a around the X axis

• RotateY(a): rotate a around the Y axis

• RotateZ(a): rotate a around the Z axis

• Scale(sx,sy,sz): scale coordinate X by sx, Y by sy, Z by sz. (a scale with one negative value does a
reflection)

• CurrentPosition: returns the absolute position of the origin of the current referential.

We also have functions to compute the usual vector operations, and in particular the normal of a surface
given three points.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

9

4.2 Basic objects

The current version of MP2GL provides only a few basic objects, among them the regular polyhedra, the sphere,
the cylinder, etc. All these objects either exist in OpenGL, or can easily be constructed. Although these objects
seem to be special cases, they can actually be transformed. For instance, a sphere can be used to obtain an
ellipsoid, by changing the scales of the axes.

A number of basic objects are provided in two versions (solid and wire frame):

• Regular tetrahedron: solid_tetrahedron, wire_tetrahedron; in addition, there is a new_tetrahedron

macro building a solid tetrahedron from four points;

• Cube: solid_cube(size), wire_cube(size);

• Octahedron: solid_octahedron, wire_octahedron;

• Dodecahedron: solid_dodecahedron, wire_dodecahedron;

• Icosahedron: solid_icosahedron, wire_icosahedron;

• Sphere: solid_sphere(radius,slices,stacks),

wire_sphere(radius,slices,stacks);

• Cone: solid_cone(radius,height,slices,stacks),

wire_cone(radius,height,slices,stacks);

• Torus: solid_torus(r,R,nsides,rings), wire_torus(r,R,nsides,rings);

• Teapot: solid_teapot(size), wire_teapot(size).

The dimensions will be the METAPOST dimensions interpreted as OpenGL dimensions. So, if the object
solid_cube(1cm) is drawn, it will actually be a cube of edge 72

2.54
OpenGL units, because METAPOST uses

PostScript points and 2.54cm corresponds to 72 PostScript points. How big OpenGL units are is irrelevant,
since it all depends on the position of the camera.

The first example in figure 3 was obtained with the following commands:

begin_scene;

disable_lighting;

setwirecolor(0,0,0); % black

setlinewidth(0.5);

wire_tetrahedron;

end_scene;

and the second is a mere call to solid_tetrahedron with no other settings.

The following objects are based on quadrics and there is only one version of each:

• Disk: disk(name,r,R,slices,rings);

• Partial disk: partialdisk(name,r,R,slices,rings,startangle,sweepangle)

• Sphere: sphere(name,r,slices,stacks)

• Cylinder: cylinder(name,rbase,rtop,height,slices,stacks)

4.3 Objects constructed from paths

Paths are a very convenient structure in METAPOST. Although METAPOST paths are limited in 2D, we can
readily build 3D objects using them.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

10 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

Figure 3: A regular tetrahedron in wire frame and another in solid mode.

Figure 4: The standard teapot in wireframe.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

11

4.3.1 Simple cyclic paths

The first step is to evaluate a path and store it in a way appropriate for OpenGL. Currently, we merely store
the points used to build the path, not the control points. In other words, only three points are used in a path
such as z1..z2..z3. Future versions may offer options to save control points in order to take advantage of
NURBS. Possibly, the computation of control points could also be added to the OpenGL library, mimicking the
METAFONT/METAPOST construction of control points.

path p;

p=......--cycle;

storepath(p,"Path_P");

Once the path is stored (which saves its points in a C array), an object built on path p will use the name
"Path_P" of the path. For instance, a prism can be built as follows 4:

new_prism("Prism1","Path_P",3cm);

The last parameter is the height of the prism.
MP2GL functions prefixed with “new_” create new C functions representing the objects. Calls to these

functions can be produced within METAPOST with use_object. For example, the scene involving the previous
object can be constructed as follows:

begin_scene;

use_object("Prism1");

end_scene;

The 2D elements involved in the construction can be examined in the same METAPOST run, by the help of
an ordinary figure environment:

beginfig(1);

draw p;

endfig;

In other words, the compilation of the METAPOST file will have two (or more) outputs: a C file which will
be postprocessed by a C compiler, and one or more ordinary PS figures.

4.3.2 Sets of paths

Sets of paths can be used to create shapes with holes. These shapes will be constructed in OpenGL using a
tessellation algorithm.

The MP2GL library provides a function for multipath prisms. In that case, paths need to be split in“positive
paths” (outside paths) and “negative paths” (holes). These paths do not need to be convex, and this function
can therefore be used to draw simple non convex prisms.

The user creates two arrays of paths and hands them to the storepaths function.

path pospaths[],negpaths[];

numeric np,nn;

np=2;

nn=3;

pospaths0=...

pospaths1=...

negpaths0=...

negpaths1=...

negpaths2=...

storepaths(pospaths,np,negpaths,nn,"Paths_1");

Then the multipath prism is obtained with

new_multipath_prism("Prism2","Paths_1",3cm);

4The current version of the prism function works only for convex paths, because it relies on the polygon construction of OpenGL.
For more general cyclic paths, the “multipath prisms” should be used.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

12 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

After that, the object is used like any other to compose a scene.

Again, these paths can be drawn in an ordinary METAPOST figure environment.

The TEX logo in figure 1 was obtained by this process. First, three ordinary METAPOST paths have been
defined, one for ‘T’, one for ‘E’ and one for ‘X’. These paths were reduced and fed as holes of the non-reduced
‘T’ into the new_multipath_prism definition. A solid and a wire icosahedron were drawn over the TEX logo.

4.3.3 Other path-constructed objects

Other objects based on paths can be imagined, and it suffices to either add them to the OpenGL library or to
the METAPOST library.

4.4 Low-level constructions

Objects can be constructed using low-level components. For instance, a cube can be constructed from its six
faces as follows (figure 5):

% builds a square on (O,X,Y)

def build_cube_face=

begin_convex_polygon;

normal(0,0,-1);

vertex(0,0,0);

vertex(0,1,0);

vertex(1,1,0);

vertex(1,0,0);

end_convex_polygon;

enddef;

beginobject("Cube");

set_diffuse_color(1.0,0.0,0.0);

build_cube_face; % bottom face

PushPosition;

Translate(1,0,0);RotateY(-90);

set_diffuse_color(0.0,1.0,0.0);

build_cube_face;

Translate(1,0,0);RotateY(-90);

set_diffuse_color(0.0,0.0,1.0);

build_cube_face;

Translate(1,0,0);RotateY(-90);

set_diffuse_color(1.0,1.0,0.0);

build_cube_face;

PopPosition;

PushPosition;

RotateX(-90);Translate(0,-1,0);

set_diffuse_color(1.0,0.0,1.0);

build_cube_face;

PopPosition;

PushPosition;

Translate(0,1,0);RotateX(90);

set_diffuse_color(0.0,1.0,1.0);

build_cube_face;

PopPosition;

endobject;

This, however, creates an object which is not parametric. This isn’t very problematic for the cube, as we
can still scale it afterwards. However, other objects benefit from being parametric. There is currently no extra
support for such objects, as most of these can either be obtained from paths, or can be integrated in the OL
library with a minimal effort.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

13

Figure 5: The cube entirely built within MP2GL.

For instance, assume we want to add a general pyramid function having a regular polygonal base. We can
build any instanciation, and this can be enough, but we could also define the OpenGL function:

void create_pyramid(GLint n,GLfloat r,GLfloat h) {

...

}

and then call this function from within ML by adding:

def new_pyramid(expr name,n,r,h) =

...

enddef;

4.5 More on wire frames

As it was shown previously, a number of objects have a wireframe variant. Other such objects can be created.

Moreover, whenever an object is made of lines, we can set the line width, and also the stippling properties
(figure 6).

4.6 More complex surfaces — NURBS

NURBS (Non-Uniform Rational B-Splines) provide a way to have 3D Bezier curves or surfaces. We haven’t
implemented an interface to them yet, but there isn’t any problem doing it.

4.7 Lights and colors

There is currently a very simple support for colors in MP2GL. We can set the color when there is no lighting
and these colors are used for wire frames.

When lighting is on, we can define the material properties of the next surfaces. These material properties
follow the OpenGL model, and cover the emission properties, the diffusion properties (which account for the
main color effect), the specular properties, the ambient properties and the shininess.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

14 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

Figure 6: An icosahedron with line stippling.

Similarly, light support is very primitive on the METAPOST side. A scene is currently lit by two lights, one
at a fixed position, another on the camera. There is no support to add lights from within METAPOST, but it
could easily be added. It is also easy to change the lights within the OpenGL code.

5 3D Equations

METAPOST comes with a very convenient resolution of linear equations. This feature makes it possible to use
a declarative approach for a number of drawings. For instance, in order to compute the intersections of the
medians of a triangle (figure 7), one can do:

beginfig(1);

pair A,B,C,D,E,F,I;

A=origin;

B=(6u,0);

C=(2u,4u);

D=.5[B,C];E=.5[C,A];F=.5[A,B];

I=whatever[B,E]=whatever[A,D];

draw A--B--C--cycle;

draw A--D;draw B--E;draw C--F;

pickup pencircle scaled 3pt;

drawdot I;

endfig;

Imagine now that we want to do the same in space, say with a tetrahedron. Can we do that?
The answer is yes. And we can use the Point structure for the equations! Like above, we first do the

computations, before drawing anything. We start with four points, the vertices of the tetrahedron.

Point A,B,C,D; % vertices

Point E,F,G,H,I,J; % edge middles

Point K; % tetrahedron middle

A=(0,0,0);

B=(1,0,0);

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

15

A
B

C

I

DE

F

Figure 7: A triangle and its medians.

A

B

C

D

K

Figure 8: A tetrahedron and its center.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

16 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

C=(0.3,1,0);

D=(0.5,0.5,1);

E=.5[B,C];

F=.5[C,D];

G=.5[B,D];

H=.5[A,D];

I=.5[A,B];

J=.5[A,C];

K=whatever[G,J]=whatever[H,E];

Now, we have the center of the tetrahedron, and we can split it in four smaller tetrahedra (A,B,C, K),
(C,B,D,K), (A,C,D, K) and (B,A,D, K). We can use the predefined function for tetrahedra:

new_tetrahedron("t1",A,B,C,K);

new_tetrahedron("t2",C,B,D,K);

new_tetrahedron("t3",A,C,D,K);

new_tetrahedron("t4",B,A,D,K);

and later:

begin_scene;

use_object("t1");

use_object("t2");

use_object("t3");

use_object("t4");

end_scene;

Figure 9: A scene where the tetrahedron shown left has been split in the four tetrahedra at the right, and the
sphere is going through one vertex of each tetrahedron.

The tetrahedra are still bound together. In order to split them, we introduce translations from the center:

begin_scene;

PushPosition;

TranslateV(K-D);

use_object("t1");

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

17

PopPosition;

PushPosition;

TranslateV(K-A);

use_object("t2");

PopPosition;

PushPosition;

TranslateV(K-B);

use_object("t3");

PopPosition;

PushPosition;

TranslateV(K-C);

use_object("t4");

PopPosition;

end_scene;

The initial point K has now been split into four points. As an interesting 3D geometry exercise, we can use
these four points in order to find the sphere going through these points, and draw it. This is done as follows.
Let W1, W2, W3 and W4 be the four vertices stemming from K:

Point W[];

W1=K+(K-A);

W2=K+(K-B);

W3=K+(K-C);

W4=K+(K-D);

The center of the sphere is obtained by first finding a median plane on which the center lies, then a line,
then the center itself, by a total of three plane intersections, each being handled with two whatevers each. This
is summarized below.

Point V[];

V1=.5[W1,W2];

V2=crossproduct(W2-W1,W3-W2);

V3=crossproduct(W1-W2,V2);

V4=.5[W2,W3];

V5=crossproduct(W3-W2,V2);

V6=.5[W3,W4];

V7=crossproduct(W3-W2,W4-W3);

V8=crossproduct(W4-W3,V7);

V9=V1+whatever*V2+whatever*V3

=V4+whatever*V2+whatever*V5

=V6+whatever*V7+whatever*V8;

In the three previous lines, it should be noted that the six whatevers represent six different values!
The last point, V9, is the center of the sphere. The sphere itself can be drawn by inserting the following

code in the scene:

TranslateV(V9);

wire_sphere(norm(W1-V9),30,30);

where norm(W1-V9) is the radius of the sphere, and 30 is both the number of parallels and meridians.

Equations also allow us to set some coordinates separately:

Xpart A=0.4;

or we can define equations on certain components only:

Xpart Q = Ypart U;

As usual in METAPOST, a value can be refreshed with whatever (this time with an assignment):

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

18 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

Xpart A:=whatever;

A Point can be refreshed like this:

A:=(whatever,whatever,whatever);

(like above, the three whatevers are different unknowns)

6 Text support

6.1 Basic text

Text can be added to a 3D object, but we currently have to provide a 3D position. The position of the text
will depend on the point of view. An example is shown in figure 10. TEX labels are obtained by generating two
files: a PostScript file containing only the drawings, and a LATEX picture environment with the labels. Labels
are obtained via GL2PS and can be positioned in different ways.

When doing 2D graphics, an incremental approach can be used, whereby the final drawing is obtained by a
number of modifications to the original source. This can also be achieved in 3D, but it is sometimes necessary
or useful to work on the output, and therefore to be able to modify labels and their positions within the TEX
file. For instance, it can be necessary to replace a label by a shifted label and an arrow. The current version
of MP2GL does not yet support this feature, but a future version may produce an additional TEX/METAPOST

file, which would be superimposed to the PostScript output and the labels, perhaps by the use of a simple
postprocessor.

X-axis

Y -axis

Z-axis

Figure 10: A scene with TEX labels. Each label is positionned differently with respect to the ends of the
segments. We didn’t draw arrows, but a solution for the representation of vectors in space could be to use small
cones.

6.2 More complex marks

The usual 2-dimensional drawings have both curves, labels, but also additional elements such as dots, arrows,
angle marks, textured text, etc.

These elements can all be added to a 3-dimensional drawing, provided we know the final 2-dimensional
positions. However, this is often not the case. GL2PS only provides for labels at specific positions, not for more
complex elements such as arrows connecting two points.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

19

There are two simple solutions to this problem.

1. the point of view can be frozen from within MP2GL, in which case MP2GL would know exactly where a
point is projected; this would require adding support for the projection transformation, something that
wouldn’t be difficult;

2. a less constraining solution would be to introduce fake labels which would make it to the PostScript or
TEX output, and these labels could then in turn be used to specify paths (possibly in METAPOST), arrows,
etc.; we would typically need two runs of METAPOST, the first for the main (fake) labels, the second for
the second layer; possibly there could even be obfuscated cases needing more than two runs.

7 Animations

3-dimensional objects appear differently when seen from different points of view, and therefore a 3D scene is
deprived of a lot of interest if it cannot be animated in some way.

The most elementary form of animation is obtained by choosing the point of view at the same time as the
scene is constructed. When we need different points of view, this then requires either a tedious repetition of
the processing, or some automation taking advantage of the camera path. This approach was the one used
in our first 3d package, where a series of PostScript files could be produced, by slight changes of the camera
parameters (position and orientation). A similar approach is also used by the package.

Although such approaches are most useful in certain cases, a more natural approach is also needed, where
the scene is merely animated by a high-level interface such as a mouse or a keyboard.

MP2GL provides this kind of interface, allowing the user to examine the scene under various angles and
choosing the best configuration for a screenshot (PS or JPEG). Specifically, the user can:

• get closer (PgUp) or farther (PgDn) from the scene;

• change the orientation (roll: <, >, pitch: Up, Down, yaw: Left, Right);

• rotate the whole scene around the center with the mouse;

• change the field of view (‘.’ and ‘,’);

• and save the scene as a PS file (‘s’) or a JPEG file (‘j’).

The default animation uses a perspective projection, but this could easily be changed, and even toggled
through a key. It could also be selected from METAPOST in the future.

This is, of course, a minimal interface.
We could, and actually can, go further, in that the animation would not only be that of the user, but an

internal animation. The objects which have been created can actually interact in various ways. For instance, we
can have a wheel turn, and this can produce a piston translation. Such animations are not directly supported,
but it is currently sufficient to create the objects, and then to make slight modifications to the OpenGL code
in order to obtain the internal animations.

The OpenGL code can also be easily extended to produce a motion of the camera and at the same time
generating a bitmap at regular intervals. Various tools make it then possible to produce MPEGs (for instance
ppm2mpeg), and other tools can be used to edit them (for instance cinelerra).

8 Limitations: textures, blending, ... and other advanced features

A number of METAPOST features are not handled, at least not outside METAPOST. For instance, there is no
support for special pen shapes 5. However, if MP2GL is extended to the point where a METAPOST run can
create an additional layer to a 3D drawing, then such METAPOST features could come into play.

The main intrinsic 2D feature in use by MP2GL is the path type, but even in this case, we are only making
an elementary use of it. So far, paths are considered as polygons, but this could change if we start generating
NURBS.

There is no support for textures in GL2PS, and anyway textures may be thought of inherently non-vectorial.
As a consequence, there is no support for textures in MP2GL.

5It should be remarked here that the author of 3DLDF (see § 9.6) intends to define 3D pens, such as sphere and cube balls.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

20 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

Figure 11: JPEG output of the scene shown previously. The labels are the ‘raw’ TEX labels, shown as Helvetica
strings in orthographic projection.

In principle, transparency or blending is supported by GL2PS when its output is PDF. This feature, however,
is not yet supported by MP2GL.

Since shadows are by default not handled in OpenGL, they are also not covered by MP2GL. They could be
handled, if implemented in OpenGL.

A 3-dimensional version of METAPOST should also be able to compute intersections, both real and projected.
This is, of course, difficult, and we haven’t made any attempt to solve this problem. This doesn’t mean that
the problem cannot be solved, but it remains to be done, either by a representation of the objects in OpenGL,
or in METAPOST.

Finally, there is currently no support for a CSG 6 construction of objects, but a CSG OpenGL library could
be linked to MP2GL and offer tremendous new possibilities.

9 Related work

Our work is not isolated and there have been a number of attempts at handling 3D with or around METAPOST

over the years. One of the concerns of these packages has been to obtain a smooth integration with TEX, and
in particular to retain the vectorial characteristics of the output.

A number of commercial products, and other products independent of TEX, produce vector output, but we
will only survey the main TEX-related tools 7. As it will be readily visible, these packages all have many features
which are currently not present in our system. However, many of these features could be added to MP2GL.

9.1 Our own METAPOST 3d (aka ‘mp3d’) package

This package was described in TUGboat [11] and was later extended with features for space geometry [12]. The
package provided the basic tools for the construction of 3D scenes made of segments and faces. Projections
could be either pespective or parallel, but there was no support for hidden faces removal. The 3d package was
created with 3D animations in mind, and in particular (but not exclusively) the animation of regular polyhedra.

The package was used by Denis Barbier and Sami Alex Zaimi for some experiments. We have also im-
plemented extensions for handling parametric curves, surfaces and in particular revolution objects. These
extensions were not released because they were limited by the absence of a hidden parts removal algorithm,
which we were reluctant to code in METAPOST.

6CSG (Constructive Solid Geometry) refers to booleans operations (union, intersection, etc.) used for the construction of objects.
7A review of several tools has already be given recently by the author of [5]. We would like to remark that this review

oversimplied the features of our 3d package and focused mainly on the application to convex polyhedra.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

21

9.2 PSTricks-3D

PSTricks was written by Timothy van Zandt and its maintenance was stopped around 1993, but over the years
many extensions were added, in particular by Denis Girou. The number of these extensions shows that the
PSTricks community is very active and that the PSTricks model appears very fruitful. Several extensions handle
3D objects [3, 4, 15, 16, 9, 17].

9.3 m3dplain

Anthony Phan made a number of very interesting experiments over the years. He borrowed our ideas for
the creation of animations, but the rest of his package is different and aimed at the manipulation of various
mathematical objects, such as polyhedra, molecules, fractals, etc. In part of his code, he tries to implement a
limited z-buffer, as well as PHIGS syntax. Phan has also worked on simulating transparency in METAPOST.

Sadly, there is no documentation available, other than the source code.

9.4 MetaGraph3D

This package is a Java interface for constructing simple 3D scenes interactively. The documentation available
is very scarce or in a form which is unfortunately not easily searchable 8.

9.5

The package by Lúıs Nobre Gonçalves is written in METAPOST and provides 3D functionality [5, 6]. As the
author describes it, he wrote it in METAPOST because he wanted to keep the METAPOST machinery.

Like MP2GL, uses the color type for points 9. Several projections are provided, including a fish-eye
projection 10. The hidden object removal is done by sorting the objects by distance from the point of view.
There are therefore also cases where the objects will not be drawn correctly.

The package comes with a large number of macros for various physical applications. For instance, it has
a provision to draw triangular or hexagonal meshes. It can also produce non-interactive animations, by a
procedure similar in spirit to the one used in our 3d package: METAPOST outputs are transformed in bitmaps
with netpbm and these bitmaps are merged into an MPEG file.

The author of is now contemplating a reimplementation of his macros into 3DLDF (see below), because of
the numerical advantages the latter provides.

9.6 3DLDF

3DLDF is a 3-dimensional drawing software with a METAPOST output created by Laurence D. Finston [1]. The
program is written in C++ using CWEB. As of version 1.1.5 (January 2004), the input code had to be written
in C++ and then compiled 11.

In 3DLDF, there is a Point class and a Point is subject to the usual operations (translations, rotations, etc.).
Similarly, there is a Transform class for storing 4 × 4 transformation matrices on homogeneous coordinates.
Transforms can be applied to Points, inverted, etc.

3DLDF has provisions for drawing Points and labelling Points. It also has a 3D Path class, similar to
METAPOST’s path but in 3D. These paths can be drawn and filled.

The system provides a number of plane geometric figures (polygon, rectangle, circle, etc.). There are also a
number of solid figures: cuboids, polyhedra,

It allows the specification of the projection. For the perspective projection, 3DLDF needs the specification
of a camera 12.

3DLDF’s hidden surface algorithm currently doesn’t work for intersecting surfaces. 3DLDF has four different
ways to sort objects. It can also find the intersection of a few non-arbitrary paths, such as two polygons, a line
and a polygon, two ellipses, etc. So far, 3DLDF doesn’t have support for lights, shading, etc.

8In spite of our efforts, we were not able to locate an independent documentation file. It is hoped that future version of
MetaGraph3D will contain separately (that is, not hidden within an archive file) a PDF file describing the whole system.

9Our 3d package doesn’t use that type, although it was suggested to us in 1997 [11].
10In MP2GL, such a projection is naturally obtained when a large field of view is chosen.
11The use of an external processor has also recently been applied to 2D plots by Brook Moses [10].
12In MP2GL, this is not done at the METAPOST level, but at the OpenGL level. We could do it at the METAPOST level, but

we assume the user wants to animate the object and find the most convenient location. Nothing prevents him/her of setting the
projection as perspective, parallel, isometric or axonometric.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

22 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

3DLDF does not have linear equations solving in the METAPOST style, although there are plans to add
equations. It also doesn’t have macros.

Current plans are to implement NURBS in 3DLDF, but NURBS do exist in OpenGL and could easily be
interfaced in our work.

3DLDF appears as an interesting approach, somewhat symmetrical to ours. It does however remind us of
our two major previous METAPOST packages, 3d [11] and METAOBJ [13, 14]. 3DLDF recodes a number of
objects, such as polyhedra, as we did (modestly) in our 3d package in 1997. 3DLDF also has an object-oriented
approach, not unlike what we did for plane objects in METAOBJ.

3DLDF is bound to code a lot of features which are already present in OpenGL, but it may also produce
code which can be reused in our OpenGL library. For instance, the author of 3DLDF plans to code a number of
exotic polyhedra, which should be easy to recode in C. Actually, if our C part were written in C++, we could
even output 3DLDF code!

3DLDF is also a very interesting approach in that its author is trying to extend to the third dimension
features that may not be that easy to transfer, such as pen shapes. In a way, 3DLDF is aiming at the most
orthodox extension of METAPOST, albeit by using an external processing stage.

Finally, one problem in METAPOST is the problem of the numerical values. This is one reason why the
author of 3DLDF created his package. That is, by working in C++, the various computations associated to
intersections, projections, etc., are easier and less constrained.

The MP2GL approach, on the contrary, uses very little computational features of METAPOST, apart from a
few matrix operations, often confined to very small values. Moreover, objects can always be created at a small
size, and then scaled within OpenGL. In the rare cases where an overflow would occur, a special mode could
be selected which would turn off the matrix computations on the METAPOST side. In most cases, these matrix
operations are not needed in METAPOST.

10 Conclusion

Our package is still in its infancy and our purpose has only been to explore its feasability. In particular, it
should be noted that most of the features presented here are still unstable, and that function names are likely
to change. Technical problems can arise, either because OpenGL is not always correctly implemented (GL2PS
uses the feedback buffer of OpenGL and this buffer may lack some of the elements it is supposed to contain),
or because GL2PS is still in development, or for other reasons.

But it does anyway seem to us that we have achieved our goal and that it is or will be very easy to produce
a great variety of high quality 3D graphics with MP2GL. Moreover, there are several possible future directions,
which could be developped, in particular through a collaborative effort:

• The MP2GL code could be extended on the METAPOST side in order to cover a larger subset of OpenGL;

• the OpenGL library could be extended with various objects useful from a METAPOST perspective.

But, for many specific applications, some of the reviewed tools may both be more adapted, more complete,
and maybe easier to use than MP2GL, especially with respect to text handling when all of the control lies within
METAPOST. Our tool should therefore be seen as a new possibility to produce not only certain 3D graphics,
but also to prototype objects which can be used beyond an article, for instance as part of a complex animation.

11 Acknowledgments

The author would like to thank Christophe Geuzaine for his kind help during the development of MP2GL.

References

[1] Laurence D. Finston. 3DLDF User and Reference Manual. Manual edition 1.1.5.1, January 2004.

[2] Christophe Geuzaine. GL2PS: an OpenGL to PostScript printing library, 2004.

[3] Denis Girou. The ‘pst-ob3d’ package: A PSTricks package for three dimensional basic objects, 2002.

[4] Denis Girou. The ‘pst-gr3d’ package: A PSTricks package for three dimensional grids, 2004.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT06

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

23

[5] Lúıs Nobre Gonçalves. and a Review of 3D METAPOST Packages. In Proceedings of TUG 2004: TEX,
XML, and Digital Typography, volume 3130 of Lecture Notes in Computer Science (LNCS), pages 112–124,
Xanthi, Greece, 2004.

[6] Lúıs Nobre Gonçalves. macros, 2004.

[7] John D. Hobby. A User’s manual for MetaPost. Technical report, AT&T Bell Laboratories, Murray Hill,
New Jersey, 1992. Computing Science Technical Report 162.

[8] Donald E. Knuth. The METAFONTbook. Reading, MA: Addison-Wesley, 1986.

[9] Manuel Luque and Herbert Voß. 3D views with pst-vue3d, 2005.

[10] Brook Moses. MetaPlot, MetaContour, and Other Collaborations with METAPOST. In Proceedings of
Practical TEX2004, 2004.

[11] Denis Roegel. Creating 3D animations with METAPOST. TUGboat, 18(4):274–283, 1997.

[12] Denis Roegel. Space geometry with METAPOST. TUGboat, 22(4):298–314, 2001.

[13] Denis Roegel. The METAOBJ tutorial and reference manual, 2001.

[14] Denis Roegel. METAOBJ: Very High-Level Objects in METAPOST. In Proceedings of TUG 2002, Trivan-
drum, India, 2002.

[15] Herbert Voß. Three dimensional plots with pst-3dplot. TUGboat, 22(1):319–329, 2001.

[16] Herbert Voß. 3D plots: PST-3dplot v1.63, 2005.

[17] Herbert Voß. PSTricks. Grafik mit PostScript für TEX und LATEX. Lehmanns, 2005. [2nd edition].

[18] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide, Fourth Edition.
Addison-Wesley, 2004.

MOT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

24 MP2GL: prototyping 3D objects with Metapost

Denis Roegel

MetaPost Developments – Spring 2005

Taco Hoekwater / MetaPost Team,

metapost@tug.org

March 31, 2005

Abstract

The MetaPost development team is pleased to announce version 0.9 of MetaPost. This article documents
the changes since the previous version, and provides a road map for future development.

1 About this report

This article will be published in three different publications more or less simultaneously: In the proceedings of
EuroTEX2005 and BachoTEX2005, as well as in issue 32 of the Maps. Parts of the contents of the starting page
have already appeared in Maps 31, and some of the decisions documented by this report have not taken place
until after EuroTEX, so this article is a bit of a cheat when it comes to chronology.

We apologise for that, but it makes more sense to write a single ‘spring report’ than to create 3 slightly
different articles.

2 Introduction

The MetaPost system by John D. Hobby implements a picture-drawing language very much like that of Meta-
Font, except that it outputs Encapsulated PostScript instead of bitmapped images. These graphics can be
printed directly, or in embedded form from within TEX documents. MetaPost includes facilities for directly
integrating TEX text and mathematics with the graphics.

In the summer of 2004, the version number of the MetaPost executable was still well below the 1.0 mark
(0.641 was the current release at that time), but not much had happened in recent years. For some years, John
Hobby simply could not find the time to solve the known bugs, let alone handle feature requests.

At that time, a group of people made a proposal to Dr. Hobby for the creation of a development team that
would take care of the development of MetaPost from then on. Luckily, he agreed, on the condition that he will
only allow tested code to be inserted into the MetaPost distribution. Among the currently active group are the
following people: Karl Berry, Giuseppe Bilotta, Hans Hagen, Taco Hoekwater, and Bogusłav Jackowski. This
list is not fixed, people can be added or removed when needed or desired.

3 Contact information

A home page for MetaPost has been created on the TUG server http://www.tug.org/metapost, and TUG
also provides a mailing list for discussions and questions (metapost@tug.org). Details on subscription to the
mailing list can be found on the home page. MetaPost development is currently hosted at sarovar.org; visit
http://www.sarovar.org/projects/metapost for the current development team members, sources, and much else.

Please report bugs and request enhancements either on the metapost@tug.org list, or through Sarovar. (Please
do not send reports directly to John Hobby any more.)

4 The current release

MetaPost is Public Domain software. Recently the manuals (mpman and mpgraph) have been released under a
BSD-ish license. Dylan Thurston at Debian converted the sources to LATEX, and from now on they will become
a standard part of the distribution.

1

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT07

Metapost Developments

Taco Hoekwater

25

4.1 We are pleased to announce MetaPost 0.9

For those of you who have noted the large gap between 0.641 and 0.9, and the fact that version numbers disagree
with the slides that were presented at EuroTEX:

We have deliberately chosen to step over some minor version numbers, such that the first major release
by the current team (this release is planned for the autumn of 2005) can become version 1.0 without causing
additional confusion.

4.2 Bug fixes

• Documentation improvements: all known errata and typos have been removed, better explanations of e.g.
dash patterns and dotlabel have been provided, and a number of omissions has been rectified.

• The Bounding Box was not computed correctly when a filldraw command with a noticeable pen size was
used at the edge of the picture.

• Paths starting with degenerate constructions like in this example:

draw (0,0)--(0,0)--(0,0)--...;

could cause an overflow error of MetaPosts internal memory.

• The PostScript output could accidentally contain 8-bit characters within PostScript strings in previous
versions because the is_printable test was shared between terminal printing and PostScript printing.

• A bug has been found in the assignment of serial numbers to independent variables in metafont 2.71828.
This bug affected MP as well, and the same patch has been applied. Diagnose and patch were supplied
by Thorsten Dahlheimer.

• The return value of the turningnumber primitive was sometimes wrong in unexpected ways (turningnumber
is supposed to report whether a cyclic path turns clockwise or anticlockwise). The new implementation
is still sometimes wrong when there are strange path segments involved, but in a much more predictable
way: the new code always draws straight lines between the actual points, and calculates the turningnumber
based on that path instead of the actual path. The effect is that cusps and loops within segments are now
completely ignored. A more thorough fix of turningnumber is planned for the next release.

• There was an ‘off by one’ error in dvitomp, in the interpretation of virtual fonts.

• The mpto command (which is part of makempx) uses a new and improved TEX macro for the generation of
labels, making it more robust with respect to strange user-supplied code within the actual label. The old
version would sometimes loose track of the label’s size information.

• A few macro bugs have been solved: a missing colon in boxes.mp that has been added, a missing save in
mfplain.mp has been added, and the generisize macro in boxes.mp has been fixed so that it now accepts
[[as a valid variable name.

4.3 mpversion

Immediately after the presentation at EuroTEX, it became clear that both Hans Hagen and Donald Knuth have
a considerable amount of pictures that more or less count on bugs in 0.641. For Knuth, this is the ‘incorrect
label size’ that he himself reported as a bug to JDH. For Hans, it is the miscalculation of the picture’s bounding
box when using filldraw.

After some thinking, we decided it was best to add the already planned mpversion primitive right away,
instead of waiting for a feature release. That way, this bug fix release can be identified from within the language.
The result of mpversion is of type <string>, and those version strings are of the form <major digit>.<minor

digit>. Possible trailing digits indicate beta releases (when the first extra digit is a nine), bug fix releases (when
the first extra digit is a zero), or releases for development purposes only. For example, "0.89", "0.891" and
"0.892" were used to designate beta’s for the current release.

MOT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

26 Metapost Developments

Taco Hoekwater

For instance:

if known mpversion:
message "mp = " \& mpversion;
if mpversion > "1.0":

message "time has flown by"
fi

fi;

prints ‘mp = 0.9’ on the terminal. (Incidentally, > does a simple ASCII comparison of strings; that works here,
because of our particular version numbering–until and unless MetaPost reaches version 10!)

The version number is also included in the Creator comment in the PostScript output.

4.4 What is new

• It has been mentioned already that the LATEX sources of the mpman, mpintro, and mpgraph manuals have
become part of the distribution package.

• There is a new internal string variable called mpversion, that reports the current MetaPost version, as
explained above.

• The macro file TEX.mp acquired two additional routines to facilitate using LATEX to typeset labels: TEXPRE

and TEXPOST. Their values are remembered, and included before and after (respectively) each call to TEX.
Otherwise, each TEX call is effectively typeset independently. TEX calls also do not interfere with uses of
verbatimtex. An example is given below.

• MetaPost now writes a %%HiReSBoundingBox comment to the PostScript output file. The values of the
picture’s bounding box in this comment are not rounded to integer values as the ones in %%BoundingBox

are.

• The EPS output no longer contains actual spaces within PostScript strings. For example, the output of

label("a space")

is now

(a\040space) cmr10 9.96265 fshow

instead of (a space). This makes the generated PostScript easier to tokenize for post-processors.

• The EPS output now also has a %%BeginProlog DSC comment as well as %%EndProlog

• The comments in the Web source have been changed to point out that on modern machines, acquiring
the random seed has actually become a system-dependant operation: a granularity of whole seconds is no
longer small enough on new machines, where it is has become possible to start two separate mpost runs
within one second.

• The ‘newer’ command now accepts more than two arguments. All of the supplied file arguments are tested
in turn.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT07

Metapost Developments

Taco Hoekwater

27

4.5 TEX.mp extension

Here is an example of how to use the two new macros in TEX.mp, using the LATEX inline math command \(\)

instead of dollar signs:

input TEX;
TEXPRE("%&latex" &

char(10) &
"\documentclass{article}" &
"\begin{document}");

TEXPOST("\end{document}");
beginfig(100)
last := 10;
for i := 0 upto last:
label(TEX("\(n_{" & decimal(i) & "}\)"),

(5mm*i,0));
endfor
...

endfig;

• The %&latex causes LATEX to be invoked instead of TEX. (See below, also.) Web2C- and MiKTEX-based
TEX implementations, at least, understand this %& specification; see, e.g., the Web2C documentation for
details, http://tug.org/web2c. (Information on how to do the same with other systems would be most
welcome.)

• The char(10) puts a newline (ASCII character code 10, decimal) in the output.

• The \documentclass... is the usual way to start a LATEX document.

• The TEXPOST("\enddocument") is not strictly necessary, due to the behaviour of mpto, but it is safer to
include it.

5 Bugs remaining

A few bugs have not been solved yet. We promise that those will be addressed before the following (1.0) release.

5.1 web2c-specific problems

These are usually caused by re-loading the mem file under different memory size settings than it was dumped
with:

• strings reloading problems

• specials missing from the first output file

The solution is probably to save all of the configurable values inside the MEM file (like TEX does already
for the format files).

MOT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

28 Metapost Developments

Taco Hoekwater

5.2 Polygonal pen with 180 degree angles

When a path segment turns exactly 180 degrees, MetaPost cannot decide which side of a polygonal pen to use
on the ‘return trip’.

beginfig(1);
pickup makepen(fullcircle scaled 10 pt);
draw (0,0){up}..(50,50)..{down}(100,0);
draw (0,70){up}..{down}(100,70) withcolor red;
endfig;
end;

This happens because MetaPost cannot differentiate between an angle of 180 degrees and an angle of −180
degrees. The black line is what should be drawn, but the grey one is the one that current MetaPost actually
outputs.

5.3 linecaps for polygonal pens

MetaPost does no attempt to handle linecap for polygonal pens. This can produce unexpected results when the
pen has a ‘funny’ shape, as can be seen in this picture:

beginfig(1);
linecap := butt;
draw (0,0)--(90,0) withpen pencircle scaled 10;
draw (0,20)--(90,20) withpen pensquare

scaled 10 withcolor red;
endfig;
end
end;

On the left side of the grey line, MetaPost switches from the top left corner of the square pen to the bottom
right corner of the pen. This behaviour can be rationalised after some thinking, but at first sight, the produced
diagonal line is a very strange phenomenon indeed.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT07

Metapost Developments

Taco Hoekwater

29

5.4 graph.mp bugs

There are a number of bugs in the graph.mp package. None of these have been tackled yet because in the current
team nobody has used the package extensively. Most of these problems require familiarity with the macros and
their usage:

• arrow heads are sometimes mis-rotated

• axis labels centre strangely

• data file format is too strict

• exponents cannot have a capital E, as in 1E4.

• curves from data are always polygonal

• axes can only be in the left of the graph, not through the origin.

• frames can only be avoided if an internal variable is set to false.

6 Future plans

The Birds of a Feather (special interest) gathering at EuroTEX had a slow start before dinner, followed by a much
better attended continuation after dinner. This session was about all desired new features, both identification
and prioritisation. We started with the list from the slides (and that list, in turn, was created by compiling the
feature requests in the Sarovar database).

6.1 For the next release

After a few hours of lively discussion, The top of the todo list became the following:

• Create an independent packaging system.

This item was not really on anybody’s wishlist, but it simply needs to be done. The current distribution
depends on Web2C (it is, in fact, a stripped down snapshot of TEXLive) and we are far from happy with
that. Even when we ignore the troff support, we feel that we should make the build process (how to
compile MetaPost from source) as simple as possible.

Taco intends to write a replacement for the current ‘tangle + convert’ construction. That replacement
will output C code directly, and will maintain as much of the symbolic names as possible. In doing so, it
will make source-level debugging easier.

• Remove emergency_line_length from the Web source.

The web sources define a variable named emergency_line_length, with a compile-time value of 255, that
is used solely to limit the maximum lines size of the PostScript output under unexpected conditions.

The benefits of this check are marginal and it interferes with web2c’s dynamic arrays considerably.

• Fix the still present bugs.

As explained above.

• Allow access to the internally computed envelope of a path drawn with a polygonal pen.

<path>:= envelope <acyclic path> withpen <pen>;

<path>:= inner envelope <cyclic path> withpe...

<path>:= outer envelope <cyclic path> withpe...

It has meanwhile been noted by several people that these actual names will not work, because MetaPost
already assigns a meaning to inner and outer. The final implementation will therefore have to use different
keywords. Those names are still under consideration.

The implementation of this extension would be easy. Because MetaPost already does the needed work
when writing the PostScript output file, it is just a matter of making this information available to the
macro language.

MOT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

30 Metapost Developments

Taco Hoekwater

In all likelihood, this is the limit of what we can put into the next release, version 1.0, to be released in the
autumn of 2005.

6.2 Possibly for the next release

• Allow basic EPS inclusion.

The idea is to allow the same kind of EPS inclusion one can find in the dvips driver. This EPS file could
contain PostScript drawing commands or a bitmap expressed using PostScript’s image operator.

• Implement something that is like TEX’s \special.

This is so that user-supplied stuff can end up in the middle of the PostScript output, not only at the very
top. Both Jacko and Hans need this to do special effects in post-processing.

• Improvements to string handling.

This was put on the board for Hans, who hopes that it is possible to improve the primitives that deal with
strings.

• Implement edge structures.

Edge structures is Metafont’s data model to express images.

This item is a huge undertaking, because it implies the recreation of all of Metafont’s edge structure
operations like good.x, withweight and cullit, and some of those in turn imply real unfill and overlap
removal routines.

6.3 More wishes

A number of items were kept for the future, but tagged as ‘more thinking needed’. These are things for which a
partial solution would be easy to do, but for a complete solution it is not even clear how it should be implemented

• Support for alternative colour models.

Cmyk and grayscale would be easy but not very useful. Named colours and especially transparency would
be very useful to have, but implementing that would be quite hard.

• Macro language enhancements

The first item on this list is the desire to have namespace support. Everybody knows what is meant by
this, but a precise specification is lacking.

A second one of these is that symbolic token existence tests are missing from the language at the moment;
if known is not always good enough. For instance, you may want to know if a variable name has been
declared, regardless of whether or not it has a known value at the moment.

Yet another is that let behaves a bit strange compared to the \let command in TEX.

• Support for 3D (or more dimensions).

Perhaps this support can be added gradually, but that needs to be investigated in the Web source of
MetaPost first.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT07

Metapost Developments

Taco Hoekwater

31

6.4 Even more wishes

Some ideas were tagged as ‘(much) later’:

• virtual font support.

Any code on this might become superseded within a year because of upcoming improvements to pdfTEX,
so it makes no sense to do anything in this area yet.

• Proper EPSF creation.

Embedded and possibly subsetted fonts should be included in the output.

• PDF output.

This has to be very much later, because it needs lots of extra code.

• Bitmapped output format

Some form of netpbm probably, to debug the edge structures. There is no sense in adding it before the
edge structures are implement, because then it would need ghostscript or a similar PostScript rasterizer.

7 Remaining wishes

The rest of the list was agreed on as being nice, but remained unprioritized (by mistake or lack of time):

• A way to check if a path is completely within another path

• Non-continuous paths (as in PostScript)

• XML as an output format (nicer to parse for postprocessors)

• Fixed number arithmetic using 64 bits instead of the current 32 bits (also known as ‘megapost’).

• Unicode/UTF-8 support for easier string handling

8 Scratched ideas

Some ideas were scratched for the moment, either because it is strictly speaking unneeded (a macro solution is
doable), or because there has not been a well-argumented request for that feature.

Among those are some shortcuts for existing macros and a switch to output PostScript level 2 or 3.

9 Acknowledgements

We would like to thank everybody who has helped us creating this new release of MetaPost, especially to
John D. Hobby for allowing us to do so.

Our next report will be available in the autumn of 2005.

MOT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

32 Metapost Developments

Taco Hoekwater

From RTF to XML to LATEX

Andre Dierker Arne Jans
Stephan Lehmke

QuinScape GmbH, Thomasstraße 1, 44135 Dortmund, Germany
{Andre.Dierker,Arne.Jans,Stephan.Lehmke}@QuinScape.de

http://www.QuinScape.de

Februar 26, 2005

Abstract

This paper shows how the widely used Rich Text Format (originally specified by Microsoft) can be
processed to produce XML and how the resulting XML-file can be processed by LATEX to produce print-
quality PDF-files. To convert the RTF-files to a specific XML-format we use the open-source-tool Majix
which can be found on Sourceforge.

We then take XMLTEX to process the generated XML-file. We had to create an output that is as near
as possible to Word’s. An effort was made to reach this goal even with constructs such as lists, tabstops and
especially tables.

Using XML as an intermediary format in typesetting RTF has the advantage that structural transforma-
tions are much easier based on XML even if the XML ‘only’ reproduces the RTF as faithfully as possible.

Filtering or transforming certain objects or attributes and even correcting typesetting errors can be done
by appropriate transformations of the XML files.

1 Introduction

For a commercial project it was necessary to typeset larger documents from automatically generated XML data
with embedded references to external RTF files. It was decided to first transform the RTF to XML and include
that into the existing XML-structure, all together then being typeset by XMLTEX.

For this, the open-source-tool Majix was extended to achieve the RTF-XML translation. For typesetting the
resulting XML an appropriate implementation using XMLTEX was created which will be uploaded to CTAN
eventually, providing another open-source way of handling RTF with TEX.

2 Results

We begin with a RTF-File. As you can see in figure 2 OpenOffice isn’t able to handle recorded changes to the
file correctly. For example in ‘Betrag für 20042 Tsd EUR’ (first row, second column) the ‘20042’ is meant to
be a year. Originally is was 2002 but the last ‘2’ was deleted and replaced with ‘4’. However the ‘2’ remained
as old version in the RTF and and is tagged as ‘deleted’. In opposite to Majix OpenOffice doesn’t recognise
the responsible control word. The corresponding RTF-Code is shown in the follwing listing. We have selected
a quite readable portion. When it comes to font management RTF isn’t readable at all.

The RTF-Code looks like this

1 \s16\qj\sa40\widctlpar\adjustright \f18\fs16\lang1031\cgrid {\expnd0\expndtw-2 Anteil, der

2 aufgrund Artikel 9 des Verwaltungsabkommens vom 5.\~9.\~1957 i. d. F. vom 28.\~2.\~1991 zwi

3 schen Bund und L\’e4ndern \’fc

4 ber die Err

5 ichtung eines Wissenschaftsrats im Haushaltsjahr 1994 voraussichtlich entf\’e4llt.

6 \par }\pard

7 \plain \s18\qc\sa40\widctlpar\adjustright \f18\fs16\lang1031\cgrid {\’dcbersicht \’fcber di

8 e Einnahmen und Ausgaben\line des Wissenschaftsrates

9 \par }\trow

10 d \clvertalt\clbrdrt\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \cltxlrtb \cellx1021\clvertalt\cl

11 brdrt\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \clbrdrr\brdrs\brdrw20 \cltxlrtb \cellx2042\clve

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT09

From RTF to XML to LATEX

Stephan Lehmke, Arne Jans, Andre Dierker

33

Figure 1: We first have a RTF file. Note the mixed up old and new version of the years and amounts. (Please
ignore the font type. The used one wasn’t installed and had to be substituted by OpenOffice)

12 rtalt\clbrdrt\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \cltxlrtb

13 \cellx3063\clvertalt\clbrdrt\brdrs\brdrw20 \clbrdrl\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \c

14 ltxlrtb \cellx4253\pard\plain \qc\sb40\sa40\widctlpar\intbl\adjustright \f18\fs16\lang1031\

15 cgrid {\cell Betrag\line f\’fcr 200}{\revised\revauth1\revdttm1182249745

16 4}{\deleted

17 \revauthdel1\revdttmdel1182249745 2}{\line Tsd. EUR\cell }\pard \qc\fi1\li-1\sb40\widctlpar

18 \intbl\adjustright {Betrag\line f\’fcr 200}{\revised\revauth1\revdttm1182249745 3}{\deleted

19 \revauthdel1\revdttmdel1182249745 1}{\line Tsd. EUR\cell

20 Istergebnis

21 \line 200}{\revised\revauth1\revdttm1182249745 2}{\deleted\revauthdel1\revdttmdel1182249745

22 0}{\line Tsd. EUR\cell }\pard \widctlpar\intbl\adjustright {\row }\trowd \clvertalt\cltxlr

23 tb \cellx1021\clvertalt\cltxlrtb \cellx2042

24 \clvertalt\

25 cltxlrtb \cellx3063\clvertalt\cltxlrtb \cellx4253\pard\plain \s1\sb80\sa40\keepn\widctlpar\

26 intbl\outlinelevel0\adjustright \b\fs20\lang1031\cgrid {\f18\fs16 Ausgaben}

After the conversion by Majix we get the XML-Code shown in the next listing. Majix did a great job in
giving the data a meaningful structure.

MOT09 Proceedings EuroTEX2005 – Pont-à-Mousson, France

34 From RTF to XML to LATEX

Stephan Lehmke, Arne Jans, Andre Dierker

The generated XML is much more readable

1 <par align="justified">

2 <tabdeflist>

3 <tabdef type="default" align="left" position="12.49mm"/>

4 </tabdeflist>

5 <parcontent>

6 Anteil, der aufgrund Artikel 9 des Verwaltungsabkommens vom 5. 9. 1957 i. d. F.

7 vom 28. 2. 1991 zwischen Bund und Ländern über die Errichtung eines

8 Wissenschaftsrats im Haushaltsjahr 1994 voraussichtlich entfällt.

9 </parcontent>

10 </par>

11 <par align="center">

12 <tabdeflist>

13 <tabdef type="default" align="left" position="12.49mm"/>

14 </tabdeflist>

15 <parcontent>

16 Übersicht über die Einnahmen und Ausgaben<linebreak/>des Wissenschaftsrates

17 </parcontent>

18 </par>

19 <table>

20 <tbody>

21 <tr>

22 <td width="18.0093mm" valign="top" border-top="0.0pt"

23 border-bottom="1.0pt" border-left="0.0pt">

24 </td>

25 <td width="18.0093mm" valign="top" border-top="0.0pt"

26 border-bottom="1.0pt" border-right="1.0pt">

27 <par align="center">

28 <tabdeflist>

29 <tabdef type="default" align="left" position="12.49mm"/>

30 </tabdeflist>

31 <parcontent>

32 Betrag<linebreak/>für 2004<linebreak/>Tsd. EUR

33 </parcontent>

34 </par>

35 </td>

36 <td width="18.0093mm" valign="top" border-top="0.0pt"

37 border-bottom="1.0pt">

38 <par align="center">

39 <tabdeflist>

40 <tabdef type="default" align="left" position="12.49mm"/>

41 </tabdeflist>

42 <parcontent>

43 Betrag<linebreak/>für 2003<linebreak/>Tsd. EUR

44 </parcontent>

45 </par>

46 </td>

47 ...

48 </tr>

The resulting PDF is shown in figure 2. As you can see there are some differences between the OpenOffice
and the LATEX version. These are the result of some filtering on the XML data demanded by our client.

3 Filtering

Having a well-formed XML one can easily filter the data. For example harmonizing the indentation of unordered
lists can be done by deleting the necessary attributes in the XML and providing corresponding defaults.

Another class of transformations deals with the enrichment of semantics by converting visual markup to
logical markup: one could search for special XML-constructs perhaps with specific attributes and/or contents
and replace them with a ‘meaningful’ structure.

A good example for this are the so called VEGrids. These are special tables which always have the same
layout. A typical VEGrid is shown in figure 3. The headline is always the same as is the tablehead. In the first
column there are years, the bottom row is a sum. Usually VEGrids are already given in a XML-structure but
sometimes it seems the person dealing with the case doesn’t use the right program to input the data but uses
Word to create a RTF file with a VE-lookalike. After the XML conversion we get a noname-table as shown in

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT09

From RTF to XML to LATEX

Stephan Lehmke, Arne Jans, Andre Dierker

35

Figure 2: After processing with XMLTEX

Figure 3: A special table called VEGrid in a RTF file

the next listing. Because of the constant layout we could identify these lookalikes and exchange them by ‘real’
VEGrids. This is shown in the last listing on the next page.

The generated XML (note the numerous omissions)

1 <table>

2 <tbody>

3 <tr border-bottom="0.5pt" border-left="0.5pt" border-right="0.5pt"

4 border-horizontal="0.5pt" border-vertical="0.5pt">

5 <td width="72.5135mm" valign="top" border-top="0.0pt"

6 border-left="0.0pt" colspan="4">

7 <par align="left">

8 <tabdeflist>

9 <tabdef type="default" align="left" position="12.49mm"/>

10 </tabdeflist>

11 <parcontent>Belastung (2004) </parcontent></par></td>

MOT09 Proceedings EuroTEX2005 – Pont-à-Mousson, France

36 From RTF to XML to LATEX

Stephan Lehmke, Arne Jans, Andre Dierker

12 <td width="17.4978mm" valign="top" border-top="0.0pt"

13 border-right="0.0pt" colspan="2"></td>

14 </tr>

15 <tr border-top="0.5pt" border-bottom="0.5pt" border-left="0.5pt" ...>

16 <td width="17.5154mm" valign="top" border-top="1.0pt" ...>

17 ...

18 <parcontent>

19 <linebreak/>der<linebreak/>Haushalts-<linebreak/>jahre

20 </parcontent></par></td>

21 ...

22 </tr>

23 <tr border-top="0.5pt" border-bottom="0.5pt" border-left="0.5pt"...>

24 <td width="17.5154mm" valign="top" border-top="1.0pt"...>

25 ...

26 <parcontent>2004</parcontent></par></td>

27 <td width="18.1151mm" valign="top" border-top="1.0pt"...>

28 ...

29 <parcontent>553 </parcontent></par></td>

30 <td width="18.1328mm" valign="top" border-top="1.0pt"...>

31 ...

32 <parcontent>-</parcontent></par></td>

33 ...

34 </tr>

35 <tr border-top="0.5pt" border-bottom="0.5pt" border-left="0.5pt"...>

36 <td width="17.5154mm" valign="top" border-top="1.0pt"...>

37 ...

38 <parcontent>Summe</parcontent></par></td>

39 <td width="18.1151mm" valign="top" border-top="1.0pt"...>

40 ...

41 <parcontent>1 753 </parcontent></par></td>

42 ...

43 </tr>

44 </tbody>

45 </table>

The enriched and filtered XML

1 <VEGRID>

2 <VEROW>

3 <VECOLUMN1>2005</VECOLUMN1>

4 <VECOLUMN2>553</VECOLUMN2>

5 <VECOLUMN3>null</VECOLUMN3>

6 <VECOLUMN4>null</VECOLUMN4>

7 <VECOLUMN5>553</VECOLUMN5>

8 </VEROW>

9 <VEROW>

10 <VECOLUMN1>2004</VECOLUMN1>

11 <VECOLUMN2>548</VECOLUMN2>

12 <VECOLUMN3>null</VECOLUMN3>

13 <VECOLUMN4>null</VECOLUMN4>

14 <VECOLUMN5>548</VECOLUMN5>

15 </VEROW>

16 ...

17 <VESUMROW>

18 <VECOLUMN1>Summe</VECOLUMN1>

19 <VECOLUMN2>1753</VECOLUMN2>

20 <VECOLUMN3>null</VECOLUMN3>

21 <VECOLUMN4>null</VECOLUMN4>

22 <VECOLUMN5>1753</VECOLUMN5>

23 </VESUMROW>

24 </VEGRID>

4 Further Development

Because there was no need up to now we ignore changes of font size and type. Besides that the management of
colours wasn’t implemented yet. Perhaps these features will be implemented in future.

As said before it is planned to release the code of the package on CTAN. The extended version of the RTF
converter Majix is already available via SourceForge.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT09

From RTF to XML to LATEX

Stephan Lehmke, Arne Jans, Andre Dierker

37

The TEI/TEX Interface

Sebastian Rahtz

March 2005

Abstract

In the view of many people, the natural way to prepare a typeset document is to use LATEX or ConTEXt.
It produces high-quality output, the source document is a clean mixture of text and markup, and it works
on any computer. For another group of people, however, the natural way to proceed is to prepare a validated
XML document which can be used to either make a web page or to make a printed document. One choice
of an XML encoding for this group is the Text Encoding Initiative (TEI) scheme.

This paper is in two parts. The first part examines the arguments for and against authoring in XML,
rather than TEX, and demonstrates how some common TEX situations are catered for in TEI XML.

The second part of the paper examines how, if we do choose XML, we can continue to harness the power
of TEX. We examine the four main routes of

a) using a modified TEX to read XML directly;

b) translating XML direct to high-level TEX;

c) translating our XML to another XML which is functionally identical to LATEX and then translating
that; and

d) translating XML to an XML-based page description language (XSL FO), and processing that with
TEX.

None of these is completely satisfactory, and we end by considering what hope there is for the future.

1 The TEI / TEX interface

musings and reports

2 Personal background

I am Sebastian Rahtz:

• Information Manager for Oxford University Computing Services

• Manager of OSS Watch, the UK national Open Source Advisory Service

• Oxford representative on the Board of Directors of the Text Encoding Initiative Consortium; member of
the TEI Technical Council, and convenor of its Meta Language working party

• Long-time (coming up to 20 years) TEX sorcerer (using the classification of Ursula Le Guin, not Don
Knuth)

• Overall editor of TEXlive

TUT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

38 The TEI/TEX Interface

Sebastian Rahtz

3 TEI Background

The TEI

• an international and interdisciplinary standard that helps libraries, museums, publishers, and individual
scholars represent all kinds of literary and linguistic texts for online research and teaching

• a comprehensive and well-documented markup language for all kinds of text material, from manuscripts
to dictionaries, from film scripts to web pages.

• An XML vocabulary, coming up to a new release (P5) using XML schema languages

4 Example, part 1

<TEI xmlns="http://www.tei-c.org/ns/1.0">

<teiHeader>

<fileDesc>

<titleStmt>

<title>The TEI/TeX interface</title>

<author>Sebastian Rahtz</author>

</titleStmt>

<editionStmt>

<edition>

<date>March 2005</date>

</edition>

</editionStmt>

</fileDesc>

<revisionDesc>

<change>

<date>$Date: 2005/03/10 $.</date>

<respStmt>

<name>$Author: rahtz $</name>

</respStmt>

<item>$Revision: #1 $</item>

</change>

</revisionDesc>

</teiHeader>

5 Example, part 2

<text>

<body>

<div>

<head>Personal background</head>

<p>I am <hi>Sebastian Rahtz</hi>:

<list>

<item>

Information Manager for<emph>Oxford University Computing</emph>Services

</item>

<item>

Manager of <emph>OSS Watch</emph>, the UK national Open Source Advisory Service

</item>

<item>

Oxford representative on the Board of Directors of the

<emph>Text Encoding Initiative Consortium</emph>

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface

Sebastian Rahtz

39

</item>

<item>

Member of the TEI Technical Council, and convenor of its Meta Language

working party

</item>

<item>

Long-time (coming up to 20 years) TeX sorcerer

<note>Using the classification of Ursula Le Guin,

not Don Knuth or J K Rowling

</note>

</item>

</list>

<ref target="mailto:sebastian.rahtz@oucs.ox.ac.uk">sebastian.rahtz@oucs.ox.ac.uk</ref>

</p>

</div>

6 Example 3

TUT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

40 The TEI/TEX Interface

Sebastian Rahtz

7 The TEI world view

8 The LATEX world view

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface

Sebastian Rahtz

41

9 Core differences between TEI XML and (eg) LATEX

Markup using (most of) Unicode Markup using ASCII (extensible with difficulty)
Verbose but consistent Concise but arbitrary
International standard for markup Private extensible markup
Unicode character encoding Variable character encoding
Single syntax Syntax determined by application
Vocabulary choice constrained by schema Vocabulary dynamically extensible and changeable
Vocabulary checkable Vocabulary only constrained by syntax
Language separate from processing Processor and language intermixed
— Builtin math engine
— Builtin tabular engine
Multiple processors One reliable processor

10 Why markup schemas?

So we want machine readable text:

• We need a reasonable notation (XML or TEX)

• We need a character encoding system (Unicode)

• We need to make up vocabularies

• We need to be able to process our texts

What influences our choice? We

• want to interchange texts and tools with others

• need to have a formal way to express conditions about our markup

• should find a place to document our vocabulary

11 What we might do with a schema

TUT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

42 The TEI/TEX Interface

Sebastian Rahtz

12 Layers, using an XML schema

1. vocabulary

<list>, <item>, <label>

2. suggested usage rules

element list { item+ }

3. constraints on text

figure.attributes.url.content = xsd:anyURI

4. dependency rules (project specific)

<if test="self::list[@type=’gloss’] and not(child::label)">

<message>gloss lists must have <label> children</message>

</if>

5. lookup rules

<if test="document(’lookup.xml’)/people/person[@id=current::@ref]">

<message>this person does not exist in the database</message>

</if>

6. common sense rules

Don’t use table markup to force layout

13 Does the TEI cover all these?

As of today, the TEI Guidelines contain:

vocabulary 362 elements, 95 attributes, 88 classes

suggested usage rules 24 modules with 7185 lines of rules in compact Relax NG

constraints on text W3C Schema datatyping

dependency rules none formally expressed yet

lookup rules unimplemented, but have a place

common sense rules a lot of descriptive prose

A good start.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface

Sebastian Rahtz

43

14 An editors view

15 Example 3

TUT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

44 The TEI/TEX Interface

Sebastian Rahtz

16 Another graphical view of TEI and TEX

17 Using TEX behind XML

1. using a modified TEX to read XML directly;

2. translating XML direct to high-level TEX;

3. translating our XML to another XML which is functionally identical to LATEX and then translating that;
and

4. translating XML to an XML-based page description language (XSL FO), and processing that with TEX
(XSLFO).

17.1 [1] TEX reads XML directly: ConTEXt

Using mapping files:

\defineXMLenvironment[article][id=\undefined]

{\XMLDBpushelement\currentXMLelement

\XMLDBmaystartdocument

\XMLDBmayensurebodymatter}

{\XMLDBmayfinishdocument

\XMLDBpopelement}

\defineXMLenvironment[itemizedlist]

{\XMLDBpushelement\currentXMLelement \XMLDBmayensurebodymatter

\doifsamestringelse{\XMLpar{itemizedlist}{spacing}{normal}}{compact}

{\startitemize[packed]}

{\startitemize}%

\defineXMLignore[titleabbrev]%

\defineXMLenvironment[listitem]

{\item\XMLDBcontinuepartrue\ignorespaces}{}%

}

{\stopitemize\XMLDBpopelement}

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface

Sebastian Rahtz

45

17.2 [1] TEX reads XML directly: xmlTEX

\XMLelement{TEI.2}{}

{ \documentclass{article}

\usepackage[bookmarks=false]{hyperref}

\usepackage{teixml}

\begin{document} }

{\end{document}}

...

\XMLelement{ref}

{\XMLattribute{target}{\reftarget}{}}

{\xmlgrab}

{\hyperref[\reftarget]{#1}}

(used for PassiveTEX XSL FO processor)

17.3 [1] TEX reads XML directly: problems

1. gobbledygook, even by TEX standards: only experts need apply

2. limited access to document tree

3. (xmlTEX) forced grouping makes mapping some constructs almost impossible

4. catcode issues in auxiliary files

17.4 [2] Translate XML to high-level LATEX

<xsl:template match="tei:list">

<xsl:choose>

<xsl:when test="@type=’gloss’">

\begin{description}

<xsl:apply-templates mode="gloss" select="tei:item"/>

\end{description}

</xsl:when>

<xsl:when test="@type=’unordered’">

\begin{itemize}<xsl:apply-templates/>

\end{itemize}

</xsl:when>

<xsl:when test="@type=’ordered’">

\begin{enumerate}<xsl:apply-templates/>

\end{enumerate}

</xsl:when>

<xsl:otherwise>

\begin{itemize}<xsl:apply-templates/>

\end{itemize}

</xsl:otherwise>

</xsl:choose>

</xsl:template>

17.4.1 (dirty details)

\usepackage[utf8]{inputenc}

\usepackage[T1]{fontenc}

\usepackage{ucs}

TUT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

46 The TEI/TEX Interface

Sebastian Rahtz

\catcode‘_=12\relax

\let\tabcellsep&

\catcode‘\&=12\relax

\catcode‘\$=12\relax

\catcode‘\^=12\relax

\catcode‘\~=12\relax

\catcode‘\#=12\relax

\catcode‘\%=12\relax

17.5 [2] Translate XML to high-level LATEX: problems

1. Remaining catcode problems (\, {, })

2. When LATEX signals an error, where is it in the source?

3. Where do you make style decisions?

• \tableofcontents or <divGen type="toc"/>

• \section{Introduction} or \section{1. Introduction}

• \def{xxxxx \def{yyyyy} or \usepackage{fooo}

17.6 [3] Transform XML to XML-ised LATEX

Transform to

<cmd name="documentclass">

<opt>12pt</opt>

<parm>letter</parm>

</cmd>

<env name="document">

<cmd name="author" nl2="1">

<parm>A. U. Thor</parm>

</cmd>

<cmd name="title" nl2="1">

<parm>A SHORT STORY</parm>

</cmd>

<cmd name="maketitle" nl2="1" gr="0"/>

<cmd name="section*" nl2="1">

<parm>A SHORT STORY</parm>

</cmd>

and thence to

\documentclass[12pt]{letter}

\begin{document}

\author{A. U. Thor}

\title{A SHORT STORY}

17.7 [3] Transform XML to XML-ised LATEX: ups and downs

4 You don’t have to worry about \ { and }

8 It takes another processor

8 It inserts yet another layer of obscurity between author and error on printout

4 Allows for implementation using the first technique

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface

Sebastian Rahtz

47

17.8 [4] Transform XML to XML-based page description language

<fo:list-block margin-right="10pt" space-before="6pt"

space-after="6pt" margin-left="15pt">

<fo:list-item space-before.optimum="4pt">

<fo:list-item-label>

<fo:block margin-right="2.5pt" text-align="center">

∙

</fo:block>

</fo:list-item-label>

<fo:list-item-body>

<fo:block font-weight="normal">Marley’s ghost1</fo:block>

</fo:list-item-body>

</fo:list-item>

<fo:list-item space-before.optimum="4pt">

<fo:list-item-label>

<fo:block margin-right="2.5pt" text-align="center">

∙

</fo:block>

</fo:list-item-label>

<fo:list-item-body>

<fo:block font-weight="normal">

The first of the three spirits 39

</fo:block>

</fo:list-item-body>

</fo:list-item>

...

17.9 [4] Transform XML to XML-based page description language (creation)

<xsl:template match="tei:list">

<fo:list-block margin-right="{$listRightMargin}">

<xsl:call-template name="setListIndents"/>

<xsl:choose>

<xsl:when test="@type=’gloss’">

<xsl:attribute name="margin-left">

<xsl:choose>

<xsl:when test="ancestor::tei:list">

<xsl:value-of select="$listLeftGlossInnerIndent"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$listLeftGlossIndent"/>

</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

</xsl:when>

<xsl:otherwise>

<xsl:attribute name="margin-left">

<xsl:value-of select="$listLeftIndent"/></xsl:attribute>

</xsl:otherwise>

</xsl:choose>

<xsl:apply-templates select="tei:item"/>

</fo:list-block>

</xsl:template>

TUT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

48 The TEI/TEX Interface

Sebastian Rahtz

18 Implementations of XSL FO

Open source

• PassiveTEX: 4000 lines of incomprehensible TEX macros by an amateur, incomplete and stalled

• FoXeT: 4000 lines of TEX macros by a professional, getting closer

• FOP: free-standing Java program, in the doldrums for several years

Closed source

• Antenna House: excellent full implementation, Windows only

• XEP: excellent full implementation in Java

19 FO’s good and bad points

4 Simple to read and write, although very verbose

4 ’Standardised’ by a reputable body

4 Multiple implementations

4 Understands colour, backgrounds, fonts, URLs, Unicode etc

8 Divorced from the typesetter

8 Simplistic and limited page model (eg floats)

possibly “good enough” (anathema to TEXxies!)

20 Which direction?

• Forget direct TEX interpretation of arbitrary XML. . .

• . . . embrace direct TEX reading of constrained XML

• Forget trying to teach people \{}. . .

• . . . embrace semantically clean markup

• Forget trying to make TEX the centre of the universe

• . . . develop TEX to keep being the best typesetting engine

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface

Sebastian Rahtz

49

LATEX3 News

Frank Mittelbach Chris Rowley

The main purpose of this event is to introduce the human side of the LATEX3 Team and to explain what we
are doing, both collectively and individually, to support and promote LATEX and automated typography.

Here is a summary of the team’s recent, current and planned activities.

• General News

– LATEX Project Public License

– The project Web site

• Maintenance

– Fixing standard LATEX

– Helping packages work better with each other

• LATEX3 Code — work in progress

– Web access to experimental LATEX3 code
at http://www.latex-project.org/cgi-bin/cvsweb.cgi/

– The next version of the LATEX3 Programming Language, expl3
at http://www.latex-project.org/cgi-bin/cvsweb.cgi/experimental/expl3/

– Progress on xpackages (e.g., xor learns to balance)
at http://www.latex-project.org/cgi-bin/cvsweb.cgi/experimental/xpackages/

– Plan to provide full core and typical extensions based on expl3 and the template mechanism

• Work at this conference

– Investigate TEX extensions and quasi-TEX ‘extensions’ and their consequences for LATEX

– Investigate ‘Unicode font technologies’ (XeTEX and friends) possibly including ‘Unicode-encoded
math chars/glyphs’

– Work on language interface design

There will be plenty of opportunity for questions and discussion of our plans.

TUT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

50 LATEX3 News

Frank Mittelbach, Chris Rowley

ΛαΤεΞ3 Νεωσ ΕυροΤεΞ 2005

Τηισ πρεσεντατιον ωασ γιϖεν υσινγ αν ιντεραχτιϖε µινδ µαπ ωηιχη ισ σηοων ασ α γραπηιχσ αβοϖε. Σπεακερ νοτεσ

ηαϖε βεεν αδδεδ το τηε λεαϖεσ το προδυχε τηισ δοχυµεντ.

Αν ιντεραχτιϖε ωεβ ϖερσιον οφ τηισ πρεσεντατιον ισ αϖαιλαβλε ατ ηττπ://ωωω.λατεξ− προϕεχτ.οργ/παπερσ/.

1 Ινφορµατιον

1.1 ΛαΤεΞ Προϕεχτ Πυβλιχ Λιχενσε
! ΛΠΠΛ 1.3 ισ νοω ∆ΦΣΓ χοµπατιβλε

! αππροξ 1600 µεσσαγεσ εξχηανγεδ ον ∆εβιαν−Λεγαλ

1.2 ΛαΤεΞ βασεδ ον εΤεΞ
! οφφιχιαλ αννουνχεµεντ ιν 2003−04

! ρελιαβλε τεξτ/µατη συππορτ φορ ινπυτενχ νεεδσ εΤεΞ −−− νοτ παρτ οφ διστριβυτιον ψετ

! Εξπεριµενταλ ΛαΤεΞ3 προγραµµινγ λανγυαγε (εξπλ3) νοω βασεδ ον εΤεΞ

1.3 Προϕεχτ Ωεβ σιτε

σεε υρλ: ωωω.λατεξ−προϕεχτ.οργ

! αφτερ νο χηανγε φορ α λονγ τιµε τηε προϕεχτ ωεβ σιτε ιν νοω αγαιν αχτιϖελψ µαινταινεδ

1.4 ΧςΣ φορ ΛαΤεΞ3 ωορκ ιν προγρεσσ

σεε υρλ: χϖσωεβ.χγι

! ΛαΤεΞ3 εξπεριµενταλ λανγυαγε (εξπλ3)

! ξπαχκαγεσ

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT02

LATEX3 News

Frank Mittelbach, Chris Rowley

51

2 ΛαΤεΞ2ε Μαιντενανχε

! ρεαλ ωορλδ δραµα

2.1 Φιξινγ βυγσ
! ωηατ ισ α βυγ?

! νοτ νεχεσσαριλψ ωηατ α υσερ εξπεριενχεδ ασ συχη

Θυεστιονσ:

! ηασ τηε ∀βαδ βεηαϖιορ∀ βεχοµε α φεατυρε τηατ δοχυµεντσ ρελψ ον?

! δοεσ α φιξ βρεακ οτηερ παρτσ οφ τηε σψστεµ?

2.2 ΛαΤεΞ2ε ρεγρεσσιον τεστ συιτε
! χλοσε το 300 τεστ φιλεσ φορ τηε κερνελ σουρχεσ

! χηανγεσ το τηε σψστεµ αρε χηεχκεδ αγαινστ τηε φυλλ τεστ συιτε, οφτεν ενουγη σηοωινγ συρπρισινγ δεπενδενχιεσ

! ιν τηεορψ εϖερψ βυγ φιξ σηουλδ βε αχχοµπανιεδ βψ α τεστ φιλε χηεχκινγ φορ τηε προβλεµ

2.3 Πρεσερϖινγ χοµπατιβιλιτψ
! ψεσ ορ νο ?

! ανδ ηοω ?

2.4 Ιντεραχτιον βετωεεν παχκαγεσ
! υπδατεσ ιν ονε παχκαγε οφτεν βρεακσ ιντερφαχεσ ιν οτηερσ

3 ΛαΤεΞ3 χοδε

! ωορκ ιν προγρεσσ

3.1 εξπλ3 προγραµµινγ λανγυαγε
! τηε λανγυαγε ισ νοω φαιρλψ σταβλε τηουγη αδϕυστµεντσ ανδ αδδιτιονσ αρε ποσσιβλε

! φυρτηερ υσε οφ εΤεΞ πριµιτιϖεσ ενϖισιονεδ

3.2 τεµπλατε ιντερφαχε
! φυρτηερ αππλιχατιονσ αρε πλαννεδ

! φροµ τηε ρεσυλτινγ εξπεριενχεσ υπδατεσ ορ εξτενσιονσ το τηε ιντερφαχε αρε λικελψ

3.3 ξπαχκαγεσ ρεωορκεδ
! τηε ξπαχκαγεσ χυρρεντλψ ρεφλεχτ εξπεριµεντσ ατ διφφερεντ σταγεσ οφ τηε εξπλ3 λανγυαγε

! γενεραλ οϖερηαυλ οφ αλλ παχκαγεσ το φυλλψ υσε εξπλ3 ισ πλαννεδ

3.4 χορε ανδ εξτενσιονσ πλαννεδ
! σπεχιφιχατιον οφ α χορε σετ οφ φυνχτιοναλιτψ ισ πλαννεδ

! σιµιλαρ φορ ιντερφαχε ανδ εξτενσιον σπεχιφιχατιον

TUT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

52 LATEX3 News

Frank Mittelbach, Chris Rowley

4 ... ατ τηε χονφερενχε

! αχχορδινγ το ιντερεστ ανδ οππορτυνιτιεσ

4.1 ποτεντιαλ τοπιχσ
Ποτεντιαλ τοπιχσ φορ τηε ινφορµαλ ωορκσηοπσ ατ τηε χονφερενχε:

! ΤεΞ εξτενσιονσ

! Υνιχοδε φοντ τεχηνολογιεσ

! Λανγυαγε δεσιγν ιντερφαχε; σεε Μυλτιλινγυαλ.µµαπ (ρεθυιρεσ φρεε ρεαδερ σοφτωαρε) ορ Μυλτιλινγυαλ.ϕπεγ

4.2 ινφορµαλ ωορκσηοπσ
Τηεσεσ αρε νοτεσ τακεν δυρινγ τηε ωορκσηοπ σεσσιονσ:

! λτξ3−2005−03−10.πδφ

λτξ3−2005−03−11.πδφ

! ωηιτεβοαρδ δραωινγ βψ ϑοηαννεσ

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT02

LATEX3 News

Frank Mittelbach, Chris Rowley

53

5 µεετ πεοπλε

5.1 ωηατ δο τηεψ δο

5.2 ωηατ δο τηεψ ωαντ το δο

5.3 ασκ ψουρ θυεστιονσ

5.4 ϖοιχε ψουρ ιδεασ

σεε αλσο: ... ατ τηε χονφερενχε

TUT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

54 LATEX3 News

Frank Mittelbach, Chris Rowley

Typographic Perfection with OpenType?

Adam Twardoch

February 26, 2005

Abstract

In September 1999, Adobe Systems declared their PostScript Type 1 font format "obsolete". Until then,
this font format was dominating the professional pre-press and printing business, but now was to be replaced
with OpenType – a font format developed by Microsoft and Adobe, with collaboration from Apple. Four and
a half years later, OpenType is a fact: both the world’s largest font foundries and individual type designer
publish new fonts in this format.

OpenType fonts have numerous advantages: they can be used in many operating systems without any
conversions (Windows 9x/2000/XP, MacOS 9/X, some Unix environments); they use the universal character
encoding standard Unicode; finally, they can include typographic layout features that allow for comfortable
use of ligatures, small caps, swash alternates or old-style numerals, as well as more advanced functionality
such as justification alternates.

You may have heard that Unicode is the only solution for the encoding mess in electronic text processing.
You may have also heard that OpenType is the new cross-platform font format that enables unprecedented
typographic perfection. Adam Twardoch will present these technologies and discuss how much truth and
how much myth these promises hold.

Bio:
Born 1975 in Poland, Adam now lives in Frankfurt (Oder), at the German-Polish border. He is Scripting

Products and Marketing Manager at Fontlab Ltd., an international software vendor specializing in font
editors and typography products. He serves as typographic consultant to MyFonts, a major online font
distributor. Adam provides consulting services in font creation, font tool development, font technology and
multilingual typography for Adobe, Bitstream, Corel, Linotype, Microsoft and other clients. Adam regularly
writes and lectures about fonts and typography. He is member of Association Typographique Internationale
(ATypI) and of the Polish TEX Users’ Group (GUST).

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT04

Typographic Perfection with OpenType?

Adam Twardoch

55

Adam Twardoch EuroTEX Adam Twardoch EuroTEX

ic r i
 h Ope T e?

No one will ever need more than characters ASCII No one will ever need more than characters

T
U

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

5
6

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

No one will ever need more than characters Codepage soup incompatible bit encodings
that only cover a subset of the necessary character set

Pi flakonów wody „ ”.
actual text

Pi flakonów wody „Ý ç ë˙ ú”.
text encoded as Windows Central European

Pi flakon w wody „ ”.
text encoded as Windows Cyrillic

Typesetting multilingual text has always been a challenge
in GUI layout applications and in TEX

Typesetting multilingual text has always been a challenge
in GUI layout applications and in TEX

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

T
U

T
0
4

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

5
7

Di erent character groups stored in separate fonts
switching fonts often necessary

Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania

w tekście, widoczne po zastosowaniu innego fontu.

Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania Wstawianie ligatur jako pojedynczych znaków powoduje przekłamania

In GUI applications switching fonts may lead to unwanted e ects
in TEX ligature information stored in separate les tfm

97 0x0061

225 0x00E1

261 0x0105

945 0x03B1

1103 0x044F

1488 0x05D0

9787 0x263B

32244 0x7DF4

Unicode assigns numeric codes to characters

Fragment zestawu znaków Unicode

The Unicode Standard encodes characters million possible

T
U

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

5
8

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

Fragment zestawu znaków Unicode

The Unicode Standard encodes characters million possible

Fragment zestawu znaków Unicode

The Unicode Standard encodes characters million possible

Krótka historia standardu Unicode

1984 ISO working group created to de ne universal character set

1987 Unicode working group created to de ne universal character set (Apple, Xerox)

1990 Distinct Unicode 1.0 and DIS-1 10646 published

1991 Two universal character sets? Not a good idea! : Unicode and ISO 10646 merged

1993 Merged Unicode 1.1 and ISO 10646-1:1993 published

1996 Unicode 2.0 published, 38 885 encoded characters

1998 Unicode 2.1 published, adding e.g. the euro character

1999 Unicode 3.0 published, 49 194 encoded characters

2000 ISO/IEC 10646-1:2000 published (Unicode 3.0 equivalent)

2002 Unicode 3.2 published, 95 156 encoded characters (> 65 536!)

2003 Unicode 4.0 published, 96 513 encoded characters

2005 Unicode 4.1 beta, 97 786 encoded characters

Brief history of the Unicode Standard

1975 Peter Karow annouces Ikarus at the ATypI conference in Warsaw

1985 Adobe Systems creates the PostScript language and de nes
the PostScript Type 1 font format (the speci cation is con dential)

1987 Apple Computer and Microsoft Corp start creating their own font format
that would be independent from an Adobe license

1990 Adobe publishes the PostScript Type 1 speci cation

1991 Adobe publishes ATM, Apple and Microsoft publish the TrueType format

1993 96 Apple develops TrueType into TrueType GX (later: AAT), TrueType GXTrueType GX
Microsoft develops TrueType into TrueType Open

1998 Adobe joins the Microsoft initiative and creates the CFF format CFFCFF
that allows placing PostScript font data into the TrueType le structure

1999 Adobe and Microsoft announce OpenType based on TrueType Open and CFF

2000 First OpenType fonts published by Adobe and Microsoft

Thirty years of digital outline font technology

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

T
U

T
0
4

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

5
9

OpenType jest formatem uniwersalnym

One format many platforms OpenType One character many glyphs

0 1 2 A K a b e s
0030 0031 0032 0041 004B 0061 0062 0065 0073

onum

smcp

fina

init

salt

hist

In addition to default character forms OpenType fonts can have
variant glyphs associated with so called layout features

Brioso Pro Robert Slimbach Adobe Systems
Layout features standard ligatures liga

T
U

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

6
0

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

Poetica Std Robert Slimbach Adobe Systems
Layout Features liga dlig salt ornm

Cztery podstawowe

formy liter arabskich

isol init medi fina

t
062A ȝ ȮȮƉȮůȮȮƉȮȮȮƉȮ ȮƉƄȮƉȮƉ Ȯ ǁȮƉȮ
h
062D Ƞ ȮƉȮŲȮƉȮȮƉȮ ȮƉƇȮƉȮƉ Ȯ ǉȮƉȮ

In the Arabic writing system each letter has four di erent forms
isolated initial medial and nal

OpenType umo liwia poprawny skład w języku arabskim

i innych językach stosujących kaligra czne systemy pisma

The OpenType font contains appropriate layout features init medi na
that map the default form to the contextual forms

Litera ł w piśmie drukowanym i odręcznym

Falski 1974

Some languages have localized glyph forms in handwriting

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

T
U

T
0
4

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

6
1

 W adys aw Jagie o
international forms

 Władysław Jagiełło
localized forms

 Władysław Jagie o
ligatures

OpenType allows for language sensitive substitutions
so for Polish language the calligraphic lslash can be substituted

Warianty znaków diakrytycznych z acute dostosowane do jęz. polskiego i hiszpańskiego

Fenway, Matthew Carter 2001

OpenType allows for language sensitive substitutions
so di erent glyph variants can be selected depending on language

Dwa warianty fontów w formacie OpenType

OpenType fonts exist in two avors
OpenType TT and OpenType PS

T
U

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

6
2

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

Calligraphic Typeface
by Hermann Zapf

Published
in OpenType Format
by Linotype Library

Originally published as a series of Type fonts Zap no Extra LT Pro contains an extensive set of contextual features
that simulate calligraphic randomness

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

T
U

T
0
4

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

6
3

Works on Windows XP SP in many applications including Notepad
also Adobe InDesign Illustrator CS Photoshop CS soon Mac OS X

Upcoming Garamond Premier Pro
A new typeface family by Robert Slimbach Adobe Systems

ABCDEFGHIJKLMNOPQRSTUV
abcdefghijklmnopqrstuvwxyz
àáâãäå ff

� ���� ���������� ���

�� ��� ��
��� ������������ �

� � � � ���
������������� ��������� ��

���� ���
����� ������� ����������

�����
������������������� ������ �

�

�� � �� �� ���

���������� �� � �� �

����������������������������

��������������������������

������������������������

������������������
�������������� �����������

����������������

T
U

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

6
4

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

��������������������������

��������������������������
��������������������������

�����������

���������� ����������� ���� � � ��

��� ������ ��� � ����
����� �� �������������� �� �������������� �� ��������� ��

���������������
���� � ���������� �����
���������������������������������

��

������������������

�����������������

����������������

��������������������������

� � � � � � � �� � � ���
� � � � � � � �
� � � � �� � �����������

� ��� �� � �� � � � ��� �
� ����� �� �

���� ������ ����� � � �

������������������

�����������������

����������������

 IN M UNI BLE

S T T
 J S IC
THE TEMPERED LIGHT OF THE WOODS IS LIKE A
PERPETUAL MORNING • AND IS STIMULATING AND
HEROIC • THE ANCIENTLY REPORTED SPELLS OF

IMULATING
 TEMPE ED

SILENTIUM PRO, ROMAN I GLYPHS
ABCDEFGHIJKLMNOPQRSTUVWXYZ&
1234567890abcdefghijklmnopqrstuvwxyz

OPQRSTU
012

ÆŒÐÞ æœ ßþð fiflffffiffl (¼½¾
 ⁄) [¤] { }¹²³⁴₁₂₃₄

!?¡¿ µ ~ §†‡¶*
•·«»‹›- —_\/|¦@©®™.,:;’‘”“‚„…

áâäàåã ç é êë è íîïì įñóôöò ōõø ļł
ń šş úûüùű ýÿ ž `´ˆˇ˜¯˘˙¨˚˝

Á ÂÄÀ ÅÃ Ç É ÊË È ÍÎÏ Ì
Ł Ñ ÓÔÖÒÕØ Š Ť

ÚÛÜÙ Ų Ý Ž

ĶĹĽ ŐŌŔ

Basic Latin Glyphs

Additional Glyphs

Accented Glyphs

Inline Capitals

Reversed Box Capitals

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

T
U

T
0
4

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

6
5

SILENTIUM PRO, ROMAN I GLYPHS
ABCDEFGHIJKLMNOPQRSTUVWXYZ&
1234567890abcdefghijklmnopqrstuvwxyz

OPQRSTU
012

ÆŒÐÞ æœ ßþð fiflffffiffl (¼½¾
 ⁄) [¤] { }¹²³⁴₁₂₃₄

!?¡¿ µ ~ §†‡¶*
•·«»‹›- —_\/|¦@©®™.,:;’‘”“‚„…

áâäàåã ç é êë è íîïì įñóôöò ōõø ļł
ń šş úûüùű ýÿ ž `´ˆˇ˜¯˘˙¨˚˝

Á ÂÄÀ ÅÃ Ç É ÊË È ÍÎÏ Ì
Ł Ñ ÓÔÖÒÕØ Š Ť

ÚÛÜÙ Ų Ý Ž

ĶĹĽ ŐŌŔ

Basic Latin Glyphs

Additional Glyphs

Accented Glyphs

Inline Capitals

Reversed Box Capitals

SILENTIUM PRO, ROMAN II GLYPHS
ABCDEFGHIJKLMNOPQRSTUVWXYZ&
1234567890abcdefghijklmnopqrstuvwxyz

ÆŒÐÞ æeegioœrtßþðvfiflffffiffl
tx bh

(¼½¾ ⁄) [¤] {£ }¹²³⁴₁₂₃₄
!?¡¿ µ ~ §†‡¶*
•·«»‹›- —_\/|¦@©®™.,:;’‘”“‚„…

áâäàåã ąç é êë è ģíîïìīįñóôöò ōõø ļł
ń ņŕ šş úûüùű ýÿ ž `´ˆˇ˜¯˘˙¨˚˝

Á ÂÄÀ ĄÅÃ Ç É ÊË È ÍÎÏİÌ Į
Ĺ Ł Ñ ŌÓÔÖÒÕØ ŠŞ Ť

ÚÛÜÙ Ų Ý Ž

Ą Į Ĺ Ō
Ş Ť Ų İ £

Basic Latin Glyphs

Additional Glyphs

Accented Glyphs

Side e ect better design in OpenType fonts

Adam Twardoch
adam twardoch com

T
U

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

6
6

T
y
p
o
g
ra

p
h
ic

P
e
rfe

c
tio

n
w

ith
O

p
e
n
T
y
p
e
?

A
d
a
m

T
w

a
rd

o
c
h

Namespaces for εXTEX

Gerd Neugebauer

February 21, 2005

Namespaces for TEX are a long awaited extension. In this talk the requirements for such an
extension are described. Namespaces primarily restrict the visibility of macros and active characters.
Thus the probability of name clashes is reduced. As addition one can imagine to apply namespaces
to other entities like registers, catcodes etc as well.

εXTEX is an attempt to reimplement TEX. The major goals behind the reimplemenbtation are a
modular and configurable structure tailored towards experiments and extensibility.

Fortunately the integration of namespaces can be located at very few places in the εXTEX archi-
tecture. As a consequence an implementation idea for εXTEX can be sketched and the experimental
implementation in εXTEX is shown.

1 Introduction

With the vast amount of packages emerging on CTAN the need came up to separate the packages. In other
programming languages this is accomplished by using namespaces – sometimes also called modules or packages.
The classical TEX system lacks such a mechanism.

In this proposal an analysis is provided which shows where modifications of a TEX-like system are necessary to
implement namespaces. The proposed solution tries to be minimalistic. This means that one goal is to change
the underlying system as few as possible. In addition existing TEX code should continue to work without any
change.

2 Encapsulation

The primary requirement for namespaces is that they encapsulate the internals of “modules”. This means that
each information about the state is hidden in the outside world. The access is enabled via well-defined interfaces
only.

In this document the focus is put onto namespaces for control sequences and active characters.

3 Backward Compatibility and Initialization

The namespace extension should be backward compatible. This means that the behaviour of the system should
not depend of the use of a namespace. This can be achieved by using a default namespace in any case where
no other namespace is specified.

On the other hand the definitions in the namespace should be properly initiated. Thus we want to ensure
that the namespaces can be used without the burden of too much initialization.

4 Definition of Namespaces

The definition of the current namespace is just a string to be kept somewhere. In terms of TEX it is advisable
to store the current namespace as tokens in a special tokens register to allow read and write access to it.

Consider the name \namespace for this toks register then the following instruction can be used to advice
TEX to set the appropriate namespace:

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT05

Namespaces for εXTEX

Gerd Neugebauer

67

\namespace{tex.latex.dtk}

The default namespace should be denoted by the empty toks register:

\namespace{}

The wellknown primitives \the and \showthe can be used to get access to the current value of the namespace:

\namespace{tex.latex.dtk}

\the\namespace

5 Communication between Namespaces

Namespaces provide a means for separation of different modules. Thus we need a way to communicate between
namespaces. For this purpose we want to provide a primitive to declare that a certain set of entities are visible
from the outside. All entities not declared to be visible are purely private.

The primary entities to consider are macros and active characters. They are characterized by tokens. Thus
we can again use a token list to keep this information.

Consider the name \export for the names toks register. Then the following example declares that the macros
\abc and \xyz and the (active) character ~ can potentially be accessed non-locally:

\export{\abc \xyz ~}

The other side of communication is the import of the exported entities into another namespace. In analogy to
the name export we want to call this functionality import. For the import it is sufficient to name the namespace
to be imported:

\import{tex.latex.dtk}

The semantics is that all entities exported by the namespace – i.e. contained in the toks register \export –
are assigned to in the current namespace as well. This is similar to a multitude of let invocations.

As a consequence of this definition the meaning of a macro can be changed in the defining namespace without
affecting the meaning in the importing namespace.

6 Namespaces and Groups

Since the main task of the declarations if performed by special tokens registers it is clear that the namespaces
are coherent with the groups structure already present in TEX.

In the following example the macro a is defined in the namespace tex. Since the group ends afterwards the
namespace returns to its previous value. Thus the definition of \y is performed in the outer namespace.

\begingroup

\namespace{tex}

\gdef\x{123}

\endgroup

\def\y{123}

One question which arises is, how the macro \import interacts with the grouping. The answer to this question
is that the import should influence the current group only. Similar to the definition of \let the prefix command
\global can be used to indicate that the imports should be applied globally instead of locally in the current
group:

\global\import{tex.latex.dtk}

The macro \import has to take into account the \global prefix.
Another inference of namespaces and groups can be seen in the following example:

TUT05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

68 Namespaces for εXTEX

Gerd Neugebauer

\begingroup

\namespace{one}

\global\export{\x}

\gdef\x#1{-#1-}

\endgroup

Note that the \export declaration is preceded by a \global modifier. Consider the case that this modifier
would not be there. Then the end of the group would revert the meaning of \export the previous binding. In
general this would destroy the intended meaning. The \global modifier ensures that the intended meaning of
\export survives the end of the group and can be used in subsequent imports.

7 Namespaces and Expansion

Let us consider the following example where a macro with an argument is exported:

\namespace{one}

\begingroup

\namespace{two}

\global\export{\x}

\gdef\x#1{-#1 \y-}

\gdef\y{in one}

\endgroup

\import{one}

\def\y{two}

\x\y

The intuitive meaning of the last expression \x\y is that \y is taken from the namespace two and \y is taken
from the outer namespace one. Now we follow the expansion of \y. It leads to

-\y \y-

where the first \y comes from the argument. As such it is rooted in the outer namespace one. Whereas the
second \y is defined in the namespace two.

As we can conclude that the namespace has to be attached to the token. Then the two tokens can be expanded
in their original namespaces. To illustrate this we use the namespace as subscript to the macro name. With
this convention we have the following tokens in the situation above:

-\yone \ytwo-

With this refined understanding we can come to the conclusion that the expansion will indeed lead to the
expected result:

-two in one-

8 Explicit Expansion without Import

In several programming languages there is the possibility to invoke a method in another namespace. With the
means we have depicted so far we can achieve the same effect:

\begingroup\namespace{tex}\expandafter\abc\endgroup

This construct can even be used to expand a macro which is not exported. Since it is in general not a good
idea to use this feature no provision is made to provide a shortcut for such an expansion.

In this document a minimalistic approach has been proposed. To provide some syntactic sugar would require
some more adaptions to the basic machinery. Since all basic requirements can be fulfilled within the minimalistic
approach it has net been considered worthwhile to explore these adaptions any further.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT05

Namespaces for εXTEX

Gerd Neugebauer

69

9 Namespaces and the Basic Definitions

Usually nobody actually starts with iniTEX since nearly no definitions and settings are defined in it. At least
something like the plain definitions are used. With the means given in the previous sections each new namespace
would start out like a new iniTEX instance.

To solve this problem, we define a fallback strategy for the resolution of control sequences and active char-
acters. If a definition is not found in the current namespace then the definition is taken from the default
namespace.

The default namespace is denoted by the empty token list. Initially the namespace is set to the default
namespace.

With this definition it is possible to load the some macros into the default namespace – e.g. the plain

definitions. Then they are availlable in any namespace unless redefined in it.

10 Implementation in εXTEX

εXTEX (http://www.extex.org) is a project to provide an implementation of a typesetting system based on
the ideas of TEX. It is designed to be highly configurable and should provide a base for extensions and
experimentation. As a starting point a TEX compatibility mode is provided.

According to the considerations in the previous sections we need the following additions to εXTEX:

• The definition of tokens and their factory have to be extended to carry the namespace.

• The group has to be extended to provide means to store the current namespace.

• The binding mechanisms for control sequences and active characters needs to be extended to take into
account the fallback to the default namespace.

• The primitive \namespace has to be provided which allows the reading and writing access to the namespace
stored in the group.

• The primitive \export has to be provided to allow access to a special tokens register in the current
namespace.

• The primitive \import has to be provided which is similar to the implementation of \let. New bindings
for the exported control sequences or active characters have to be introduced to reference the definitions
in the defining namespace.

11 Namespaces for Registers

In the current extension of εXTEX the registers are not affected by the namespaces. Nevertheless it might be
desirable to extend namespaces to registers.

For instance count registers can be made aware of namespaces. Then each namespace can have its own
incarnations of count registers. The extensions into this direction is straight forward. Experiments into this
directions have been performed within εXTEXṄevertheless they where not really convincing. The plain format
makes use of several count registers. The adaption of the visibility of count registers would require adaptions
on the macro level as well.

The restrictions to a limited number of count registers has already been relaxed in εTEX and in εXTEX even
further. Thus with the use of the allocation macros it is no problem to have separate registers in separate
modules – even when namespaces are used.

12 Conclusion

In the previous sections we have seen how a basic namespace support has be integrated into εXTEX. The changes
required for this extension are restricted to very few modifications in the core components. These modifications
provide a base upon which the externally visible extensions can act. The extensions are purely optional – to be
enabled in a configuration file or even loaded dynamically within εXTEX. Without the definitions of the three
new primitives the behaviour of εXTEX has not been changed.

The base mechanism for the use of namespaces is provided. Now it is up to the macro level to make use of it.

TUT05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

70 Namespaces for εXTEX

Gerd Neugebauer

contextgarden.net

Patrick Gundlach

February 25, 2005

Abstract

The goal of the contextgarden.net project is to enhance the documentation of ConTEXt. It consists of
several web services that together provide the technical framework behind the documentation. A large (and
growing) percentage of the supplied content is actually provided by the visitors of the interconnected web
sites.

1 Introduction

Many users have tried the LATEX-alternative ConTEXt. But more than a few have given up almost right at the
start, simply because they didn’t know how to proceed any further. Unnecesarily so, since there is an active
user group that is very helpful. And there is a vast amount of information and documentation on ConTEXt
readily available. One just has to find it.

2 What is available?

The official documentation for ConTEXt is available on the web server of PRAGMA ADE1. There, you will find
many PDF-files that can answer your questions as well as show you some interesting possibilities of typesetting
with ConTEXt. There are two distinct ways to access the documentation on the web site.

The first possibility is to use PDF-based navigation. Just select showcase on the web site of PRAGMA
ADE, and you will get a hierarchical overview of all available PDF-documents. The navigation itself shows
some aspects of the vast possibilities of ConTEXt. This makes it plain to see that it will be worth having a
closer look at the program, even before you have read the first document!

The second possibility is to is to select overview on the web page. This will present you with a rather simple
listing of the available files based on their category. You can see all available manuals and some supplementary
documentation at a glance.

The novice user should definitely have a look at the beginner’s manual ConTEXt, an excursion and, after
that, ConTEXt, the manual.

Besides these two important documents, there are different sets of manuals:

manuals This is the most important set of documentation files. Besides the beginner’s manual and the main
manual, there are manuals dealing with XML processing, grid-based typesetting, stepcharts, MetaFun and
MathML, and more.

magazines This relatively new set describes smaller aspects of ConTEXt and typesetting. A specific volume,
for example, is about formatting digits, and another volume is about hiding parts of section titles inside
running heads.

qrcs quick references. Each one of these documents contains a list of all available user level commands within
a language interface. For every command, its general syntax is described along with the list of allowed
parameters and keywords, but nothing else.

sources sample documents with source code. Currently this set consists mainly of the presentation styles that
are shipped with ConTEXt. The source of these styles is also well documented using TEX comments.

technotes At the moment there is only one article about graphic inclusion and positioning in PDF available.

1http://www.pragma-ade.com

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT06

contextgarden.net: The ConTEXt Wiki

Patrick Gundlach

71

uptodate like the special documents in the section manuals, the uptodate documents are about specific issues
in ConTEXt. There are manuals about flowcharts, tables, typesetting Chinese and JavaScript. Nowadays
most of the uptodate documents are renamed and put into the manuals section.

3 What is missing?

Considering the great number of manuals, it may sound strange that there could be something missing. But
those who look at the manual will probably notice that it lacks a chapter about typesetting tables. There is
a section about a simple table variant (tabulate), but it is not explained in any detail. Another variant (table)
appears often in the examples, but a more helpful explanation is missing. And it lacks an overview of the many
different options that can be used when trying to typeset a table.

Another thing you will not find in the printed manuals are practical hints. Things like installation issues,
design discussion, tricky problems that are due to misunderstanding or misconfiguration, et cetera.

Yet another problem is that the descriptions in the manuals are partly outdated. The uptodate (or the
descendants) are, despite their name, already several years old. And because the development of ConTEXt
is quite fast, the descriptions of the commands are often incomplete and in some areas, even the underlying
concepts have changed. You can only keep track of these things by keeping an eye on the mailing list and
watching the changes in the ConTEXt distribution.

Moreover, because there are so many documents, you can actually lose the grand picture. Where are the
rules for grid typesetting? What line separators am I allowed to use in tabulate? The answers are spread
throughout the documents. A global index would be helpful.

A specific request that frequently arises on the ConTEXt mailing list is the lack of sample documents with
source code. On the web pages of PRAGMA ADE you can download a few: the magazines (ThisWay); the
pdfTEX manual; and the commented sample presentation styles. But for many users this is not sufficient.

Yet another issue that some users are unhappy about has nothing to do with documentation. ConTEXt
is not perfectly supported by the TEX-distributions, although the situation has greatly improved over the last
years. “Just” trying out ConTEXt sometimes fails because the local distribution lacks some files or because it
contains a way too old version of ConTEXt. At present there is a change in the TEX directory structure in web2c

and accordingly a change of the directory layout of ConTEXt. This brings a whole new set of compatibility
problems.

4 In the garden

With the project contextgarden.net, I provide some applications and web services that jointly try to address
the problems mentioned above. Right now, the following services are available: the wiki, texshow-web, live
ConTEXt, source browser and archive. The services are all linked from the main page.2 contextgarden.net is
kindly sponsored by DANTE e.V., the German TEX user group.

4.1 Wiki

A wiki is a service, where the visitors of the web page create content. Every visitor can add, change and delete
the web pages. The following definition is taken from the wikipedia, a free encyclopedia that is based on the
same principle:3

A Wiki or wiki (pronounced “wicky” or “weekee”) is a web site (or other hypertext document
collection) that allows a user to add content, as on an Internet forum, but also allows that content to
be edited by any other user [. . .] Wiki wiki comes from the Hawaiian term for “quick” or “super-fast”.

On every wiki page there is a button labeled “edit”, that lets you modify the page content. The wiki syntax
is simple, plain ascii text with some extensions for mark-up, such as = for heading and *, # for items in an
unordered and ordered list respectively. The following example should be easy to understand for all LATEX and
ConTEXt users.

2http://contextgarden.net
3http://en.wikipedia.org/wiki/Wiki

TUT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

72 contextgarden.net: The ConTEXt Wiki

Patrick Gundlach

1 == This is the main title ==

2 Every page should begin with an introductory

3 paragraph.

4

5 * first item in an unordered list

6 * and the second

7

8 <code>

9 an environment like verbatim or \starttyping ...

10 \stoptyping

11 </code>

A table of contents is inserted automatically if there are enough headings on a page.
The main application on contextgarden is a wiki especially for ConTEXt. Its content is mainly filled by only

a few, but quite active, users of the site. There are about 100 pages on the different topics that cannot be
(easily) found in the manuals. One of the most obvious differences between the wiki and the manuals is that
in the wiki, you can find practical texts like installation experiences and overviews such as a list of text editors
with ConTEXt support. Every user can upload TEX and PDF files to the site, and therefore the wiki is a good
platform for the publication of sample documents.

One of the important features in a wiki is that you can get a list of recent changes. This leads to a pragmatic
way of editing content: one user creates a page on a specific subject, that is not perfectly worded nor 100%
complete yet. Afterwards, other users complete this page by supplying their own knowledge on the subject. As
a result, the quality of the page increases over time.

Even news items are put into the wiki. For example, the users can see the list of included changes whenever
a new ConTEXt distribution is released. The wiki was started around July 2004. In the long term it should be
a full complement to the official manuals.

The wiki on contextgarden has several features that makes it well suited for ConTEXt documentation. One
extension is the direct rendering of ConTEXt input. Taking the following input:

1 <context>

2 \defineoverlay

3 [tea]

4 [{\green \ss \bf GREEN TEA }]

5 \framed [height=40pt,

6 background=tea,

7 align=middle]%

8 {\em today \blank for sale}

9 </context>

you get

GREEN TEA

today

for sale

The wiki internally passes the text to ConTEXt to be typeset. This creates a PDF file from the input, and
then the wiki calls on ghostscript to convert this PDF file to a PNG image. The end result is that you can view
the typeset example directly from within your web browser.

Also included is a pretty printer for TEX and XML source. This formats and colors source code for readability.
Perhaps you are familiar with this behaviour from your text editor. The final extension to the wiki is the ability
to create hyperlinks to texshow-web (see below). With

1 <cmd>adaptlayout</cmd>

a link will be created. When that link is clicked, the page that contains the definition of the command adaptlayout

within texshow-web will be opened.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT06

contextgarden.net: The ConTEXt Wiki

Patrick Gundlach

73

4.2 texshow-web

texshow-web is an alternative implementation of the perl/Tk program texshow that comes with every ConTEXt
distribution.

What follows is a quick summary for those of you who are unfamiliar with texshow: This program gives an
overview of all user commands. The full set of the parameters and arguments belonging to a specific command
can be shown in a syntactical overview, like this one:

1 \adaptlayout[...,...,...][...,...=...,...]

2

3 [...,...,...] number

4 height dimension max

5 lines number

The output is colored, so that you can easily see what parameters you can use in each argument. In this
example the first parameter accepts a list of numbers whereas the second parameter takes a list of assignments.
Allowed keywords for the assignment are height and lines, and the allowed values for height are a dimension or
the word max and for lines a number (within TEX’s limits of course).

The new web-based variant, texshow-web makes it possible to add a comment, a description and any number
of examples to the a specific command. Of course texshow-web also offers a full-text search, so that you can
find the command you need with more ease. As with the wiki, all users have the possibility to complete missing
information or to correct pages when needed.

ConTEXt users often struggle because one not only has to know all of the possible parameters for a command
by name, but one also has to understand their effects on typesetting. In the manuals the parameters are only
partly described. For example, there is no explanation of the parameter beforehead in an itemize environment.
That is why texshow-web has a field description where this kind of information can be stored. Currently, there
are only a few entries with that additional content, but progress is slowly being made.

The original texshow program from the distribution has recently been adapted to show all the comments,
descriptions and examples from texshow-web as well, but does not allow editing.

Features currently in development are: a way of categorizing commands into logical units (graphic inclusion,
section and headers, typographic commands), a multi-lingual user interface, and documentation for ConTEXt’s
programming interface (API). The API documentation will cooperate with the source browser (see below) that
shows the definition of the commands within ConTEXt’s source code.

Until now, texshow-web has only been used for ConTEXt documentation. But it should be possible to use it
for LATEX documentation without big difficulties.

4.3 Archive

There were already several searchable archives for the ConTEXt mailing list: the NTG has one and the news-mail
portal Gmane has one as well. Slavek Zak used to host one, too. There are some other, less popular, archives
as well. But none of the those is complete as well as easily searchable. Therefore I have installed yet another
mailing list archive at contextgarden.net. This one is almost complete, very quick and searchable. The two new
lists are also archived on this server: the ConTEXt developer list and the foxet (a ConTEXt based XML-FO
processor) list.

4.4 Live

Live ConTEXt is an on-line ConTEXt typesetting service. You type your document into a web-form and after you
submit the form to the server, your source gets processed by texexec and typeset. The resulting pdf document
as well texexec’s screen output can be viewed online or saved to your harddisk. This makes it possible to use
ConTEXt without actually installing it. The underlying TEX system uses the latest teTEX beta and ConTEXt
distribution. Live ConTEXt is also used as a sort of reference installation. Errors that do occur on a local system
but cannot be reproduced on Live ConTEXt are most likely a local problem only.

4.5 Source

With the source browser you can view ConTEXt’s source code. Using a simple navigation system you have access
to the almost 600 files from the current distribution. This is especially interesting to the programmers that

TUT06 Proceedings EuroTEX2005 – Pont-à-Mousson, France

74 contextgarden.net: The ConTEXt Wiki

Patrick Gundlach

need to see the definition of the commands. The included full-text search helps finding commands. You can ac-
cess the definition of the commands via hyperlinks: http://source.contextgarden.net/tex/context/base/core-pos.tex#

setpositions and http://source.contextgarden.net/core-pos.tex#setpositions points to the definition of setpositions,
without having to know the line number in advance.

5 Future work

The services mentioned here are provided by contextgarden.net. The most important one is certainly the wiki.
Until now it was not necessary to structure the information in the wiki. If it continues to grow as it did in
the past, a more formal structure will be necessary. texshow-web should become the preferred reference for the
ConTEXt commands. The resources provided by texshow-web will be used by the existing tools (texshow) and
documentation in future releases. Because the number of descriptions, comments and examples is still low, the
ConTEXt community is asked to fill in the missing information.

Currently a search engine is in development that allows the user to search texshow-web, the wiki, the manuals
and the mailing list archive all from one place. This should provide an even more powerful tool in your quest
to find the necessary information.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT06

contextgarden.net: The ConTEXt Wiki

Patrick Gundlach

75

“With a little help from the wizards”

Panel discussion with Hermann Zapf and Donald Knuth

Taco Hoekwater

The highlight of this Tuesday and possibly of the complete conference was the panel discussion with
Hermann Zapf and Donald Knuth. The discussion was presented by Hans Hagen and Volker Schaa,
but almost all of the actual talking was done by Zapf and Knuth.

Knuth started off by explaining the
problems faced in digitizing curves.
Basically he demonstrated the material
covered in the ‘Discreteness and dis-
cretion’ chapter of the Metafont book,
but it is nice to hear Knuth actually
teaching this subject.

The first large subject was Her-
mann Zapfs OptimaNova. Fifty years
after the first version of the Optima
font, Linotype inc. has enabled Zapf to
design a new version of the font without
the limitation that were imposed by
the production processes half a century
ago. The new version of the font has

been released as an OpenType font. Apart from some shape corrections, it contains a number of extra
glyphs that people have come to expect from modern fonts.

We had a good time listening to recollections of the woes of type design in the early fifties, and how
it came to be that it took a whole eight years before the first version of Optima was released. It turns
out that the original digital version of Optima was created without any supervision by Zapf himself!

In order to visualize the differences between the old and the
new version, Hans had made a presentation with on each page,
the same glyph from both the old and new version of the font.
Both glyphs overlapped each other and were partially trans-
parent, so that the differences between both versions became
clear in a single glance. Using a number of these slides, Zapf
spent a good time explaining in detail explain why ‘the old
version is worse than the new version’.

At the moment, Hermann Zapf is busy working on a similar
cleanup project for his Palatino font family. When the final
PalatinoNova family will be released, the list of extra glyphs
will be quite a bit longer than for OptimaNova.

The other large subject was the Latin Modern font family.
Using a similar series of slides with overlapping glyphs as visual
aids, Donald Knuth (and Zapf) were invited to give comments
on the new glpyhs as designed by Bogusłav Jackowski and his team. Knuth explained that a number

TUT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

76 Panel discussion with Hermann Zapf and Donald Knuth: ’With a little help from the wizards’

Hermann Zapf, Donald Knuth

of the strange properties of Computer Modern are side-effect of his attempt to make his version an as
faithful as possible imitation of the original Monotype font.

Knuth then told us a nice tale explaining how the first version
of Computer Modern was made by manually tracing projected
35mm slides of typeset text and then digitising the resulting
drawing. Not until much later did he have access to the origi-
nal lead characters of the font. Of all the glyphs in Computer
Modern, he is least happy with the shape of the dollar-sign.

The panel ended off with Bogusłav showing a number of the
new glyphs in Latin Modern for perusal by Knuth and Zapf. In
total the session lasted two full hours, with not a single boring
minute in it.

Hermann signing his ‘onstage’ drawings

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT10

Panel discussion with Hermann Zapf and Donald Knuth: ’With a little help from the wizards’

Hermann Zapf, Donald Knuth

77

ProTEXt, a new TEX-Collection for Beginners

Thomas Feuerstack, Klaus Höppner

Februar 27, 2005

Abstract

One of TEX’s largest strengths is embedded in the high modularity of the program. Beside
the processor itself, every TEXnican might use the Editor, Post-Processor-Program, etc. he prefers
most. For beginners or only interested person this advantage can lead to difficulties, especially in
times, where users have gotten accustomed at "complete environments".

ProTEXt shows a way, how even Beginners can easily setup a complete running system and
therefore it eliminates one of the main obstacles in using TEX.

WET01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

78 ProTEXt, a new TEX-Collection for Beginners

Thomas Feuerstack, Klaus Höppner

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

proTEXt— yet another TEX-Collection?

Th. Feuerstack/

K. Höppner

March 9, 2005

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

Prelude on stage

The year 2005 – the whole world seems is occupied by

M$-Wordians.

? Really the whole world?

◮ According to our experience there are still some TeX

interested individuals

! And lately they become even more. . .

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

Prelude on stage

Compared to the mainstream users named above, the

coming TEX-user suffers from a handicap which usually is

an advantage, i.e.:

4 A complete TEX-environment is highly adjustable to

the user’s needs. Everybody can choose the editor,

TEX-engine, postprocessing tools, . . . she/he likes

best.

8 Unfortunately most “rookies” are no more

accustomed to such conditions, because “modern

software” claims an “All-in-One”-Status.

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

The “Furthermore you also need” situation

Lets imagine someone asks you, how to find an entrance

in TEX. So you’ll point him to

◮ an easy to install TEX-implementation. . .

◮ . . . an easy to use editor to compose his texts. . .

◮ . . . additional information and How-To’s to learn the

way TEX works. . .

◮ . . .

! As to us, most “someones” give up between the

items 2 and 3 and fade. . .

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

W
E

T
0
1

P
ro

TE
X

t,
a

n
e
w

TE
X

-C
o
lle

c
tio

n
fo

r
B

e
g
in

n
e
rs

T
h
o
m

a
s

F
e
u
e
rs

ta
c
k
,
K

la
u
s

H
ö
p
p
n
e
r

7
9

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

A picture of this situation

If the goal is something like this. . .

. . . we’ll have to provide a starting-kit to let our
“someone” enter the game.

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

What is actually needed?

Depending on our experiences (and therefore included in

proTEXt):

◮ An easy to install TEX-implementation for Windows

Ü MiKTEX

◮ A simple to use editor with hooks to TEX

Ü WinEdt, TEXnicCenter

◮ Postprocessing tools like Ghostscript and GSView

◮ A short description how to combine these things!

proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

Practical Demonstration proTEXt— yet
another

TEX-Collection?

Th. Feuerstack/
K. Höppner

Prelude on the
stage

The general Setup
of the kit

Things to discuss

What could/should be changed in future

releases?

◮ Which editor ist the easiest/the best?

◮ Is there a free graphical frontend for Ghostscript?

◮ Are there any volunteers to translate the Install-Doc

into additional languages?

(Many thanks to Steve Peter, Grzegorz Domański

and Denis Bitouzé!)

W
E

T
0
1

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

8
0

P
ro

TE
X

t,
a

n
e
w

TE
X

-C
o
lle

c
tio

n
fo

r
B

e
g
in

n
e
rs

T
h
o
m

a
s

F
e
u
e
rs

ta
c
k
,
K

la
u
s

H
ö
p
p
n
e
r

“La machine à formulaires”

(the forms’ machine),

or TEX for a Kafkaian world

Antoine Lejay

November 29, 2004

Author’s address:

Antoine Lejay
Projet OMEGA
Institut National de Recherche en Informatique et Automatique (INRIA)
& Institut Élie Cartan de Nancy (IECN)
Campus scientifique
BP 239
54506 Vandœuvre-lès-Nancy cedex, France
<Antoine.Lejay@iecn.u-nancy.fr>.

Abstract

This article describes the Machine à formulaires, whose goal is to fill in different forms from a single file.
Its aim is to help candidates to positions of (assistant) professors in a French University not to lose time in
copying various informations regarding each position they apply.

1 Introduction

This article contains a short description of a set of TEX files designed to help candidates to professors’ or
assistant professors’ positions in French Universities to fill in heavy forms. In some sense, it is similar to the
AMS cover initiative [1], but with a different philosophy and design, and where informations specific to each
position are reported in each form.

The Machine à formulaires (the forms’ machine, or MAF in short) has been made available since 2001 on
the WEB sites of the Opération Postes [5] and the Guilde des Doctorants [2]1 whose goal is to help Ph.D.
holders looking for a job. It seems to have been appreciated by numerous candidates, since it allows them to
gain a lot of time in the constitution of their application forms. The MAF does not need any real knowledge in
TEX/LATEX (only common sense) and shows the ability of TEX to deal with tasks such as automatic creation of
forms without using exterior softwares.

Basically, all the informations are entered in a single file with a rather natural syntax (provided by the
keyval package) and any repetition is avoided. Various forms may be produced simply by changing the class
file which is loaded. Of course, data and presentation commands are completely separated.

2 The difficulty of applying to a French university...

The procedure for applying to a French university as maître de conférences (assistant professor) or professor
relies on a national-wide, official and strict process. Almost all the French universities are public and then
(assistant) professors are state-employees. In automn and winter, there are discussions between each university
and the French Department of Education to obtain the creation of new positions, or the replacement of people
leaving or retiring. Then all the available positions, whatever the university and the domain, are published
around February of each year in the Journal Officiel de la République Française (also called the “JO”), which is
a daily publication for the new legal or official texts (laws, decrees, ...) of the French government. In the JO, a
range of dates are given for: applying for a position (for the candidate), choosing the candidates the university

1A package with the same goal have been already available on that site and the MAF represents an attempt to have a more
flexible way to do the job.

1

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET03

La machine à formulaires (The Forms’ Machine)

Antoine Lejay

81

wishes to hire and sending their name to the French Department of Education. The JO also specifies what the
applicants send to the universities.

Basicall, to each position is assigned: (a) an identification number; (b) a university; (c) one or many research
domains. Generally, the lab proposing this position may be deduced from this information, but this is not always
true. The research domains are classified, each one corresponding to a subgroup of the Conseil National des
Universités (CNU). Each of these subgroups is labelled by a number (for example, 25 for Pure Mathematics, 26
for Applied Mathematics, 27 for Computer Sciences, ...). Every French Ph.D. thesis is also classified according
to these domains (but a Ph.D. holder is not restricted to apply to positions only in his domain); (d) possibly
some precisions about the (research or teaching) skills that are required (The position may be for a team within
a lab, but it may also happen that all the teams of a lab have to choose together who to hire); (e) possibly
other legal informations that would be too long to explain here. Yet it concerns only a few positions each year.

For example, one could read in the JO containing some lists of positions looking like

Postes de Maîtres de conférences
...
26e section : mathématiques appliquées et applications des mathématiques
Université Grenoble-I : et 27e section, bio-informatique : 1445.
Université de Pau : 0706.
...

The first position — identified by the number 1445 — is available at one of the two universities of the city
of Grenoble. It is primarily for people working in bio-informatic, either with a Ph.D. in Computer Science
or Applied Mathematics. The applicant have to contact the University Grenoble I if she/he want to known
which lab or team is concerned by this position. The second position, at University of Pau, is for an applied
mathematician whatever his/her speciality. Of course, the priority will generally be given to the candidates
that may interact with the people there.

Once having read the JO, the candidate willing to apply for some position shall send to the university
offering it two copies of: (a) a normalized form (nicknamed2 Annexe B by the candidates, since its presentation
appears each year in the JO in the Section Appendix B) in which he states he applies to this position, with
personal informations and all the informations given above (identification number, ...); (b) a curriculum vitæ
whose first page (nicknamed Annexe C, since its appears each year in the Section Appendix C) also follows a
normalized presentation with again these informations. These two forms may be found in Figure 1

Since a candidate generally send 10, 20 or more application forms that are all different, filling them within
a few weeks takes a lot of time, increases the natural stress of the candidate (it is not easy to get a job) and
looks like an administrative nightmare.

3 Goals and design

Of course, in days where everybody has access to a computer, the candidate may wish to produce automatically
these forms. A truly helpful code shall in my opinion follow the following specifications: (a) the syntax shall be
simple and rather natural; (b) data and presentation shall be separated; (c) replication of information shall be
limited to reduce the risk of errors; (d) it must be system independent to be available to the maximum amount
of people; (e) extensions must be easy to write in order to produce envelops labels, cover letters,...

Although many word-processors allow to do such a thing, TEX is probably the best candidate to satisfy
point (d) while it does not take too much time to write some code satisfying the other requirements.

The design of the MAF is the following: (a) The candidate enters in a single file (form.tex) both personal
informations (name, address, ...) and the list of positions she/he plans to apply. We use the functionalities of
the D. Carliste’s keyval package [3] in order to have a simple and clear syntax. (b) The class used in form.tex

specifies the form to be produced: a single compilation of form.tex with the class annexeC.cls produces all the
first pages of the curriculum vitæ for all the positions. (c) All the class files call the style file formul.sty whose
goal is to parse form.tex, while the class file is devoted to the presentation of the form. Thus, it is rather easy
to write or change a class file, while formul.sty contains more complex code (not to speak of keyval.sty).
(d) The complete names and addresses of the universities are available in the separate file listuniv.tex, so
that the candidate does not lose time in entering these informations.

As such, there are three layers: the front-end user, even if a complete beginner, has only to enter the
informations in form.tex. If she/he is not satisfied by the output (which tries to be faithful to the given

2It is interesting to note how an administration tends to create its own jargon...

WET03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

82 La machine à formulaires (The Forms’ Machine)

Antoine Lejay

DÉCLARATION DE CANDIDATURE
À UNE INSCRIPTION À LA MUTATION/// ,

AU DÉTACHEMENT, OU/////////////////////////////////////// AU RECRUTEMENT1

SUR UN EMPLOI DE MAÎTRE DE CONFÉRENCES
(Année 2004)

(décret no 84-431 du 6 juin 1984 modifié)

adressée au chef d’établissement de : Université de Provence : Aix-Marseille I

Section CNU : 26 Profil : statistiques et traitement du

signal

Article : 26-I-1◦

Emplois nos : 1012 et 761 Journal Officiel du : 27 février 2004.

Je soussigné M. Pierre Ixe

NUMEN3 : No de qualification4 : 123456

Nom patronymique : Ixe

Nom marital :

Prénom(s) : Pierre, Paul

Date et lieu de naissance : le 1 janvier 1975 à Paris

Nationalité : Française

Adresse à laquelle seront acheminées toutes les correspondances5 :

No et rue : 3 Bd Gauss

Code postal : 75006 Ville : Paris Pays :

Téléphone : 01-00-12-34 Télécopie :

Adresse électronique : ixe@libre.fr

Fonctions et établissement actuel : ATER; Université de Paris 20

Diplôme : Doctorat de mathématiques appliquées

déclare faire acte de candidature sur l’emploi ci-dessus désigné.

Fait à Paris le 10 mars 2004

Signature

1 Rayer les mentions inutiles.
2 Porter le no de l’emploi concerné. Dans le cas où plusieurs emplois portant le même intitulé (mêmes sections et
profils) sont publiés dans le même établissement, la demande est réputée concerner chacun de ces emplois, sauf en
ce qui concerne les emplois affectés des instituts ou des écoles faisant partie de l’université pour lesquels il convient
de faire acte de candidature séparément.
3 Pour les personnels de l’éducation nationale.
4 Pour les candidats au recrutement uniquement.
5 Les modifications d’adresse ne peuvent être prises en considération sauf sur le site internet ANTARES durant
le dépôt de la saisie des vœux. Les candidats sont invités à s’assurer le cas échéant de la rééxpédition de leurs
couriers.

CANDIDATURE À UN EMPLOI DE MAÎTRE DE CONFÉRENCES

(Second tour — Année 2004)
(décret n◦ 84-431 du 6 juin 1984 modifié)

CURRICULUM VITÆ

Mutation/////////////1 :
– avec changement de discipline ;
– sans changement de discipline.

Détachement/////////////////// 1

Recrutement 1 ©X article 26-I (1◦) © article 26-I (2◦)

© article 26-I (3◦) © article 26-I (4◦)

Académie : Aix-Marseille Établissement : Université de Provence :

Aix-Marseille I

Section C.N.U. : 26 Profil : statistiques et traitement du

signal

Emploi nos2 1012 et 761 Publié au Journal Officiel du 27 février 2004

Nom patronymique : Ixe

Prénoms : Pierre, Paul né le 1 janvier 1975 à Paris

Nationalité : Française Situation familiale : célibataire

Fonctions : ATER

Etablissement actuel : Université de Paris 20

Adresse personnelle

3 Bd Gauss

75006 Paris

Tél. : 01-00-12-34

Adresse professionnelle

Institut de mathématiques

Université de Paris 20

3 rue Laplace

75020 Paris

France

Tél. : 01-00-00-00

Fax : 01-00-00-01

Adresse électronique : ixe@math.paris20.fr

Adresse électronique (privée) : ixe@libre.fr

Page Web : http://math.paris20.fr/~ixe

Titres universitaire français3 : voir p. 1 Diplômes, qualifications, titres : voir p. 2

Travaux, ouvrages, articles , réalisations4 : voir p. 3

Le candidat développera à la suite son curriculum vitæ et précisera notamment ses activités en matière :

– d’enseignement (voir p. 4) – de recherche (voir p. 5) – d’administration (voir p. 6)

Fait à Paris le 10 mars 2004

1 Rayer les mentions inutiles.
2 Dans le cas où plusieurs emplois portant le même intitulé (mêmes section et profil) sont publiés dans le même
établissement, la demande est réputée concerner chacun de ces emplois, sauf en ce qui concerne les emplois affectés
à des instituts ou à des écoles faisant partie de l’université pour lesquels il convient de faire acte de candidature
séparément.
3 Préciser pour la thèse : le titre, la date, le lieu de soutenance, le directeur de thèse et le jury.
4 Numéroter les documents devant figurer dans le dossier des rapporteurs.

F
igure

1:
T

he
tw

o
form

s
A

n
n
exe

B
and

A
n
n
exe

C
.

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

W
E

T
0
3

L
a

m
a
c
h
in

e
à

fo
rm

u
la

ire
s

(T
h
e

F
o
rm

s
’
M

a
c
h
in

e
)

A
n
to

in
e

L
e
ja

y

8
3

form.tex

personal data
listuniv.tex

universities addresses

formul.sty

parsing mechanism
{annexeB,annexeC}.cls

content of the forms

LATEX

form.dvi (the forms)

Figure 2: The design of the MAF.

models, but which is not aesthetic), an average LATEX user may rather easily change the class files or create
new ones simply by playing with boxes, spaces and springs, since the parsing and sometimes tricky job is done
in formul.sty3.

4 The structure of the files

The end-user has only to change or complete the file form.tex that begins with

\documentclass{annexeB}

%\documentclass{annexeC}

\input{listeuniv}

\begin{document}

Here, the user chooses which form to produce by commenting and decommenting the first lines. Then, she/he
enters some personal informations (name, address, ...), using key-values syntax.

\candidat{

MMmeMlle={M},

nom={Doe},

prenom={John},

...}

In order to avoid repetitions (and mistakes), some default informations can be entered with the command
\postedefaut. For example, a Ph.D. holder in pure mathematics generally applies to positions in the research
domain labelled by the number 25. Thus, there is no need to repeat this information, which is then entered
as a value for the key sect. The key mdcouprof accepts mdc (for positions of assistant professor) or prof (for
positions of professor).

\postedefaut{

mdcouprof={mdc},

sect={25},

type={recrutement},

dateJO={27 f\’evrier 2004},

articleJO={26I-1}

}

Here, the other informations specify in some sense the statut the applicant: for example, the recruitment
procedure is also valid for people already having a job as (assistant) professor but willing to go elsewhere. It
may also happen that some positions, although rare, are opened only to a restricted category of people.

The file ends by a list of commands \postes, one for each position, whith two mandatory arguments (the
number of the position and the “tag-name” of the university. This “tag-name” is defined in the file listuniv.tex
but it is easily deduced from the real name of the university). Some optional arguments, again with the key-
value syntax, may be used to give more precision about the position or to override the arguments used by
default.

3This style file also provides also some macros for formatting lists and other typesetting issues.

WET03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

84 La machine à formulaires (The Forms’ Machine)

Antoine Lejay

\poste[

sect={26},

profil={statistiques}

]{1012}{aix-marseille1}

The file listuniv.tex contains the list of all the Universities with their addresses, under the form (this
list, with 91 entries, was established from the informations given in the WEB site of the french Department of
Education [4]):

\defuniv{aix-marseille1}{

nom={Universit\’e de Provence~: Aix-Marseille I},

academie={\dapostrophe Aix-Marseille},

adresse={3, place Victor Hugo\\

13331 MARSEILLE CEDEX 3 }

}

The command \dapostrophe may be used to write “d’Aix-Marseille” (literally “from Aix-Marseille”) or “Aix-
Marseille” in function of the context. Thus, in the last call of the command \poste above, the tag-name
aix-marseille1 means that the full name, address, ... of the corresponding entry in listuniv.tex will be
used. These data are stored in TEX’s memory using a \csname/\endcsname’s scheme.

When compiling the file form.tex with LATEX, the appropriate class file will be called. Every class file shall
have the following structure:

\LoadClass[11pt]{article}

\RequirePackage{formul}

\newcommand{\codeposte}{

...

}

The package formul.sty contains the parser. The informations on the candidate are transformed into some
commands. For example, the name of the candidates is defined as the expansion of the command \nom, ... The
command \codeposte is called each time the command \poste is encountered in the file form.tex. Its effect
is to typeset and fill the form with the specific informations on the position. The file formul.sty also contains
some commands regarding typesetting (lists manipulations, ...), so that new class files can be easily created.

5 Conclusion
The first version was released in 2001 and its seems that many candidates enjoyed it (I have absolutely no
statistics at all, but I have received some very enthusiastic emails), since it allows them to concentrate on the
content of the curriculum vitæ and not on writing boring, repetitive informations.

Using TEX for this task is advantageous since only one version needs to be maintained due to its computer-
independent design. Besides, the MAF is easily installed, adapted if needed and the end-user does not need
any specific skills or knowledge of a particular software. Finally we use the fact that the TEX language allows
to mix both data processing and typesetting issues, maybe in a more complex way than usual word-processors
and this is essential for the automatic production of forms.

Acknowledgment. I wish to thank all the people who have contributed to the MAF and proposed some extensions and
corrections. Moreover, E. Schost and T. Zell have suggested some corrections to this article. Finally, I was glad to have benefited
from the informations given on the WEB sites — maintained by volunteers — of the Guilde des doctorants and Opération Postes

while looking for a job.

References

[1] AMS coversheet <http://wwww.ams.org/coversheet>.

[2] Guilde des doctorants <http://guilde.jeunes-chercheurs.org/>.

[3] D. Carlisle. keyval.dtx, part of the graphic bundle.

[4] Ministère de l’Éducation Nationale (France) <http://wwww.education.gouv.fr>.

[5] Opération Postes <http://smai2.emath.fr/postes>.

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET03

La machine à formulaires (The Forms’ Machine)

Antoine Lejay

85

ŞäferTEX: Source Code Esthetics for Automated Typesetters

Frank-Rene Schaefer
(private research)

<frank r schaefer@gmx.net>

February 26, 2005

Abstract

In 2003, the first attempts towards ŞäferTEX were made, targeting to create a text processing with the
goal of optimizing its ease of use, i.e. the beauty of its code appearance. The macro based TEX system still
lives in niches of typesetting experts, computer scientist, and engineers who are willing to learn the overhead
required to use the system - for the sake of high quality typesetting. ŞäferTEX faced the challenge to provide
an interface language that does only differ minimally from a normal human edited text, while the compiler
itself extracts the commands it requires.

Despite to simple wrappers programs, ŞäferTEX is a real three phases compiler, consisting of a lexical
analyzer, a parser, and a code generator. In the last year the system mainly underwent internal changes that
allowed to maintain this structure, while allowing a rather unusually simple and transparent programming
syntax. As a consequence, the system now reached a robustness, so that it can be used by a wider audience.

This presentation shall give the reader an overview over the system of ŞäferTEX and demonstrate its
abilities with a example application. Also, the fundamental ideas which allowed to maintain the classical three
phases compiler structure are introduced. With the start of this conference the system can be downloaded
at safertex.sourceforge.net.

WET04 Proceedings EuroTEX2005 – Pont-à-Mousson, France

86 ŞäferTEX: Source Code Esthetics for Automated Typesetters

Frank-René Schäfer

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

ŞäferTEX
Source Code Esthetics

Frank-René Schäfer

March 9, 2005 / EuroTEX-2005

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Outline

1 Introduction

Optimized Code Appearance

Paradigms of ŞäferTEX

2 Lexical Analysis

Processing

The Country Hut Solution

3 Parsing

The ŞäferTEX Engine

Achievements (Brief)

4 Summary

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Goals

Paradigms

The Goals
Optimized Code Appearance

Avoiding Visual Noise

’Natural Appearance’ of Commands
Unicode Based Input

Three Phases Compiler

Lexical Analyzer
Parser

Code Generator (for TEX)

Organization of Variables

Symbol Table Mechanism (OO Support)
XML Interfaces

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Goals

Paradigms

Outline

1 Introduction

Optimized Code Appearance

Paradigms of ŞäferTEX

2 Lexical Analysis

Processing

The Country Hut Solution

3 Parsing

The ŞäferTEX Engine

Achievements (Brief)

4 Summary

Frank-René Schäfer ŞäferTEX

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

W
E

T
0
4

Ş
ä
fe

rTE
X

:
S

o
u
rc

e
C

o
d
e

E
s
th

e
tic

s
fo

r
A

u
to

m
a
te

d
T
y
p
e
s
e
tte

rs

F
ra

n
k
-R

e
n
é

S
c
h
ä
fe

r

8
7

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Goals

Paradigms

Paradigms of ŞäferTEX
Means to Improve Code Appearance

Example
\section{Voil\’{a}, une section}

\begin{itemize}

\item character sequences that do something

either start

\begin{enumerate}

\item with a backslash, or

\item with a double non-letter character

\end{enumerate}

\item und nun ein wieder Gliederungspunkt in der

\"{u}bergeordneten Liste.

\end{itemize}

\begin{quote}

We should not produce \#100 pieces/week in order to get 10\%

more profit, if the adaption process costs us \$25.000.

\end{quote}

Automatic Scope/Group Detection

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Goals

Paradigms

Paradigms of ŞäferTEX
Means to Improve Code Appearance II

Example
\section{Voil\’{a}, une section}

\item character sequences that do something

either start

\item with a backslash, or

\item with a double non-letter character

\item und nun ein wieder Gliederungspunkt in der

\"{u}bergeordneten Liste.

\begin{quote}

We should not produce \#100 pieces/week in order to get 10\%

more profit, if the adaption process costs us \$25.000.

\end{quote}

Automatic Scope/Group Detection

Indentation as Scope Delimiter

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Goals

Paradigms

Paradigms of ŞäferTEX
Means to Improve Code Appearance III

Example
(*) Voilá, une section

-- character sequences that do something

either start

with a backslash, or

with a double non-letter character

-- und nun ein wieder Gliederungspunkt in der

übergeordneten Liste.

\quote:

We should not produce #100 pieces/week in order to get 10 %

more profit, if the adaption process costs us $25.000.

Automatic Scope/Group Detection

Indentation as Scope Delimiter

Intuitive Treatment of Characters

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Outline

1 Introduction

Optimized Code Appearance

Paradigms of ŞäferTEX

2 Lexical Analysis

Processing

The Country Hut Solution

3 Parsing

The ŞäferTEX Engine

Achievements (Brief)

4 Summary

Frank-René Schäfer ŞäferTEX

W
E

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

8
8

Ş
ä
fe

rTE
X

:
S

o
u
rc

e
C

o
d
e

E
s
th

e
tic

s
fo

r
A

u
to

m
a
te

d
T
y
p
e
s
e
tte

rs

F
ra

n
k
-R

e
n
é

S
c
h
ä
fe

r

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Lexical Analysis Process

Example
Imagine a little more complicated case with many items, nested lists, tables,

quotes and so on. Isn’t this much more complicated? How can ...

-- This is verily the first item in this example.

And for clarity, this item even has a paragraph - just to show a little more of

the problems that may appear.

-- Well, this item here is just another one, but it has some sub items as can be

seen below:

The higher indentation tells us that this item belongs to a nested

group.

The ’sharp’ sign tells us that the item list, well it is an

enumeration.

But now, let us have a table environment, because this is now

real fun.

\table: Tabular which shows some things just for demonstration.

Product && Price $/pp && Amount [$] __

Shoes 10,21 5 @@

Socks 1,23 2 @@

Gloves 3,00 2 __

-- Suddenly, we are in the first item list again ...

And eventually, all the item lists are closed and we are reading ...

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Outline

1 Introduction

Optimized Code Appearance

Paradigms of ŞäferTEX

2 Lexical Analysis

Processing

The Country Hut Solution

3 Parsing

The ŞäferTEX Engine

Achievements (Brief)

4 Summary

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Lexical Analysis III
The Country Hut Solution

\quote: Der Apfel fällt nicht weit ...

\n

indentation=0

indentation=0

CHAMBER

push<%%

%%>
pop

{emptyŦline}

\n

%%
[^\n]*\n

[^\n]*<%%

%%>

%%

\n

else

FRONT_GARDEN_COMMENT

FRONT_GARDEN

COMMENT_UNTIL_NEWLINE

ANTECHAMBER

CHAMBER_COMMENT

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Lexical Analysis III
The Country Hut Solution

\quote: Der Apfel fällt nicht weit ...

\n

indentation=0

indentation=0

CHAMBER

push<%%

%%>
pop

{emptyŦline}

\n

%%
[^\n]*\n

[^\n]*<%%

%%>

%%

\n

else
FRONT_GARDEN

FRONT_GARDEN_COMMENT

COMMENT_UNTIL_NEWLINE

ANTECHAMBER

CHAMBER_COMMENT

FRONT_GARDEN

Frank-René Schäfer ŞäferTEX

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

W
E

T
0
4

Ş
ä
fe

rTE
X

:
S

o
u
rc

e
C

o
d
e

E
s
th

e
tic

s
fo

r
A

u
to

m
a
te

d
T
y
p
e
s
e
tte

rs

F
ra

n
k
-R

e
n
é

S
c
h
ä
fe

r

8
9

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Lexical Analysis III
The Country Hut Solution

\quote: Der Apfel fällt nicht weit ...

\n

indentation=0

indentation=0

CHAMBER

push<%%

%%>
pop

{emptyŦline}

\n

%%
[^\n]*\n

[^\n]*<%%

%%>

%%

\n

else
ANTECHAMBER

FRONT_GARDEN_COMMENT

FRONT_GARDEN

COMMENT_UNTIL_NEWLINE

CHAMBER_COMMENT

ANTECHAMBER

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Lexical Analysis III
The Country Hut Solution

\quote: Der Apfel fällt nicht weit ...

\n

indentation=0

indentation=0

CHAMBER

push<%%

%%>
pop

{emptyŦline}

\n

%%
[^\n]*\n

[^\n]*<%%

%%>

%%

\n

else
ANTECHAMBER

FRONT_GARDEN_COMMENT

FRONT_GARDEN

COMMENT_UNTIL_NEWLINE

CHAMBER_COMMENT

CHAMBER

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Processing

The Country Hut Solution

Lexical Analysis
Achievements on Lexical Analysis

1 Object Oriented Lexical Analysis (-> ’quex’)

2 Country Hut Solution

(Framework for indentation based lexical analysis)

3 Platform for the ’3 Paradigms of ŞäferTEX’

4 Classical Token Stream as Output

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

The ŞäferTEX Engine

Achievements (Brief)

Outline

1 Introduction

Optimized Code Appearance

Paradigms of ŞäferTEX

2 Lexical Analysis

Processing

The Country Hut Solution

3 Parsing

The ŞäferTEX Engine

Achievements (Brief)

4 Summary

Frank-René Schäfer ŞäferTEX

W
E

T
0
4

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

9
0

Ş
ä
fe

rTE
X

:
S

o
u
rc

e
C

o
d
e

E
s
th

e
tic

s
fo

r
A

u
to

m
a
te

d
T
y
p
e
s
e
tte

rs

F
ra

n
k
-R

e
n
é

S
c
h
ä
fe

r

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

The ŞäferTEX Engine

Achievements (Brief)

Parsing
The ŞäferTEX Engine

This is some example text

\author Frank R. Schaefer
 Franzstr. 21
 50931 Cologne, Germany

() Abstract abstract.st

(*) Introduction intro.st
(**) Sense and Nonsense of Examples nonsense.st
(**) Explanations w/o examples explanation.st

(*) Examples in Daily Practis daily.st

(*) bla bla bla blah.st

document

code files

token stream

parse tree

code
generator

lexical
analysis

parsing

Typesetting

Engine Core

ŞäferTEX

LATEX

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

The ŞäferTEX Engine

Achievements (Brief)

Outline

1 Introduction

Optimized Code Appearance

Paradigms of ŞäferTEX

2 Lexical Analysis

Processing

The Country Hut Solution

3 Parsing

The ŞäferTEX Engine

Achievements (Brief)

4 Summary

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

The ŞäferTEX Engine

Achievements (Brief)

Parsing

Problems

1 Proliferation of rules

2 Confusion by Precendence rules

3 Malformation of parse trees

Solutions
1 Improvements to parser generator (-> ’Lemon++’ and

’quakk’)

1 Grammar clarity by separation of rules and rule action
2 Streaming ability of operational classes
3 Automatic C++ code generation for non-terminal tokens

2 Avoidance of Precendence

3 Automatical XML code generation for parse tree

Frank-René Schäfer ŞäferTEX

Introduction

Lexical Analysis

Parsing

Summary

Demonstration

Summary

Development of tools for lexical analysis: Quex

(Object oriented pattern recognition)

Development of tools for parser generation: Lemon++ and

Quakk.

(Clarity of code and Ease of programming)

Stable platform for the ’3 Paradigms of ŞäferTEX’

Automatic Scope/Group Detection

Indentation as Scope Delimiter
Intuitive Treatment of Characters

First official release of ŞäferTEX 0.0.0 at sourceforge.net

Frank-René Schäfer ŞäferTEX

P
ro

c
e
e
d
in

g
s

E
u
ro

TE
X

2
0
0
5

–
P

o
n
t-à

-M
o
u
s
s
o
n
,
F

ra
n
c
e

W
E

T
0
4

Ş
ä
fe

rTE
X

:
S

o
u
rc

e
C

o
d
e

E
s
th

e
tic

s
fo

r
A

u
to

m
a
te

d
T
y
p
e
s
e
tte

rs

F
ra

n
k
-R

e
n
é

S
c
h
ä
fe

r

9
1

Mem. A multilingual package for LATEX with Aleph

Javier Bezos
Typesetter and consultant
http://perso-wanadoo.es/jbezos/

http://mem-latex.sourceforge.net/

jbezos@users.sourceforge.net

Abstract

Mem provides an experimental environment for multilingual and multiscript type-
setting with LATEX in the Aleph typesetting system. Aleph is Unicode-savvy and
combines features of Omega and eTEX. With Mem you should be able to typeset
Unicode documents mixing several languages and several scripts taking advantage
of its built-in OCP mechanism and with a high level interface.

Currently still under study and development, Mem is designed to be capable
of following the development of Omega and LATEX3, and I’m publishing it to
encourage other people to think about the ideas behind it and to discuss the
advantages and disadvantages of several approachs to the involved problems.

The project is now hosted in the public respository SourceForge.net to open
its development to other people.

Introduction

Until now, the only way to adapt LATEX for it to
become a multilingual system is babel; although an-
other systems like mlp (by Bernard Gaulle) or poly-

glot (by me) have appeared now and then, in prac-
tice only babel is used. It exploits TEX in order to
accomplish some tasks which TEX was not intended
for, like right to left writing and transliterations,
but it’s clear that the next step requires features
not available in TEX. Further, while one can write
documents in several languages, babel is esentially
a way to change the main language in monolingual
documents.

Long ago, Omega and ε-TEX developement
started independently and recently a new project
named Aleph, combining features from both sys-
tems, has been launched. There are several pack-
ages for specific languages taking advantage of the
features in Omega (devnag, makor, CJK, etc.) and
the package omega provided a few macros to ease its
use, now expanded with the name of Antomega by
Alexej Kryukov [5], but they don’t provide a generic
high level interface to add a language and to syn-
chronize it with other languages in a consistent and
flexible framework. On the other hand, LATEX3 con-
tinues evolving and one of its aims is to have built-in
multilingual capabilities.

It is in this context that Mem was born. Actu-
ally, it was born several years ago with the name of
Lambda and presented in the Fifth Symposium on

Multilingual Information Processing (Tokyo, 2001),
but for several reasons its development was paused.1

Its goal is twofold: in the short-term, to provide a
real working package for Aleph to become useable
with LATEX, taking advantage of features like the
OCP mechanism; in the mid-term, to use the expe-
rience gained with a real life system in order to de-
velop better multilingual environments with LATEX3
and Omega.

The rest of this paper of devoted to highlight
some of the issues and therefore it does not intend
to be exhaustive. To get a full picture of the pack-
age please refer to the manual [3], which is being
written at the same time as the package, because I
think the documentation is an integral part in the
development process. I’ve divided the topics in two
parts, those related directly to TEX, and those re-
lated to the Aleph/Omega extensions, particularly
to the OCP mechanism.

The TEX part

Organizing and selecting features Language
commands are grouped in components, with a few
predefined ones—namely, names, date, tools and
text. At first sight this resembles babel, but in fact
this similitude is only superficial, because you are
free to organize and to select components. The limit

1 There is no paper, but you can find the slides on http://

perso.wanadoo.es/jbezos/mlaleph.html. In fact, Mem was
born even before, in 1996, with the name of polyglot as I shall
explain shortly.

MOT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

92 Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

would be a component per macro but this does not
seem sensible; for example, left and right guillemets
could be a single group. On the other hand, too
many components would be unconvenient for the
user. I think a sort or component/subcomponent
model should be devised (eg, text.guillemets),
and at the time of this writing I’m working on a
system to allow even decisions at macro level like
text.guillemets.\lguillemet.

This poses the problem to determine which
components are active at a certain point of the doc-
ument. There are, of course, systems like those
in CSS and other formatting languages based on
description rules for transfomations based on con-
tent (for example, with the keywords inherit and
ignore). However, TEX allows programmable rules
for transformation based on format and such a
model seems very limited (and the term “inherit”
can be inappropiate in the context of an object-like
environment).2 Unlike CSS, with its closed set of
properties, TEX allows creating new properties and
therefore new ways to organize the document layout.

There is a proposal from Frank Mittelbach and
Chris Rowley [7] based on nesting levels, with com-
ments about the main issues to be addressed, but
since this paper is somewhat abstract regarding the
possible solutions it’s difficult to determine if that
model will be enough for many purposes. In par-
ticular, it presumes the structure of the document
is a tree, and therefore, as its authors point out,
the model has to be extended to provide the neces-
sary support of “special regions” that receive con-
tent from other parts of the document.

A basic idea in that paper is that there is a
base language for large portions of text as well as
embedded languages segments, which are nestable.
Although in a limited way, these concepts shown
at TUG 1997 related to a clear separation between
base and embedded languages were present at that
time in my own polyglot package (first released early
1997) whose code I used as the base to develop
Lambda and now Mem.

On the other hand, Plaice and Haralambous in
[9] and I (in Lambda) proposed independently to fol-
low a model based in context information; the ver-
sioning system for Omega described in the former
has been worked out and much extended from a the-
oretical point of view in [11] by Plaice, Haralambous
and Rowley, with the introduction of the concept of
a typographical space. Unfortunately, such a model
cannot be carried out in full with TEX and it has not

2 See [2]. An English summary is availaible on http://

mem-latex.sourceforge.net.

been implemented in Omega, but to me it’s clear it
should be taken as a guide for Mem, and for that
matter for any multilingual environment. At the
time of this writing I was studying how to tackle
this task and the resulting model will be left for a
future paper.

Never again default values! In a well-known ar-
ticle published in the TUGboat ten years ago, Hara-
lambous, Plaice and Braams proclaimed “Never
again active characters!” [4]. Now I proclaim
the end of another source of problems in the babel

package—namely, default values. Actually, default
values are mainly associated with active characters,
but they are also present in macros. Having default
values for a certain language is not a bad thing, but
when those values are restored every time the lan-
guage is selected and they cannot be redefined with
the standard LATEX procedures then problems arise.

In Mem, a default value in a language is only a
proposal, while the final decision is left to the user,
which can change it by means of \renewcommand,
\setlenght and similars. No special syntax is re-
quired, like for example \addto\extrasspanish.
The behaviour of language commands is exactly
that of normal commands, except that their values
change when the language changes.

A macro is made specific for a certain language
with \DeclareLanguageCommand, which provides a
default definition to be used if the users likes it;
if you don’t like it, you can redefine it, since the
default value is not remembered any more. Outside
that language, there could be macros with similar
names, but they are not language specific (except if
defined for another language, of course).

Furthermore, if a language defines an undefined
macro, this is only defined in the context of that
language and you not are required to provide a de-
fault for another language, because I firmly believe
loading a language should not change at all the be-
haviour of another language. In other words, with
Mem languages are much like black boxes.

A good example could be the Basque language,
which places the figure number before the figure
name. For that to be accomplished we must make
Basque dependent several internal macros. Consid-
ering the number of languages and the fact we can-
not know a priory which changes will be necessary,
the fact languages can (or even must) decide which
macros have a default value could lead to an unman-
ageable situation which could even prevent a proper
writing of packages, because we don’t know if we
need to use \(re)newcommand or something else.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

93

The Aleph/Omega part

OTP files The OCP mechanism provides a pow-
erful tool to make a wide range of text transfor-
mations which are not possible with preprocessors.
Since OCPs perform transformations after expand-
ing macros, we can guarantee all characters, and
not only that directly “visible” in the document, are
taken into account. One of the main aims of Mem

is to develop a high level interface for them, because
using the Omega primitives is somewhat awkward.
Moreover, since OCPs must be grouped in OCP-lists
before actually applying them, the advantages of a
high level interface becomes aparent—OCP-lists are
hidden to users and language developers and they
are built and applied on the fly depending on the
language and the context, thus avoiding the dan-
ger of a combinatorial explosion [11, p. 107]. For
further details on how OCPs works, see the Omega
documentation [8] and the very useful case study
[10].3

A key concept in Mem is that of process, a
set of OCPs performing a single logical task. Very
often, a task cannot be carried out by just one
OCP, but in more complex cases a set of interre-
lated OCPs will be necessary. A very good example
of this is the devnag package for Omega by Yan-
nis Haralambous, where mapping from Unicode to
the target font requires three OCPs. At the time
of this writing I’m working on OCPs to handle the
Latin/Cyrillic/Greek family of scripts, which is be-
ing a lot more involved as one could think at first
sight, and very likely a set of three OCPs will be
necessary to carry out the single process of mapping
from Unicode to the T1, T2n and LGR encodings.4

This is particularly true for Greek with its many
possible ways to represent the many possible com-
binations of letters and accents, which is far from
trivial.5

3 Still, the former is very technical and the latter is very
basic, and unfortunately an “intermediate” manual explain-
ing the implications of OCPs is not available yet, thus mean-
ing developing OTPs must be done very often by trial and
error. The Aleph Task Force and I are considering the possi-
bility to write such a manual.

4 In addition, it should be investigated if several of the
tasks done by these OCPs can be delegated to a virtual font.

5 And the LGR encoding has some odd assignments, like
placing greek psili and oxia at "5E (^) thus having the cat-
code of superscript. There is another symbol mapped to the
backslash. That would not be important except for a long-
standing bug in how OCPs treat catcodes which the Aleph
Task Force is trying to fix, because it’s a critical one. Since
there are very few LGR fonts, and very likely their number
will not increase, I’m thinking about removing the support
for that encoding and instead to write a virtual file. To add
further confusion, the Omega standard font omlgc moves the
Unicode Greek Extended chars to a non standard placement.

It’s important to remember where OCPs are
not applied: when writing to a file (e.g., the aux file),
in \edef’s, in arguments of primitives like \accent,
and in math mode. The latter is a serious limi-
tation, and the Aleph Task Force is working on a
solution. This means Mem has done very little in
these areas, except redefining \DeclareMathSymbol

to allow higher values.

Extending OTP syntax: MTP files Perhaps
the main limitation of OTP files, containing the
source code of OCPs, is that the only letters we can
use are those in the ASCII range, while for the rest
of the Unicode range we must use numerical values.
MTP files have been devised to overcome these lim-
itations so that we can use Unicode names instead
of numbers (see figure 1). Currently, they are con-
verted to OCP with a little script named mtp2ocp,
a preprocessor written in Python.

Another addition to OTPs is that it maps spa-
cial characters to several points in the Private User
Area whose catcodes are fixed (as defined by the
Mem style file). This way, characters like \, {, $,
etc., have the expected behaviour even in verbatim
mode.

I hope MTP files could help in the near future to
make the task somewhat simpler, so suggestions are
most welcome. This way we can have prototypes to
experiment with, so that in the future otp2ocp itself
could be extended with new features if necessary.
(One of the reasons I use Python is that it’s a great
language for prototyping.)

Unicode as input encoding Unicode, unlike
many other encodings, clearly separates characters
and glyphs. This means that at character level, Uni-
code can introduce controls to provide further infor-
mation about these characters, including how they
should be rendered. It is expected that this infor-
mation has to be processed in order to decide which
glyph to use. Traditional font formats (TrueType
and PostScript) do not have this capability or it is
limited.

Unicode, considered as an input encoding, is
quite different from other encondings and poses sev-
eral challenges which must be taken into account if
we want to read properly Unicode text. Currently,
conversions done by LATEX packages or Omega OCPs
just ignore these controls and instead it is supposed
the user must supply them with TEX macros.

For example:6

• letters with diacriticals, either composed or de-
composed,

6 For some hints on that, see [13]

MOT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

94 Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

.......................

[LATIN CAPITAL LETTER L WITH STROKE] => <= @"8A ;

[LATIN SMALL LETTER L WITH STROKE] => <= @"AA ;

[LATIN CAPITAL LETTER N]{botaccent}<0,>[COMBINING ACUTE ACCENT]

=> <= @"8B \(*+1-1);

[LATIN SMALL LETTER N]{botaccent}<0,>[COMBINING ACUTE ACCENT]

=> <= @"AB \(*+1-1);

[LATIN CAPITAL LETTER N]{botaccent}<0,>[COMBINING CARON]

=> <= @"8C \(*+1-1);

[LATIN SMALL LETTER N]{botaccent}<0,>[COMBINING CARON]

.......................

[LATIN SMALL LETTER I WITH MACRON]

=> <= [LATIN SMALL LETTER I][COMBINING MACRON];

[LATIN CAPITAL LETTER I WITH BREVE]

=> <= [LATIN CAPITAL LETTER I][COMBINING BREVE];

......................

[CENT SIGN] => "\UseMemTextSymbol{TS1}{162}";

[POUND SIGN] => "\UseMemTextSymbol{TS1}{163}";

[CURRENCY SIGN] => "\UseMemTextSymbol{TS1}{164}";

[YEN SIGN] => "\UseMemTextSymbol{TS1}{165}";

......................

<acc> [COMBINING GRAVE ACCENT] => "\UseMemAccent{t}{0}";

<acc> [COMBINING ACUTE ACCENT] => "\UseMemAccent{t}{1}";

<acc> [COMBINING CIRCUMFLEX ACCENT] => "\UseMemAccent{t}{2}";

Figure 1: Several chunks from MTP files using Unicode names. Currently symbols are hardcoded, not an
ideal situation.

• ligatures marked with zero width joiner,7

• hyphens, non breaking hyphens, non breaking
spaces, etc.,

• fixed width spaces,

• variation selectors,

• byte order mark.

In order to unify the character encoding used
in style files, only utf-8 and explicit Unicode values
(eg, ^^^^0376) are used, but that poses the prob-
lem with a non-Unicode document since changing
the OCP for the input encoding would mean kern-
ing and ligatures are killed. To overcome this well
known TEX limitation, input OCPs use an internal
switch mechanim to escape temporarily to utf-8 or
utf-16 (see figure 2). The trick is to pass information
to the OCP with the character ^^1b, whose mean-
ing in many character encodings is ESCAPE, followed
by another character with the operation to be per-
formed. I’m not sure if this mechanims is robust
enough, but if it were the idea could in the future
serve as a way to pass context information to a cer-
tain OCP so that its behaviour may be changed,
although of course a built-in mechanism as that pro-
posed by John Plaice et al. [11] would be preferable.

7 The semantics of this character has been extended in
Unicode 4.0 and now can be used to mark ligatures [12, p.
389ss]

f\unitext{^^^^0069}

fi fi

\unitext{^^^^0066}i

Figure 2: Entering a Unicode character with
Mem does not break ligatures.

LATEX Internal representation This section is
devoted in part to a few ideas which I put forward
in the LATEX3 list, which was followed by a very
long discussion about a multilingual model (or more
exactly, multiscript) for LATEX. These ideas lead to
introduce the concept of LICR (LATEX internal char-
acter representacion). Actually, LATEX has for a long
time had a rigorous concept of a LATEX internal rep-
resentation but it was only at this stage that it got
publicly named as such and its importance realised.8

The reader can find more on LICR in the second edi-
tion of The LATEX Companion, by Frank Mittelbach
and others [6, section 7.11.2].

What LICR does is essentially to ensure there
is only a way to represent a certain character so that

8 Chris Rowley, “Re(2): [Omega] Three threads”, e-mail
to the Omega list, 2002/11/04.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

95

different input methods (say, á and \’{a}) lead to
the same representation (in that case \’a) and that
this representation is able to find a correct glyph
somehow.9 The required funtionality for that to be
accomplished is splitted in two well know packages—
namely, inputenc and fontenc.

As far as I know, no paper explaining the tech-
nical details of the LICR has been published, so I’m
going to attempt an operational definition. Before
doing that, I think remembering different kinds of
TEX expansion process is to the point (I exclude one
level expansion as done by \expandafter):

• \def no expansion.

• \edef expands anything except non expandable
tokens.

• protected \edef expands anything except non
expandable tokens and protected tokens (even
if expandable).

• execution expands anything and performs the
actions of primitives.

So, we can say LICR is what we get in a protected
expansion.

Unicode provides this kind of “internal repre-
sentation” but without the normalization of LICR.
Let’s remember Unicode allows representing char-
acters with diacritics in composed form (eg, ä) or
in decomposed form (eg, a¨), and that these forms
may be normalized to either composed or decom-
posed forms. There are three possibilities:

• normalizing to composed forms.

• normalizing to decomposed forms.

• not normalizing at all.

Decomposition has, in turn, several types, but we
won’t discuss them in this paper.

The questions here are: Is it possible the pre-
serve the LICR in Mem?; if so, must be the LICR
preserved in Mem? Does it fit in the Unicode model?

In order to answer these questions, we must re-
member the LICR relies heavily in active charac-
ters, which will be replaced in Mem by OCPs. Fur-
thermore, macros are expanded and executed (see
above) before OCPs are aplied thus making impos-
sible any attempt to catch things like \’a. It seems
that an alternative method to inputenc/fontenc
must be provided.

Once we have an expanded string, characters
are normalized to decomposed characters instead of
the composed form favoured by the Web Consor-
tium, for example (it should be noted that in the
LICR letters are decomposed). The reasons are

9 Note the LICR is not necessarily a valid input method,
because \’a is not always correct in LATEX.

\u{ȩ}

ḝ \u{\c{e}}

\c{ĕ}

Figure 3: Several ways to input the same
character. With Mem the four are strictly
equivalent, because they are converted to Unicode
and normalized. With the NFSS, if ȩ does not
exist, then the ˘ is always faked. However, with
Mem, if ȩ does not exists but ĕ does, then¸is
added to the real composite character.

mainly practical, because the composed form to be
selected in some cases depends on the glyphs avail-
able. Since normalizing to composed forms would
require decomposing, sorting diacriticals and then
composing, and font processes would require decom-
posing again and sorting again to see if there are
matching glyphs for the first accent above or the first
accent below (or even a combination of both), by us-
ing directly the decomposed form we are avoiding a
lot of overhead (see figure 3). In fact, the Unicode
book says [12, p. 115]:

In systems that can handle nonspacing
marks, it may be useful to normalize so as
to eliminate precomposed characters. This
approach allows such systems to have a ho-
mogeneous representation of composed char-
acters and maintain a consistent treatment of
such characters.

This dual representation of characters is what is
making processes for the Latin/Cyrillic/Greek script
so complex, but we have to deal with them if we
want a Unicode typesetting engine.

The Latin script has a rich typographical his-
tory, which not always can be reduced to the dual
system character/glyph. As Jaques André has
pointed out, “Glyphs or not, characters or not, types
belong to a class that is not recognized as such” [1].
Being a typesetting system, neither Aleph nor Mem

can ignore this reality, and therefore we will take
into account projects like the Medieval Unicode Font
Initiative (MUFI)10 or the Cassetin Project. How-
ever, it doesn’t mean a Unicode mechanism will be
rejected when available. For example, ligatures can
be created with the zero width joiner. If there

10 http://www.hit.uib.no/mufi/

MOT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

96 Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

is a certain method to carry out a certain task in
Unicode, it will be emulated.

Diacritical marks The Unicode 4.0 book states
[12, p. 184] when discussing spacing modifier letters:

A number of the spacing forms are covered
in the Basic Latin and Latin-1 Supplement
blocks. The six common European diacritics
that do not have encodings there are added
as spacing characters.

In other words, except for these six diacrit-
ics (U+02D8-U+02DD), the spacing forms of com-
bining characters are those in the range U+0000-
U+00FF. Unfortunately, it happens this is not true,
since the spacing caron accent (U+02C7) is not
encoded in these blocks. Further, one of these
six diacritics encoded separately—namely, the tilde
U+02DC—does exist in these blocks (U+007E).

What to do, then? One will be forced to find
some kind of hint, and one can do it readily—all
characters in the block Spacing Modifier Letters
are prefixed with modifier letter, except the six
spacing clones and caron (U+02C7). From this,
we can infere that the right spacing form for the
circumflex accent is not the modifier letter vari-
ant, but the one in the Basic Latin Block, exactly
like the acute accent. No doubt the “small” tilde
has been encoded separately because the ASCII tilde
has already a special meaning in several OS’s.

Still, I think there is a better solution, or rather
a better encoding which does not pose this problem.
Since the glyphs for diacritics are mainly intended
for use with the \accent primitive, one can conclude
they are, after all, combining characters. The fact
we need further processing with TEX does not pre-
vent considering these glyphs conceptually as non-
spacing characters—this is just the way TEX works.
Since composing diacritical marks are encoded anew
in Unicode, we don’t need to be concerned with
legacy encodings and their inconsistencies.

Conclusions

In this paper I have scratched only the surface of
some topics, which deserve by themselves a whole
paper. In addition, many others have not been even
treated like for example:

• Hyphenation, including patterns for Unicode-
like fonts.

• Automatic selection of languages and fonts de-
pending on the current script.

• Since letters are not active any more, one should
be allowed to write \capı́tulo or \κǫφάλαιo
instead of \chapter.

• Fonts—monolythic or modular?

• OpenType—must its information be extracted
so that it’s under our control? (However, using
OpenType fonts with TEX is still a failed sub-
ject, although there are interesting projects like
XeTEX.11)

Before finishing this paper, I would like to cite
Frank Mittelbach in a message posted to the LATEX3
list:

The fact that we don’t agree with some points
in it only means that the processes are so
complicated that we haven’t yet understood
them properly and so need to work further
on them.

I hope Mem will provide an environment which
would help us (including me) to understand better
how OCPs work as well the issues a multilingual
system poses.

References

[1] André, Jacques: “The Cassetin Project – To-
wards an Inventory of Ancient Types amd the
Related Standardized Encoding”, Proceedings
of the Fourteenth EuroTEX Conference, Brest
(France), 2003.

[2] Bezos, Javier: “De XML a PDF, tipograf́ıa
con TEX”, Proceeding of the IV Jornadas de
Bibliotecas Digitales, Alicante, Spain, 2003 [in
Spanish].

[3] Bezos, Javier: “Mem: A multilingual envi-
ronment for Lamed/Lambda”, 2004, CTAN:

macros/latex/exptl/mem/mem.pdf

[4] Haralambous, Yannis, John Plaice and Jo-
hannes Braams: “Never again active charac-
ters! Ω-Babel”, TUGboat, Volume 16 (1995),
No. 4.

[5] Kryukov, Alexej: Typesetting Multilingual doc-
uments with Antomega, 2003, TeXLive2003:

texmf/doc/omega/antomega/antomega.pdf.

[6] Mittelbach, Frank, and Michel Goossens: The
LATEX Companion, Addison-Wesley, 2nd ed.,
2004.

[7] Mittelbach, Frank, and Chris Rowley: “Lan-
guage Information in Structured Documents:
A Model for Mark-up and Rendering”,
http://www.latex-project.org/papers/

language-tug97-paper-revised.pdf.

[8] Plaice, John, and Yannis Haralambous:
“Draft documentation for the Ω system”,
2000, TeXLive2003:/texmf/doc/omega/base/
doc1-12.ps.

11 http://scripts.sil.org/cms/scripts/page.php

?site id=nrsi&item id=XeTeX& sc=1

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

97

[9] Plaice, John, and Yannis Haralambous: “Sup-
porting multidimensional documents with
Omega”, Fifth International Symposium on
Multilingual Information Processing, Tokyo,
Japan, 2001, http://omega.enstb.org/

papers/dimensions.pdf.

[10] Plaice, John, and Yannis Haralambous: “Mul-
tilingual typesetting with Ω, a Case Study:
Arabic”, TeXLive:/texmf/doc/omega/base/

torture.ps.

[11] Plaice, John, et al.: “A multidimensional ap-
proach to typesetting”, TUGboat, Volume 24
(2003), No. 1.

[12] The Unicode Consortium: The Unicode Stan-
dard, Version 4, Addison-Wesley, 2003.

[13] The Unicode Consortium: Unicode in XML
and other Markup Languages, Unicode Techni-
cal Report #20, W3C Note 13 June 2003.

MOT01 Proceedings EuroTEX2005 – Pont-à-Mousson, France

98 Mem. A Multilingual Environment for LATEX with Aleph

Javier Bezos

Omega Becomes a Sign Processor

Yannis Haralambous
ENST Bretagne

yannis.haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

Gábor Bella
ENST Bretagne

gabor.bella@enst-bretagne.fr

Characters and Glyphs

The distinction between “characters” and “glyphs”
is a rather new issue in computing, although the
problem is as old as humanity: our species turns out
to be a writing one because, amongst other things,
our brain is able to interpret images as symbols be-
longing to a given writing system. Computers deal
with text in a more abstract way. When we agree
that, in computing, all possible “capital A” letters
are represented by the number 65, then we cut short
all information on how a given instance of capital let-
ter A is drawn. Modern computing jargon describes
this process as “going from glyphs to characters.”
If a glyph is the image of a writing system’s atomic
unit, a character is an interpretation of that image,
an interpretation shared by many glyphs drawn by
different people in different places at different times.
If all these drawings are equivalent in terms of in-
terpretation, we can consider character as an equiv-
alence class of glyphs. To be operational such an
equivalence class must be described in a clear and
unambiguous way. This is why we define charac-
ter as being a description of an equivalence class of
glyphs [7, pp. 53–58], [6].

Arabic text provides a typical illustration
ground for the concepts of character and glyph. In
Arabic alphabet, letters are contextual, in the sense
that a given letter will change form according to
the presence or absence of other surrounding ones.
When we refer to an Arabic letter and represent it
graphically, we use the isolated form. We can also
refer to it by its description (for example: arabic

letter jeem) and this can be considered as de-
scription of a “character”: the equivalence class of
shapes this letter can take in millions of Arabic doc-
uments. While there may be millions of instances of
this letter, according to Arabic grammar they all be-
long to one of only four forms: isolated �, initial �,

medial �, or final �. Hence, we could choose to have

not one but four equivalence classes of shapes: ara-

bic initial letter jeem, arabic medial letter

jeem, and so on. But are these “characters”?
Answering to this question requires a pragmatic

approach. What difference will it make if we have
one or rather four characters for letter jeem? There
will indeed be a difference in operations such as
searching, indexing, etc. A good question to ask
is: “when I’m searching in an Arabic document, am
I looking for specific forms of letters?” Most of the
time, the answer is negative.1 Form-independent
searching will, most of the times, produce better re-
sults and this implies that having a single character
for all forms is probably a better choice.2

Unicode is a character encoding. In other
words, it contains descriptions of characters and
tries hard to define characters properly by avoiding
dependence on glyphs.3

1 Arabic words are not always visually segmented as En-
glish ones—there is, for example, no guarantee that the first
letter of a word will always be in initial form: if a word start-
ing with jeem is preceded by the definite article al, then the
jeem will end up being in medial form.

2 Greek is different: sigma doesn’t “become” final because
it “happens” to be at the end of a word. While medial sigma

can appear anywhere, final sigma is used mainly for the end-
ings of particular grammatical forms and in onomatopeias or
foreign words. One would hardly ever search for both the fi-
nal and medial form of sigma since their rôles are distinct.
To illustrate this, when we abreviate a word by a period at
a sigma then the latter does remain medial despite being the
final letter: φιλοσοφ¬α → φιλοσ. Hence it is quite logical to
use distinct characters for medial and final sigma.

3 This is not always the case because of Unicode’s
tenth founding principle, namely convertibility of legacy
encodings—and legacy encodings contain all kinds of things.
For example, again in the case of Arabic, the main Unicode
Arabic table indeed contains only form-independent “char-
acters.” But, hidden towards the end of the first Unicode
plane, one finds several hundreds of codepoints containing
Arabic letters and ligatures in fixed forms, for legacy reasons.
Like human history (or Stephen King’s movies) Unicode has
shadowy places which people try to avoid and even to forget
that they exist.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

99

The character vs. glyph issue is far from being
solved. In this paper we give an attempt to tran-
scend it by introducing a new concept: the sign.

A sign is a set {c, p1 = v1, . . . , pn = vn, g} where c

is a character, g a glyph, and pi an arbitrary num-
ber of named properties taking values vi. Charac-
ter, glyph, number of properties, their names and
their values can be changed at any time, by spe-
cial syntax in the input file, or by OTPs, or by
interaction with fonts.

Using the term “sign” we clearly refer to a Saus-
surian linguistics tradition whose relevance for
nowadays semiotics needs not to be proven. For
Saussure [11, p. 99], sign is the basic discrete unit
of meaning. It is a dual entity made up of a signifier
and a signified. For instance, when we write or pro-
nounce the word “tree,” the visual or auditory image
of this word is the signifier and the concept of tree is
the signified. Inspired of this analysis one could at-
tempt to apply the notion of sign to characters and
glyphs, by asserting that glyph is signifier, and char-
acter is signified. Nevertheless, in semiotics things
are not that simple because linguists generally deal
with units of meaning rather than with words per
se, and even less with letters. A letter inside a word
is not considered to be a Saussurian sign.

This is why we are bound to warn the reader
that our concept of sign is inspired from but not
identical to Saussurian sign.

In Principio Creavit Knuth TEXum

How does TEX deal with characters and/or glyphs?
First of all, .tex files contain characters. When

TEX reads a file, it converts the data stream into to-
kens. A token ([10, §289] or [8], which is an exegesis
of Knuth’s B) is either a “character token” (that is,
two numbers: a character code and the character’s
“category,” which provides the specific rôle played
by the given character code, for example whether it
is a math mode espace character like $, or a com-
ment escape character like %, or a group delimiter
like {, and so on), or a “control sequence token.”

If we leave aside for a moment the fact that TEX
cannot read character codes above 255, one could
claim that “character tokens” can still be considered
as “characters.” What happens next?

Parsing these tokens, TEX builds node lists
(horizontal and vertical). A node is a typed atomic
unit of information of a list. The amount and nature
of data contained in nodes depend on their type. A
“character node” [10, §134] (or “charnode”) is made
of two numbers: a font ID and the position of the
glyph in the font table. But the latter is not bound

to have any relation whatsoever with its character
code. Obviously, we can hardly talk about charac-
ters at this point: we have crossed the bridge to
Glyphland.

Another very interesting node type is the “lig-
ature node” [10, §143]. This one contains a font ID,
a glyph position in the font table, and a pointer to
a linked list of charnodes. This list is in fact the
“decomposition” of the ligature. TEX needs it in
case it has to “break” the ligature during paragraph
building, for example when a word needs to be hy-
phenated inside a ligature.

Talking about hyphenation, there is a node
called “discretionary node” [10, §145]. This node
contains two pointers to horizontal lists, as well as
an integer. These horizontal lists are what is type-
set when we break a word, before and after the line
break (in standard cases the first one contains only a
hyphen, and the second one is empty). The integer
is the number of nodes of the main horizontal list
to delete if the word is hyphenated (in other words:
how many nodes to replace by the two horizontal
lists we mentioned).

As we see, in the three node types de-
scribed above only glyphs are used—never charac-
ters. There seems to be a contradiction with the
very nature of hyphenation: after all, words are hy-
phenated according to rules given by natural lan-
guage grammars, and these grammars apply to char-
acters, not to glyphs. Indeed, would you hyphenate
a word differently if some letters had calligraphic
shapes? Certainly not, but for TEX, these letters
are glyphs in font tables, and if variant forms exist,
then their positions in the font tables are necessar-
ily different from the standard ones. How does TEX
deal with this?

There is in TEX a primitive called \lccode (and
a corresponding WEB macro called lc code). Each
glyph in a font participating in hyphenation has nec-
essarily a lc code value. These values are usually
initialized in the format.

lc code is in fact a mapping between glyphs and
characters. Hyphenation rules are written using pat-
terns, and patterns use characters. When TEX needs
to hyphenate words in a paragraph, it first maps
glyphs back to characters using lc code [10, §892–
899], and then applies hyphenation rules.

This method seems to work, but the user must,
at all times, use the appropriate lc code settings for
each font.4

4 It is worth mentioning that lc code has a big advantage
after all: it allows simplification of hyphenation patterns.
Indeed, instead of mapping a glyph to the precise character
it represents, one can use equivalence classes of characters.

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

100 Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

Let us continue our journey through TEX and see
what happens in the final stage. There is no
surprise: the information contained in charnodes
(namely font ID and glyph position) is output to
the DVI file [10, §619]. Ligature nodes are treated
similarly [10, §652]: only font ID and glyph po-
sition of the ligature remains, provided of course
that the ligature has survived hyphenation. Discre-
tionary nodes vanish long before output since either
hyphenation has occured and the two horizontal lists
pointed by the node have found their way into the
DVI file, or no hyphenation has occured and the
discretionary node falls into oblivion.

When TEX and the DVI file format were devel-
oped, this was the best possible approach: DVI files
had to be short, and there was no need to insert more
information than required to print. And indeed, a
printing device doesn’t care whether a glyph is a lig-
ature or whether it derives from hyphenation; print-
ing is done in Glyphland, at the very end of the line
of document production process. Even PostScript
language didn’t change that situation, although it
made printing devices more clever (clever enough to
interpret a very rich prgramming language).

Dixitque Berners Lee: fiat Web
et facta est Web

Things changed when DVI and PostScript were
not anymore the only targets of TEX document
production process. The Web brought the era of
electronic documents in various formats such as
PDF, XHTML, etc. These documents allow inter-
action with textual contents: copy-and-paste of text
blocks, searching, indexing, etc.

When we search for a word inside a document,
or in a collection of documents, do we care about the
shape of its letters? Most of the time, the answer is
no. Otherwise, it would be quite hard to find a word
in a document written in Zapfino or Poetica, since
one has to predict the precise variant form used for
every letter, and there are many of them.

In this kind of situation one would like to inter-
act with the document on the character level. But
if PDF or XHTML files are produced by TEX, then
the information on characters is lost. A very sim-
ple example: if ‘fi’ is represented in a DVI file as
glyph 12 of font cmr10, with no reference whatso-
ever to the character string ‘f-i’, then how on earth
can we search for the word ‘film’ by entering charac-
ters ‘f’, ‘i’, ‘l’, ‘m’ in our program’s search interface?

For example, in Greek, hyphenation does not (or very rarely)
depend on accents and breathings, so we can map all letters
with diacritics into base letter classes and write patterns using
the latter.

There is no natural solution to this problem.
Acrobat Distiller tries to give an algorithmic so-
lution by using PostScript font glyph names ([7,
pp. 651–653], [1]). The idea is the following: in
PostScript type 1 fonts, glyphs have names (namely
the names of PostScript subroutines which contain
the Type 1 operator glyph’s description); when cre-
ating a variant glyph of, let us say, letter ‘e’, design-
ers are requested to use a name like e.foo where
foo is some description of the variant: the first
part of the name identifies the Unicode character
and the second, the variant; Distiller goes through
all glyph names in all fonts used in a document
and maps glyphs to Unicode characters according
to their names. There is a similar syntax provided
for ligatures (that is: glyphs mapped to more than
one Unicode character).

TrueType fonts have a table (called cmap [7,
pp. 703–706]) dedicated to this mapping: we map
(single) Unicode characters to (single) glyphs.5

These solutions are sub-optimal. There is no
way to modify the mapping between characters and
glyphs without hampering with the font, and this is
not always desirable.

Instead of finding sub-optimal solutions to a
problem which is the consequence of information loss
in the DVI file, let us attack the origin of this prob-
lem. Is it possible to keep character and glyph in-
formation all the way long, from input file to DVI
(and beyond)?

“How now, spirit! whither wander you?”
(Enters Omega1)

One of Omega1’s goals was to achieve Unicode com-
pliance. The least one could expect of Omega1 is
an affirmative answer to the final question of previ-
ous section: Can we obtain Unicode information in
a DVI file?

Before answering that question let us see
whether Omega1 is actually different from TEX
when dealing with characters and glyphs. It isn’t:
Omega1 can read 16-bit characters (some versions
of it can even read UTF-8 representation of Uni-
code data directly), but once inside Omega1, Uni-
code characters become “character tokens” and then
charnodes, ligature nodes and discretionary nodes

5 In fact, things are worse than for PostScript Type 1
fonts: while PostScript glyphs have names (and names are
usually meaningful and stable vs. font trasformations), True-
Type glyphs are accessed by their “glyph index values” which
are plain integers. A TrueType font opened and saved by
some font editing software can be re-organized, glyph index
values can change without further notice, and hence accessing
a glyph directly by its index, without going through the cmap

table, is quite risky.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

101

all the same as in TEX.
How then does Omega1 manage to do Arabic, a

writing system where one just has to go from char-
acters to glyphs? By using OTPs [9]. An OTP is an
internal filter, applied to “character tokens.” It can
be compared to a pre-processor but has some major
advantages: the fact that only tokens are targeted
(not comments, for example), and that the catcode
of each token is known and that transformations
are applied to selected categories only (usually plain
text, that is: catcodes 11 and 12). Furthermore,
OTPs have the tremendous advantage of being dy-
namically activated and de-activated by primitives.

Let us analyse the example of Arabic typeset-
ting via Omega1. When Arabic Unicode characters
are read, they become “character tokens” (the first
part of the token takes the numeric value of the Uni-
code codepoint, the second part is the catcode, in
this case probably 12). No contextual analysis is
done yet. It is an OTP that analyses the context
of each glyph, and, using a finite-state machine, cal-
culates its form; the result of the transformation by
this OTP is one or more new tokens, replacing the
previous ones. These tokens correspond to given
forms of glyphs. Other OTPs will act upon them
and produce esthetic ligatures, and usually the fi-
nal OTP will map these tokens to font-specific ones,
which in turn will become charnodes, and will end
up in the DVI file.

The purpose of keeping only the last OTP font-
dependent is to improve generality and re-usability
of the previous OTPs. But from the moment we
perform contextual analysis we have left Unicode
data behind and are travelling in a no-man’s land
between characters and glyphs. In this de Chirico-
like surreal place, characters are more-or-less “con-
crete” and glyphs more-or-less “abstract.” Obvi-
ously, if the result is satisfying—and this is the case
with Omega1’s Arabic typesetting—it is of no im-
portance how we manage to obtain it, whether we
go through these or those OTPs and in which ways
we transform data.

But the fact is that we do lose character infor-
mation, just as in TEX. In the DVI file we have
beautiful Arabic letters and ligatures . . . but there
is no way back to the original Unicode characters.

This situation is changing with Omega2 (work in
progress). Instead of characters, character tokens
and charnodes we are using signs (sign tokens and
sign nodes), links and bifurcations. Sign nodes are
data structures containing a character, a glyph, and
additional key/value pairs, where the value can be
simple or complex, involving pointers to other signs,

etc. Links are groups of signs which contain alterna-
tive sets of glyphs based on a graph: the paragraph
builder includes this graph into its own acyclic graph
through which it will obtain the optimal paragraph
layout as the shortest path from top to bottom.

Before we enter into the details of signs, let
us briefly describe another paradigm of charac-
ter/glyph model implementation: SVG.

The SVG Paradigm

SVG (= Scalable Vector Graphics, [4]) has at leats
one very nice property: the way text is managed is
quite elegant.

First of all, an SVG document is an XML docu-
ment, and the only textual data it contains is actual
text displayed in the image. In other words: however
complex a graphic may be, all graphical elements
are described solely by element tags, attributes and,
eventually, CDATA blocks. Not a single keyword
will ever appear in textual content.

This is not at all the case of LATEX, where we
are constantly mixing mark up and contents, as in:

Dieser Text ist \textcolor{red}{rot}.

where red is markup and rot is text, and where
there is no way of syntactically distinguishing be-
tween the two. In SVG, this example would be:

<svg:text>

Dieser Text ist

<svg:tspan color="red">rot</svg:tspan>.

</svg:text>

where separation between text and markup is clear.
In SVG, as this is the default for XML, text is

encoded in Unicode. In other words, text is made of
characters only. How then do we obtain glyphs?

As in TEX, SVG uses the notion of “current
font,” attached to each text or tspan element, and
this informations is inherited by all descendant ele-
ments, unless otherwise specified. Fonts can be ex-
ternal, but the model is even more elegant when
fonts are internal.

An internal SVG font is an element called font

containing elements called glyph. The latter has an
attribute called unicode. This attribute contains
the one (or more, in case of a ligature) Unicode char-
acters represented by the glyph.

The contents of the glyph element can be arbi-
trary SVG code (this is quite similar to the concept
of TEX’s virtual fonts, where a glyph can contain an
arbitrary block of DVI instructions). In this way,
any SVG image, however complicated, can become
a single glyph of a font. To include this glyph in
the SVG graphic one only needs to select the font
and ask for the same Unicode character sequence

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

102 Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

as in the unicode attribute of the glyph, in a text

element.
Besides unicode, the glyph element takes a

number of attributes :

• glyph-name: in case we want to access a glyph
directly (useful when we have more than one
variant glyphs representing the same charac-
ter);

• d: the actual outline of the glyph, if we want to
keep it simple and not include arbitrary SVG
graphical constructions as contents of glyph;

• orientation: when mixing horizontal and ver-
tical scripts, how is this glyph oriented?

• arabic-form: initial, medial, isolated or final?

• lang: use this glyph for a number of given lan-
guage codes only;

• horiz-adv-x, horiz-adv-y: the advance vec-
tor of the glyph when typeset horizontally;

• vert-adv-x, vert-adv-y: idem, when typeset
vertically;

• vert-origin-x, vert-origin-y: the origin of
the glyph when typeset vertically.

What happens if we want a specific glyph,
other than the standard one obtained directly go-
ing through Unicode character sequences? We can
use element altGlyph which allows “manual” inser-
tion of glyphs into text, and the PCDATA contents
of which is the Unicode character sequence corre-
sponding to the alternate glyph (in this way we
get, once again, textual data for indexing, search-
ing, etc.). But altGlyph also takes some attributes:

• xlink:href: if the font is described as an SVG
font element, an XLink reference to the cor-
responding glyph element inside the font—our
way of going directly to the glyph, no matter
where it is located: server on the Web, file, font;

• format: the file format of the font (SVG, Open-
Type, etc.);

• glyphRef: a reference to the glyph if the font
format is other than SVG (the specification pro-
vides no additional information, we can reason-
ably assume that this could be the PostScript
glyph name in case of CFF OpenType fonts,
or the glyph index value in case of TrueType-
like fonts, but, as we said already, this is quite
risky);

• x and y: if the alternate glyph is indeed typeset,
then these should be the absolute coordinates
of its origin;

• all usual SVG attributes (style, color, opacity,
conditionality, etc.).

Let us suppose, for example, that we want to
write the word “Omega” with a calligraphic ‘e’ (font
Jolino) described in the element:

<svg:glyph unicode="e" glyph-name="e.joli"

d="... its path ..."/>

We only need to write:

<text>

<tspan font-family="Jolino">

Om<altGlyph

xlink:href="#e.joli">e</altGlyph>ga

</tspan>

</text>

We can conclude by saying that SVG jolly well
separates textual contents from markup (characters
are provided as contents, glyphs as markup), and
that altGlyph element comes quite close to the goal
of our notion of sign: it provides both a character
(in fact, one or more characters), a glyph, and some
additional properties expressed by attributes. These
are not really entirely user-definable as in the case
of sign properties, but one could very well introduce
additional attributes by using other namespaces.

When the Signs Go Marching In

In the remainder of this paper we will describe the
sign concept in more detail and give some examples

of applications. We will use the notation c=0061 a

g=a, 97

for a sign containing character U+0061 latin let-

ter a, glyph “a” (position 97 in the current font),
and no additional properties.

Using this notation, an initial Arabic jeem

would need a sign
c=062C �

form=1
g= �, 18

. If we would like to

typeset this sign in red color, we would add another

property:

c=062C �

form=1
color=red
g= �, 18

.

Here is how it happens: Omega2 reads a file
containing Unicode character U+062C. Tokenisa-

tion produces sign
c=062C �

catcode=12
g=∅

(no glyph for the

moment). Then we go through the OTPs for con-
textual analysis and font re-encoding:

c=062C �

catcode=12
g=∅

1
−→

c=062C �

catcode=12
form=1
g=∅

2
−→

c=062C �

catcode=12
form=1
g= �, 18

The first OTP provides the contextual form
value, without affecting the character (or catcode)
value. The second OTP adds the glyph information
(which would otherwise be added implicitly when

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

103

reading the font data).
Now what if we wanted the glyph to be typeset

in red? All depends if we want (a) only the specific
instance of sign to be red, or (b) all jeem characters,
or (c) all initial jeem characters. In the first case one
would manually change the color property of this
sign to value red.6 In the second case one would
use an OTP matching all signs conforming to the

pattern
c=062C �

∗
g= ∗

(where asterisks indicate arbi-

trary values), and would add (or modify the value
of) property color. In the third case one would,
again, use an OTP but this time matching signs con-

forming to the pattern

c=062C �

form=1
∗
g= ∗

. That way only

initial form signs will be catched.
One can also imagine OTP patterns based

solely on properties. If we wanted to change the
color of all red glyphs into green, we would use an
OTP as the following:

c=∗
color=red
∗
g= ∗

→

c=(same)
color=green
(same)
g= (same)

Besides catcode, (Arabic) form and color, one
can imagine many other properties: horizontal and
vertical offset, hyphenation (or hyphenation prefer-
ence), penalty, glue, bidirectionality level, language,
style, word boundary, etc. We will discuss them
while describing selected examples of sign applica-
tions.

Locked Properties Whenever we define rules, we
also need ways to allow exceptions. In our previous
color example, let us suppose that there is a given
sign which has to remain blue, despite all OTPs
which will try to change its color. Properties can

be locked: if

c=�

form=1
color=blue
g= �, 18

becomes

c=�

form=1
k color=blue
g= �, 18

,

then no OTP will ever be able to change this prop-
erty. Of course, OTPs can lock k and unlock L

6 Why should we insert the color information into the
sign as a property, when we can simply use a macro like
\textcolor? Because OTPs use buffers and control sequence
tokens and character tokens of categories other than 11 and
12 will end the buffer and send the buffered text for process-
ing. If the buffer happens to end inside an Arabic word, then
there is no way to do proper contextual analysis since the
OTP cannot know what will follow in the next buffer. The
only way to obtain a sign string sufficiently long to perform
efficient contextual analysis, is to avoid control sequence to-
kens inside Arabic words, and this is easily achieved by storing
information in properties.

properties, so if that color has to be changed after
all, then it can always be unlocked, modified, and
locked again . . .

Signs in Auxiliary Files What’s the use of hav-
ing signs and sign properties if all the information is
lost when tokens are written into a file? For exam-
ple, when signs happen to be in the argument of a
\section command which will be written in a .toc

file. Instead of losing that information we will write
it into that file (which becomes a sign file), and have
Omega2 read it at the subsequent run and import
signs directly.

Sign Documents And since Omega2 reads and
writes auxiliary sign files, why not input the main
file as a sign document? One could imagine a sign-
compliant text editor, a kind of super-Emacs in
which one would attach sign information (charac-
ters, glyphs, predefined or arbitrary properties) to
the TEX code. One can imagine how simple opera-
tions like the verbatim environment would become:
if we can fix the catcode of an entire text block to
12, then all special characters (braces, backslashes,
percents, ampersands, hashes, hats, underlines) lose
their semantics and become ordinary text, LATEX
only needs to switch to a nice typewriter font and
use an \obeylines like command and we’re done.

Such a text editor is nowadays necessary when
we are dealing with OpenType fonts requiring inter-
action with the user. For example, the aalt feature
[7, p. 798] allows choosing variant glyphs for a given
character. It would be much more user-friendly to
use a pop-up menu than writing its glyph index
value in the TEX code. That pop-up menu would
insert the glyph index as a sign property, and bingo.

Explicit Ligatures

To understand how we deal with ligatures let us re-
call how TEX uses them in the first place. When
building the horizontal list (this part of code is called
the chief executive) every charnode is tested for the
presence of eventual ligatures (or kerning pairs) in
the font’s lig/kern program [10, §1035]. If a ligature
is detected then a ligature node is created. There
is a special mechanism to ensure that the created
ligatures is always the longest one (so that we get
‘ffl’ instead of an ‘ff’ followed by an ‘l’).

This ligature node contains a pointer to a hori-
zontal list containing the original charnodes. These
will be used in the paragraph builder if hyphenation
is necessary.

If we need to hyphenate inside a ligature then
it the lignode is first disassembled into the origi-
nal charnodes [10, §898] and then a discretionary

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

104 Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

node is created with the two parts of the ligature as
pre-break and post-break lists [10, §914]. This ap-
proach allows only one possible hyphenation inside a
ligature—as Don says in [10, §904]: “A further com-
plication arises if additional hyphens appear [. . .]
TEX avoids this by simply ignoring the additional
hyphens in such weird cases.” This can be quite an-
noying for ligatures of 4 or more letters containing 2
or even 3 potential hyphenation points, and due to
the increasing popularity of OpenType fonts we will
get more and more of such ligatures in the future.

In TEX a ligature can be inserted only by read-
ing the font lig/kern program. It is impossible to
instruct TEX to create a ligature node using control
sequences or other means, and hence it is equally
impossible to do it in Omega1 using OTPs.

Our goal is to do this in Omega2, using signs.
We call such a ligature an explicit one (in contrast
to implicit ligatures contained in fonts). Let us take
the example of the ‘ffl’ ligature in the word “affligé.”
Let us first suppose that there is no hyphenation
point in this word:

c=a

hyph=0
g=a

c=f

hyph=0
g= f

c=f

hyph=0
g= f

c=l

hyph=0
g= l

c=i

hyph=0
g= i

To insert a ligature one would replace it by:

c=a

hyph=0
g=a

c=f

hyph=0
gdef=f
g=ffl

c=f

hyph=0
gdef=f
g=∅

c=l

hyph=0
gdef=l
g=∅

c=i

hyph=0
g= i

In this string, character information is left un-
touched and the ligature glyph is placed in the first
sign participating to the ligature (the remaining
ones have void glyphs). The gdef properties contain
the “default glyphs,” in case the ligature is broken.

This brings us to a new notion, the one of link. The
sign string shown in the previous example is, in fact,
a doubly linked list. A link is a set of doubly linked
signs, in our case those producing the ligature. We
say that they participate to the link. The reason
for linking these signs is that, at any moment, some
OTP may insert additional signs between the ones
of the link. We have to be sure that when these signs
arrive to the paragraph builder, they will produce a
ligature only if they are still consecutive, otherwise
we will fall back to the default glyphs.

Things get more complicated if there is a hy-
phenation point. In this case we must provide all
possible combinations of ligatured and non-ligatured
glyphs. These combinations form an acyclic graph,
very much like the one of TEX’s paragraph builder,
we call it a set of bifurcations. In the figure below,
we have illustrated a quite complex case: a ligature
‘ffi’ surrounded by letters ‘a’ and ‘i’ and contain-

ing two hyphenation points (after the first and the
second ‘f’ letter), a mission impossible for TEX:

c=a

hyph=0

g=a

c=f

hyph=0

g=ffl

g=f •

g=f

c=f

hyph=0

g=∅

g=f

g=f •

c=l

hyph=0

g=∅

g=l

g=l

c=i

hyph=0

g=a

The fat strokes in the figure are the vertices of the
graph. These vertices will be examined later for
eventual kerning pairs or for other ligatures. The
bullet after a glyph indicates that at this location we
have a mandatory line break.7 Notice that all hyph
properties are now set to 0 since the discretionary
hyphenation is handled “manually” by bifurcation.

Here is the same figure, completed with ‘ff’ and
‘fl’ ligatures which will only be used in cases the
original ‘ffl’ is broken:

c=a

hyph=0

g=a

c=f

hyph=0

g=ffl

g=f •

g=ff

c=f

hyph=0

g=∅

g=fl

g=∅ •

c=l

hyph=0

g=∅

g=∅

g=l

c=i

hyph=0

g=a

Let us not forget that this graph deals only
with glyphs. Characters still form a plain (one-
dimensional) string, and macro expansion will use
signs in exactly the same way as it currently uses
character tokens. The paragraph builder, on the
other hand, will include this graph as a subgraph
of its network for finding the shortest path. Where
we have placed a bullet, the paragraph builder will
consider it as a mandatory end-of-line preceded by
a hyphen glyph.

Non-Standard Hyphenation

Standard hyphenation corresponds to TEX’s \-: the
first part of the word stays on the upper line and
is followed by a hyphen glyph but otherwise un-
changed, and the remaining part is placed on the
lower line, also unchanged.

But “there are more things in heaven and earth,
Horatio.” Typical examples of deviant hyphenation
are German words containing the string ‘ck’ (which,

7 The purpose of this bullet is to postpone until the very

last moment the creation of a sign
c=∅
g= -

followed by a line

break. The user should be able to decide whether character
properties of line break hyphens should be void or U+00AD

soft hyphen, or ant other character.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

105

together with ‘ch’ is a ligature in traditional Ger-
man typography in the sense that glyphs are brought
closer to each other) or Hungarian ‘ssz’ which in
some cases is hyphenated ‘sz-sz’ (ösz-sze) and in
other cases (when the word is composite, like in kis-
szerű) ‘s-sz’.

Obtaining this using bifurcation is very easy:

c=a

hyph=0

g=a

c=c

hyph=0

g=c

pseudo=k •

c=k

hyph=0

g=k

c=e

hyph=0

g=e

The paragraph builder will have to choose between
an unbroken glyph string ‘ack’ and a string ‘ak’ fol-
lowed by a hyphen, a line break, and another ‘k.’
We can insert this information in signs very early, it
will remain alive until the paragraph builder. On the
character level we keep ‘ack’ so that in text extrac-
tion or in conversion to a file format without explicit
line breaks (like XHTML) we will always keep the
regular ‘ack’, whether or not there has been hyphen-
ation in the DVI file.

There are similar phenomena involving punctu-
ation or diacritics: in Polish, when a word is broken
after an explicit hyphen, then we get a hyphen at
the end of line, and another hyphen at line begin.
In Dutch, ‘oe’ is pronounced ‘ou’ unless there is a di-
aeresis on the ‘e’; when a word is broken between ‘o’
and ‘ë’, then the diaeresis disappears (since break-
ing the word at that point makes it clear that the
two letters do not form a diphthong). In Greek we
have exactly the same phenomenon as in Dutch.

It should be interesting to note that this situation
of discrepancy between visual information and text
contents is being taken into account by formats like
PDF. Indeed, version 1.4 of PDF has introduced the
notion of replacement text where one can link a char-
acter string (← the characters) with any part of the
page contents (← the glyphs) [2, p. 872]. The ex-
ample given is the one of German ‘ck’ hyphenation:

(Dru) Tj

/Span

<</ActualText (c) >>

BDC

(k-) Tj

EMC

(ker) ’

The ActualText operator specifies that the
string “c” is a “logical replacement” for the contents
of the BDC/EMC block, which contains precisely the
string “k-.” As we see, using sign properties to keep
this particular information until the DVI file (and

beyond) makes sense since PDF is already prepared
for handling it, and by using it one can enhance
user-interaction with the document.

OpenType Features

OpenType fonts contain information on various
glyph transformations. This works roughly in the
following way: the user activates “features,” for
each feature the font attempts “lookups” (pattern
matching on the glyph string), and for each matched
lookup there is a series of glyph positionings or glyph
substitutions. In our case, activated features be-
come sign properties (so that they can be entered
and modified at any time, independently of macro
expansion, and so that they are carried over when
tokens are stored, moved or written to files), then at
some point, chose by the user, lookups are applied to
sign strings, and the effect of positionings and sub-
stitutions is again translated into sign properties,
before the signs arrive to the paragraph builder.

Both glyph substitution and positioning act on
the glyph part of signs only. Let us review briefly
the different types of OpenType transformations [7,
p. 746–785]:

• single substitution: a glyph is replaced by an-
other glyph. For example, a lowercase letter is
replaced by a small cap one;

c=a

sc=1
g=a

→
c=a

sc=1
g=a

• multiple substitution: a glyph is replaced by
more than one glyphs. For example, we may
want to replace the ideographic square ㎑ by
the glyph string “kHz”:

c=3391 ㎑

g=㎑
→ c=3391 ㎑

g=k
c=∅
g=H

c=∅
g= z

We generate additional signs with empty
character parts so that eventual interaction be-
tween the glyphs of these signs is possible (for
example, they may kern or be involved in some
other OpenType transformation).

• alternate substitution: one chooses among a
certain number of alternate glyphs for a given
sign. The user provides the ordinal of the de-
sired variant glyph as a sign property:

c=&

alt=3
g=&

→
c=&

alt=3
g=&

• ligature substitution: the ordinary ligature.
Once again we have to use glyph-less signs:

c=f

g= f
c=i

g= i
→ c=f

g=fi
c=i

g=∅

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

106 Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

• contextual substitution, chaining contextual
substitution, reverse chaining contextual sub-
stitution: meta-substitutions where one has a
pattern including glyphs before and/or after
the ones we are dealing with, with eventual
backtrack and lookahead glyph sequences, and
sometimes going from end to start;

• single adjustment : this is a transformation that
adjusts the position of a glyph. In TEX, you
can move a glyph horizontally by using \kern

of \hskip commands, and vertically by putting
it in a box and \raise-ing or \lowering that
box. In both cases you lose hyphenation and
kerning, and since control sequence tokens are
involved, OTP buffers are terminated.

This is why we introduce two very impor-
tant sign properties: dx and dy. They pro-
vide horizontal and vertical offsets without go-
ing through control sequence tokens. There is
no boxing, the advance vector of the glyph does
not change, and the effect of moving the glyphs
around does not affect surrounding boxes. In
other words: even if you raise a glyph using dy,
this will not affect your baseline—it is rather
like if you had used a MOVEUP instruction in a
virtual font.

Our favourite example of such a transfor-
mation: the TEX logo (one of the first things
people learn about TEX, since it is described
on page 1 of the TEXbook) becomes a plain
sign string without any control sequence inbe-
tween. Here is the standard TEX code, taken
from plain.tex:

\def\TeX{T\kern-.1667em\lower.5ex%

\hbox{E}\kern-.125emX}

and here is the sign string:

c=T

kern=-.1667em
g=T

c=E

kern=-.125em
dy=-.5ex
g=E

c=X

g=X

(see below for the kern property);

• pair adjustment is like single adjustment, but is
applied to a pattern of two glyphs. Kerning is
the most common case of pair adjustment. Be-
sides dx and dy we also provide kern and vkern

properties for this. The difference with dx and
dy is that the advance vector of the glyph is
modified. To see the difference, here is the TEX
logo first with a kern property and then with a
dx property on sign ‘E’: TEX, TEX;

• cursive attachment is a very interesting trans-
formation: we define a mark (that is a point
in the glyph’s coordinate space) on each side

of a glyph, and we declare that proper type-
setting in this font is achieved when the right
mark of glyph n is identified with left mark of
glyph n+1. This eliminates the need of kerning
pairs (both horizontally and vertically) and is
ideal for cursive fonts with connected letters (as
we used to write on the blackboard in primary
school). We define a property called cursive,
when it is activated Omega2 will first check that
the marks exist in the font, then do the neces-
sary calculations, and finally insert kern and
vkern values to match marks;

• mark to base attachment : the same principle as
cursive attachment, but this time the goal is to
connect a “base” to an “attachment.” Usually
this will be the glyphs of a Unicode base charac-
ter and the one of a combining character. The
simplest example: a letter and an accent. TEX
veterans still remember the headaches caused
to Europeans by the \accent primitive. Since
1990, thanks to the Cork encoding and its fol-
lowers, we have been able to avoid using this
primitive for many languages. But there are
still areas where one cannot predict all possi-
ble letter + accent combinations and draw the
necessary glyphs. To make things worse, Uni-
code compliance requires the ability to combine
any base letter with any accent, and even any
number of accents!

To achieve this, one once again defines marks
on strategical positions around the letter (ac-
cent scan be placed above, beyond, in the cen-
ter, etc., these positions correspond to Uni-
code combining classes) and around the accent.
When the glyph of a combining character fol-
lows the one of a base character, all we need
to do is find the appropriate pair of marks and
identify them, using dx and dy properties. Here
is an example:

c=x

g=x

c=0302 ^

comb=1
g=ˆ

→ c=x

g=x

c=0302 ^

comb=1
dx=-4pt
dy=0.05pt
g=ˆ

and the result is ‘x̂’ (we have deliberately chosen
a letter-accent combination which is used in no
language we know of, so that there is no chance
to find an already designed composite glyph in
any font);

• mark to mark attachment : instead of attaching
the glyph of a combining character to the one
of a base character, we attach it to the one of
another combining character. The method is
strictly the same;

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

107

• mark to ligature attachment : same principle
but things get more complicated since a liga-
ture can have more than one marks in the same
combining class and corresponding to individ-
ual letters. The idea is to read a ligature of n

glyphs followed by n combining glyphs and to
place the latter on appropriate locations above
(or more generally, around) the former. This
is rarely encountered in Latin fonts, but be-
comes crucial in Arabic fonts with many lig-
atures (since short vowels and other diacritics
are considered as combining characters by Uni-
code);

• contextual and chaining contextual positioning :
again a meta-transformation where a pattern
of glyphs is matched (with eventually a back-
track and a lookahead) and then one or more
of the previous positioning transformations are
applied. This is crucially missing from TEX.

A typical example is the acronym S.A.V.

(= “Service Après-Vente”), where the ‘V’
should be brought closer to the period pre-
ceding it because the latter is itself preceded
by an ‘A’. In the case of, for example, S.V.V.
(= “Schweizerische Vereinigung für Vegetaris-
mus”) kerning between period and second ‘V’
should better not be applied.

Another example is German word “Würze,”
where, in some fonts with a very expansive ‘W’,
the Umlaut has to be brought closer to the let-
ter to avoid overlapping ‘W’. In this case we
(a) match the pattern of three signs ‘Wu¨’, (b)
place the accent on the ‘u’, and (c) lower it:

c=W

g=W
c=u

g=u
c=0308 ¨

g=¨

→ c=W

g=W
c=u

g=u

c=0308 ¨

dx=-4pt
dy=0.05pt
g=¨

→ c=W

g=W
c=u

g=u

c=0308 ¨

dx=-4pt
dy=-.55pt
g=¨

Application of transformations contained in GPOS

and GSUB tables will be considered like activating an
OTP, so that the user may insert additional OTPs
between those two, or after them.

Doing Better Than OpenType

Positioning of diacritics on Arabic ligatures [3], or
of Masoretic diacritics in Biblical Hebrew [5] is a
non-trivial task. There are algorithms calculating
positions of diacritics using methods such as force-
fields, blank area calculation, etc. Until now it is

impossible to apply such algorithms without imple-
menting them into the very kernel of TEX.

Using sign OTPs one would first apply con-
textual analysis, then GSUB transformations (and
GPOS for whatever it is worth) and finally, after the
string chain has gone through all OpenType trans-
formations, apply positioning algorithms as exter-
nal OTPs. At that stage we know exactly which
ligatures are used and what the final shape of each
word is. The algorithm would obtain the glyphs of
ligatures and vowels used—as well as special infor-
mation such as the presence of keshideh—from sign
properties. Having access to the glyph contours of
the specific font, it would then reconstruct in mem-
ory an envelope of the global graphical image of the
word, containing visual centers of individual letters
and other relevant information. The result of calcu-
lations would be included in dx and dy properties of
vowel signs. After that, processing would continue
normally.

In fact, our approach not only uses all resources that
OpenType fonts can provide but, contrarily to other
systems which rely on OpenType for the final type-
setting steps, it allows OTP transformations before
GSUB, between GSUB and GPOS and even after GPOS.
And if we want to use OpenType transformations
only partially, we can always lock properties and
hence avoid them to be modified by the font.

Meta-information

For TEX, the only way to include metadata (that is:
information which is not part of the page descrip-
tion) in a DVI file is through the \special primi-
tive. “Specials” are not supposed to interfere with
typesetting, but they actually do: if we write

A\special{blabla}V

there will be no kerning between these two letters.
Which means that if we want to change the color
of letter ‘V’ only, we will lose kerning. In Omega1,
there is a primitive allowing us to avoid this prob-
lem: \ghost (which would emulate the behaviour of
a glyph related to kerning, without actually typeset-
ting the glyph), but this solution is rather clumsy.

Using signs, we can insert the color informa-
tion as a property and then include the necessary
PostScript code for changing color, long after kern-
ing has been applied (kerning, which, by the way, is
also a sign property), or even leave the color prop-
erty in the DVI file and let (sign-compatible) dvips
read that information and write the appropriate PS
code.

One could even define sign properties having no ef-
fect whatsoever on typesetting. For example, in

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

108 Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

Arabic, one could mark the letters alef and lam of
the definite article, or the letter waw of the “and”
particle, as playing these specific grammatical rôles,
so that we can easily distinguish them from letters
alef +lam or waw which just happen to be at the
beginning of a word. The interest of this lies in the
fact that Arabic is not visually separating them from
the following word.

Or, again in Arabic, one could imagine a mor-
phological analyser (acting as an external OTP)
which would give the letters of the Semitic root of
each word a specific sign property. Such letters
would be alkitābu (the book), kutubun (books)
aktubu (I write), etc. This is the kind of infor-
mation which would enormously facilitate searching
and indexing, but which we would like to avoid rep-
resenting visually since it would only obstruct read-
ing.

Characters, Sign Properties or Higher
Order Markup?

In the previous section we have suggested uses
of sign properties which do not affect typesetting.
Most often these can also be achieved by characters
or by higher order markup.

For example, Ω besides being a popular soft-
ware project is also a letter of the Greek alphabet
and the symbol for the SI unit for resistance, named
after its inventor Georg Simon Ohm (1789–1854).
To distinguish between these two uses of the same
symbol, Unicode provides two different characters
(U+03A9 and U+2126). Clearly it would be preferable
to use one of them should to distinguish between
“Omega” and “Ohm,” rather than sign properties
or higher order markup.

We mentioned the possible use of sign prop-
erties for marking the current language. This can
seem practical but also has drawbacks: languages
are nested, even if their nesting is not always com-
patible with the logical structure of the document.
It would be better to use LATEX commands for mark-
ing languages since these commands will not inter-
fere with micro-typography. Indeed, the author can
hardly imagine the need of changing the language
of a word in the very middle of it, so that we in-
cur the danger of losing kerning or hyphenation8).

8 Although, nowadays, people use more and more lan-
guage mixtures, like the notorious French antislash for “back-
slash” . . . In fact, in French one has anglicisms (French words
used with their English meaning, like librairie for [code] li-
brary, etc.), English words that found their way into French
vocabulary (week-end, starlet, etc.), English words that have
been artificially gallisized (débogage ← “debugging,” shunter

← “to shunt”, etc.) and many other levels of interaction
between the two languages. Hyphenation of these words de-

Hence, such properties can, at first sight, very well
be handled by usual higher level markup.

The best possible use of sign properties is for
cases where control sequence tokens would otherwise
interfere with the very fragile operations of microty-
pography and hyphenation.

Glue, Penalty, CJK Languages

Be it fixed or flexible glue, it is now possible, through
sign properties, to add it to glyphs, without affecting
already existing kerning (which would be added to
this glue), ligatures, hyphenation, OTPs that may
match the word, etc.

The typical example is letterspacing: how do
you increase space between letters9 while keeping
hyphenation of the word, f-ligatures, etc.? Before
Omega2, to achieve this, the author was bound to
define special font metrics (with tens of thousands
of kerning pairs). Now it suffices to add a simple
kern property to each sign.

Glue for all glyphs is also required in CJK lan-
guages where there are no blank spaces between
ideographs but where one sometimes needs to shrink
or stretch the contents of a line because of a punc-
tuation mark or a closing delimiter which are not
allowed to be on line begin, or an opening delim-
iter which is not allowed on line end. So, even if
this is not obvious when reading such text, we do
put some glue (with a very small amount of flexibil-
ity) between every pair of ideographs. In Omega1

this is handled by OTPs, but once such an OTP is
used, the ones following it cannot match patterns of
ideographs anymore because of the control sequence
tokens between them. Once more, it is more natural
to systematically add a small amount of glue to each
ideograph, using a sign property.

Adding glue to every ideograph is a good thing,
but how do we avoid lines starting with punctuation
or closing delimiters?

If we can add glue to signs, why not penalties?
In that way the space between an ideograph and a
punctuation mark or a delimiter will be exactly the
same as for all other ideographs, but using an infinite
penalty value, line breaking will be prohibited at
that point.10 Here is an example of some ideographs

pends on their level of French-ness, which can vary temporally
and geographically.

9 Cave canem! Letterspaced typesetting should be at-
tached to specific semantics and should never be done for
justification reasons only, otherwise it is like stealing sheeps.

10 We don’t have that problem in Latin typography be-
cause line breaking is allowed only at glue nodes (that is,
mostly between words) and inside words using hyphenation—
but a punctuation mark has no lc code and hence cannot be
matched by a hyphenation pattern.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

109

and the corresponding values of glue and penalty (as
used by the author):

c=9019 這

glue=0pt
stretch=.025em
g=這

c=672C 本

glue=0pt
stretch=.025em
penalty=10000
g=本

c=3002 。

glue=0pt
stretch=.025em
g=。

to obtain: 這本。

Glue vs. the “Space Character”

It is well known to us TEX users, that TEX (and thus
also DVI) has its own philosophy about how words
are separated, namely by glue. The DVI page is
like a sea of glue in which glyphs navigate and give
the impression of forming words by getting closer to
each other. But this is only illusion. In DVI there
is no way of distinguishing between, for example,
inter-word space and kerning. It is the human eye
that deciphers spaces between some letters as be-
ing word separators (and the narrower these spaces
are, the more difficult is reading). In other markup
or typesetting systems, things are different. Uni-
code defines character U+0020 space as well as a
dozen other “whitespace characters.” Some of them
are extensible and others of fixed width. PostScript
uses a mixed approach: when the glyph of the space
character has the right width, it is used in strings;
when a different width is needed, due to justifica-
tion, PostScript uses horizontal skips, similar to DVI
ones. But in PDF space characters must be present,
since people may copy-paste text into other appli-
cations: they would be quite surprised to find blank
spaces are missing . . .

To be able to distinguish glue produced by in-
terword space from glue entered explicitly, we use a
sign for interword glue. This sign has a character
part which is one of the Unicode whitespace char-
acters and a blank glyph part. “Blank” is not the
same as “void”: this sign has indeed a glyph, which
can therefore be matched by OpenType lookups, but
this glyph has no contour and its advance vector can
vary.

Using this approach, not only can OpenType
lookups match whitespace glyphs but we can also
produce adequate PDF, SVG and XHTML code (for
example: in XHTML, interletter kerning should be
ignored but interword spaces must be kept in form
of Unicode whitespace characters).

Conclusion and Caveats

Work described in this paper is experimental. In
other words: what we present here is the latest sta-
tus of our investigations and experimentations, in
the frame of the research project INEDIT of ENST

Bretagne. Our goal is to provide a new microty-
pographical model for typesetting (different from
the node-model of TEX) which will be Unicode- and
OpenType-compliant, which will provide more con-
trol to the user than any Unicode or OpenType-
compliant application, and which will produce doc-
uments with sufficient information to be converted
into any present or future electronic document file
format.

There is a discussion list omega@tug.org hosted
by TUG and dedicated to this project. To subscribe,
please visit:

http://tug.org/mailman/listinfo/omega

References

[1] Adobe Systems. Unicode and glyph names,
2003.

[2] Adobe Systems. PDF Reference: Version 1.6.
Addison-Wesley, 5th edition, 2004.

[3] Gábor Bella. An automatic mark positioning
system for Arabic and Hebrew scripts. Master’s
thesis, ENST Bretagne, Octobre 2003.

[4] Jon Ferraiolo, Jun Fujisawa, and Dean Jack-
son (eds.). Scalable Vector Graphics (SVG) 1.1
Specification. W3C, 2003.

[5] Yannis Haralambous. Tiqwah, a typesetting
system for biblical Hebrew, based on TEX.
In Actes du Quatrième Colloque International
Bible et Informatique, Amsterdam, 1994, pages
445–470, 1994.

[6] Yannis Haralambous. Unicode et typographie :
un amour impossible. Document Numérique,
6(3-4):105–137, 2002.

[7] Yannis Haralambous. Fontes & codages.
O’Reilly France, 2004.

[8] Yannis Haralambous. Voyage au centre de
TEX : composition, paragraphage, césure.
Cahiers GUTenberg, 44-45:3–53, Nov 2004.

[9] Yannis Haralambous and John Plaice. Methods
for processing languages with Ω. In Proceedings
of the International Symposium on Multilingual
Information Processing, Tsukuba 1997, pages
115–128. ETL Japan, 1997.

[10] Donald E. Knuth. TEX: The Program, vol-
ume B of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986.

[11] Ferdinand de Saussure. Cours de linguistique
générale. Payot & Rivages, 1916, facsimilé de
1995.

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

110 Omega Becomes a Sign Processor

Yannis Haralambous, Gábor Bella

Designing an implementation language for a TEX successor

David Kastrup∗

February 27, 2005

Abstract

Managing the complexity of TEX’s codebase is an arduous task, so arduous that few mortals can hope
to manage the underlying complexity. Its original author’s computational roots date back to a time where
the maturity and expressive power of existing programming languages was such that he chose to employ
the assembly language of a fictional processor for the examples in his seminal work “The Art of Computer
Programming”. In a similar vein, TEX is written in a stripped-down subset of a now-extinct Pascal dialect.
Current adaptations of the code base include more or less literal translations into Java (NTS and exTeX),
C++ (the Omega-2.0 codebase), mechanically generated C (web2c) and a few others. In practically all
currently available cases, the data structures and control flow and overall program structure mimick the
original program to a degree that again requires the resourcefulness of a highly skilled programmer to
manage its complexity. As a result, almost all of those projects have turned out to be basically single-person
projects, and few projects have shown significant progress beyond providing an imitation of TEX.

It is the persuasion of the author that progressing significantly beyond the state of the art as represented by
TEX will require the expressiveness and ease of use of a tailor-made implementation and extension language.
Even a language as thwarted as Emacs Lisp has, due to its conciseness, rapid prototyping nature, extensibility
and custom data types and its coevolution with the Emacs editor itself, enabled progress and add-ons reaching
far beyond the original state as conceived by its original authors. This talk tries to answer the question what
basic features an implementation platform and language for future typesetting needs should possess.

1 Problems of TEX

Managable problems

• Simplest measures such as \boxstretch, \boxfilstretch, \boxshrink etc are not available.

• Boxes can’t reliably be deconstructed (\special, single characterse etc. can’t be removed, boxes can only
be taken apart from the end)

• Variables that TEX employs for decisions are partly unavailable (in some cases because of system-dependent
rounding)

• Peculiarities like the loss of the first line’s baseline (for \vtop) by whatsits, \splittopskip0pt and other.

Problems of the macro language

• Only global register pools indexed by number are available. There are no lexically local variables, the
grouping structure does not match the macro structure.

• macro arguments get \catcodetoo soon, complex patterns are not easily parseable. Maybe \lazy\defwould
help?

• Implementing regular input languages is hard.

∗dak@gnu.org

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT04

Designing an Implementation Language for a TEX Successor

David Kastrup

111

Interoperation problems
TEX

• only knows its own font formats, metrics and ligatures.

• does not talk to graphic programs

• can’t trigger reformatting of external material.

Algorithmic problems

• TEX is either perfect, or deficient: paragraphs are optimized globally, but the vertical breaks are “local
best fit” without feedback to horizontal breaks or future pages.

• TEX has no sane concept for asynchronous user code. \output is shielded with the expedient of additional
grouping and has no multithreading concept.

• TEX has no possibilities for making use of side-effect free user-defined code. Consequently, user-defined
code can’t be used in several speculative contexts.

2 Document examples

2.1 Line numbers

Task at hand

If your ultimate goal is to produce a set of files in a different format that can be produced by GhostScript, take a
look at the tightpage option of the preview package. This will embed the page dimensions into the PostScript
code, obliterating the need to use the -E -i options to Dvips. You can then produce all image files with a single
run of GhostScript from a single PostScript file for all images at once. The tightpage option requires setting
the dvips option as well.

1

2

3

4

5

Various options exist that will pass TEX dimensions and other information about the respective shipped out
material (including descender size) into the log file, where external applications might make use of it.

1

2

The possibility for generating a whole set of graphics with a single run of LATEX, Dvips, and GhostScript increases
both speed and robustness of applications. It is to be hoped that applications like LATEX2HTML will be able to
make use of this package in future.

1

2

3

1

Current line number implementations
Implementation with lineno.sty:

1. Replaces all interline penalties with forced page breaks.

2. This triggers a special output routine placed before the principal output routine.

3. This special routine places the line numbers and reinserts the correct penalties.

4. The normal Output routine is called.

5. A label-like multipass mechanism resets line numbers at the start of the page.

What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special “context” is defined that assembles a parallel
column of ‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will be translated into glyphs either in the context
of the output routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.

4. In the same context \label-commands referencing line numbers are expanded.

MOT04 Proceedings EuroTEX2005 – Pont-à-Mousson, France

112 Designing an Implementation Language for a TEX Successor

David Kastrup

2.2 More complex Problems

Synchronized texts. . .

Footnotes in running paragraphs

ösen Neigungen zusammen.d Methodisch bedeutsam ist abere wieder die Ge-

winnung des Endpunktes <für die Gegenwart>. Dieserf muß in einer absoluten

und endgültigen Synthese liegen, die eben deshalb nicht aus der natürlichen<,

ihrem Wesen nach relativistischen> Lebensbewegung gstammen oder hervor-

a In A folgt: wesentlich b A: Staatsorganismen,

c–c A: zukünftige und gegenwärtige

d–d A: Dass er dabei materiell zu einer sehr konservativen, mittelalterlich ständisch

gefärbten und zugleich wieder real-politisch und national gesinnten Staatsauffas-

sung kommt, ist eine Sache für sich. Auch dass die Konstruktion der Entwick-

lung, die im Grunde immer nur mit einem sehr biologisch getönten Lebensbe-

griffe arbeitet, kein logisches Fortschrittsprinzip hat, sondern an dessen Stelle

sich auf die Vorsehung beruft, ist eine der besonderen Ausführungen des Grund-

gedankens. Es gibt hier nicht viel mehr als Spielereien mit völlig unzulänglichen

historischen Kenntnissen.

e A: erst f A: Er

g–g A: mit ihrem unaustilglichen Realismus und Relativismus stammen könne

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT04

Designing an Implementation Language for a TEX Successor

David Kastrup

113

Nested footnotes

<dabei> ist, daß alles das immer nur Einzelentwicklungskreise sindb und daß

der Fortgang zu einer universalen Verknüpfung all dieser Kreise mit dieser Me-

en und Konsequenzen recht interessant, ganz abgesehen von ihrem materiellen Inhalt.

Hier über das Problem der Geschichtsphilosophie und des Entwicklungsbegriffes Bd.

I S. V und c97. Derc alles durchdringende Bewegungsbegriff I 5, 49 f., 30, 179, 251.

Universalgeschichte und Vorsehung <I> 79, 147, 95 f. Zusammenfassung von Smith,

Montesquieu und Burke <I> 86. Mangel eines archimedischen Punktes <für Natur und

(offenbarungslose) Geschichte I> 35 f. Die Tendenz des Ganzen dIII 328: „Den Staat

ideenweise (d. h. als Synthese aus Gegensätzen und intuitiv) begreifen heißt ihn für die

Gegenwart beseelen, beleben, mit Religion tränken.“d 120 <Damit ist auch hier der Zu-

sammenhang der Historie und der gegenwärtigen Kultursynthese scharf behauptet.>

Die Ablösung Burkes durch De Bonald, Verm. Schriftene I 311 ff. Wichtig und in-

teressant istf der „Briefwechsel mit Gentz <1800–1829“, Stuttgart 1857. – Außerdem

hat mir eine lehrreiche Berliner Dissertation von Georg Strauß über „Die Methode A.

Müllers in der Kritik des 19. und 20. Jahrhunderts“121 vorgelegen>.

a–a A: Romantiker hat dann weiterhin in die Ferne geführt, indische, persische, spani-

sche, französische, englische Geschichte und Geistesentwicklung den Forschern

als Gegenstände unterbreitet. Es ist hier nicht möglich, all dem ins einzelne zu

folgen und ebenso unmöglich, die mannigfachen Fortwirkungen H. W. Riehl

und Gustav Freytag, bis Radowitz und Gierke, Roscher und Knies, Heinrich Leo

und Stahl, Boisserée und Schnaase usw. zu schildern, wobei das Hauptinteresse

in den jeweiligen Modifikationen läge.

b A: sind, c–c A: 97; der

d–d A: III, 322. Den „Staat ideenweise zu begreifen“ heisst ihn für die Gegenwart

„beleben, beseelen, mit Religion tränken.“

e A: Schr. f In A folgt: auch

120 Vgl. Adam Müller: Elemente der Staatskunst, Dritter Theil (1809), S. 238: „Erin-

nern Sie sich aber, daß es die Grundbestrebung war, den gesammten Staat und al-

le seine Institute ideenweise zu ergreifen – d. h. ihn zu beleben, zu beseelen, mit

Religion zu tränken.“

MOT04 Proceedings EuroTEX2005 – Pont-à-Mousson, France

114 Designing an Implementation Language for a TEX Successor

David Kastrup

Tough stuff. . .

3 Concepts

Contexts

• A context is a programmatic entity with its own control flow and local variables.

• Example: an output context continuously requests material from the main vertical list and insertions.
Collections of page matter are then scored (currently this happens using \brokenpenalty, \widowpenalty,
\clubpenalty, \badness and others).

• The output context thus is coupled with the migration of page material from the vertical list to the current
page.

• Other contexts may be coupled with other migrations.

• For example, a color context would have the current color as a local variable for material migrating to the
page and into insertions.

Migrations

• Actions get triggered when objects of a class migrate from one list to another.

• Migrations can be penalized.

• When different migrations are possible, the combination with the smallest total penalties survives.

• Line breaking is a special example of penalized breakpoints during the migration of a horizontal into a
vertical list.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT04

Designing an Implementation Language for a TEX Successor

David Kastrup

115

Objects

• are elements of the various horizontal and vertical lists.

• can belong to different classes.

• classes can be added as well as extended.

• objects can have their own contexts for particular migrations.

Optimization

Global optimization leads to combinatorical explosion of run time. Countermeasures:

1. reduction of interdependencies by separated contexts

2. serialization by tying the optimization to migrations

3. limited backfeed, preferring multiple passes.

4. make do with less than full optimization.

Disadvantages

• higher memory impact since decisions need to remain revertible to some degree.

• higher computational resources because of backtracking

• quite a bit of potential for infinite or almost infinite loops and calculations.

• Programming a full TEX clone on such a platform appears possible, but pointless.

• Decomposition or analysis of several variants can be expensive.

Implementation language

• should offer natural expressivity for lists, TEX-typical strings and token lists.

• should make the required mechanism natively available.

• automatic garbage collection.

• need not be a single layer: instead of TEX’s Pascal/TEX-macro layering a more tiered concept
C/Scheme/TEX-core/TEX-Macros would be possible.

• Problematic: Coroutines. Smalltalk? Ada?

• Problematic: I/O (memory for tentative I/O)?

• Combination with low-level languages like C desirable.

• Low-level implementation of fast algorithms on custom data structures should be possible

• Avoidance of unnecessary language features.

like

MOT04 Proceedings EuroTEX2005 – Pont-à-Mousson, France

116 Designing an Implementation Language for a TEX Successor

David Kastrup

CTAN progress report

J Hefferon, ftpmaint@tug.ctan.org

2005-March-07

Abstract

This is an update on the work being done on CTAN, and is a follow-up to the prior article CTAN Plans.1 We sketch

some challenges, outline our goals, and describe the work to date.

CTAN could be considered, at present, a great success. It is the authoritative collection of TEX-related materials, with

about eight gigabytes of community contributions. It has many visitors, who seem to be leaving with what they want —

for instance, every day the tug.ctan.org site alone sees seven thousand web visitors and has ten gigabytes of FTP

downloads.

But despite this, CTAN must change. It was developed in early 1990’s as an FTP archive with an expected audience

of sysadmins and TEXperts. Now, with the rise of personal systems, the average TEX maintainer is a struggling user who

relies on their distribution and who works in isolation (i.e., has no easy access to an expert, either in computer systems or

in TEX).

In recent years, DANTE has generously sponsored meetings among CTAN maintainers and others to discuss how to

move forward in response to this new world.

What’s wrong?

We will sketch the most pressing issues facing CTAN, but for more discussion see the CTAN Plans article.

Issue number one is that our visitors often have trouble finding things. Some reasons are that the archive is big, that

many packages could fit into it in more than one place, and that some places on the archive hold so many packages that

browsing through them all is impossible. That is, CTAN’s growth has become sprawl.

One reason for this is our second issue, that administration is labor-intensive. Each of the maintainers is a volunteer.

Yet each spends hours a day on the archive and energy for organizational efforts beyond routine installations can be hard to

find. (Note, however, that a sometimes-proposed alternative to an administered archive where individual package authors

decide what files to include and where their package should go could easily make the archive even more poorly organized

than it is now.)

The third issue for CTAN is that we should offload more traffic to our mirrors. Users are poorly served by being forced

to contact the core locations. The chief roadblock with mirrors has been that users often want to get a .zip bundle of an

entire directory and most mirrors do not provide the bundling functionality.

Another issue is our desire to keep histories of at least some packages. This would allow users with a document that

works only with an old version of a package to regenerate their output.

The fifth issue that has been a theme in our discussions is that we must do at least some customized stuff. For instance,

a Google search of CTAN for “margins” yields many hits that are not helpful to inexperienced visitors, such as .dtx files.

We need directed searching.

The final issue — perhaps the most important — is that we need to interface with distributions. If a new package is

uploaded, or a new version of an existing package, we should be able to right away offer it to people who rely on a

distribution. This means packaging it for the distributions. Everyone involved regards this need as critical.

What has been done?

The change that has been the most important, even though it was behind the scenes, is that Graham Williams has moved

his wonderful Catalogue of CTAN packages to a CVS tree. This database now consists of about 1500 XML files. He has

also expanded the data model, the DTD for the XML files, to allow more kinds of metadata, such as documentation links

1See http://www.tug.org/TUGboat/Articles/tb24_2/tb77heff.pdf.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT05

CTAN Plans

Jim Hefferon

117

and keywords. Maintaining these files is by-hand work, and so has increased the administrative load, but moving to CVS

has cleared the flow of information in.

Another change is that we now ask for documentation from all contributors. We request it in PDF format, using Type 1

fonts. These have two advantages: in contrast with .dvi or .ps files they are readable to almost all of our visitors and

so are better suited to be the target of search engine hits, and they showcase TEX’s typographic excellence.

We have also merged the directory /macros/latex/contrib/supported with its sibling unsupported to

make the single directory /macros/latex/contrib, as the distinction between the two proved to be not useful.

These changes have something in common. All American schoolchildren know the joke, “Where does an 800 pound

gorilla sit? Anywhere that he wants.” and so in the US the phrase “800 pound gorilla” has come to mean something

so big that it is hard to move. In some ways, CTAN is such a beast. All three changes were clearly the right thing

to do, but all three were more involved than a person would think possible. For instance, a Google web search for

‘/macros/latex/contrib/supported’ shows that even now, quite some time after the directory change was

made, the Internet still contains many links to the old location.

What is being done now?

These are our major goals.

• We are moving to further integrating package metadata into the archive. An example is that we plan to drop the

nonfree tree and maintain the license distinctions in metadata.

• For this, we are enriching the metadata. For instance, it will include more extensive package descriptions, keywords,

lists of related packages, and categorizations of packages by functionality.

• We are engineering our processes to keep the metadata information accurate as our holdings change over time. In

particular, we will give uploaders the ability to edit the metadata using web forms at the time of upload. (Actually,

it can be edited anytime but we expect that most information will come in as the packages come in.)

• With the information accessible to us in those files, we will give our visitors ways to leverage it such as a database-

backed web site, and extensive search facilities including full-text searches of the descriptions and of the package

documentation and keyword searches.

• We will offer visitors better integration with our mirrors.

Our present targets are: Rainer’s Schöpf’s initiative to store the package .zip archives right in the file system (instead

of having them generated on the fly) and the resulting upgrades of install script will greatly help us refer visitors to mirrors,

Graham Williams’s and Robin Fairbairns’s work on enriching the Catalogue information is at the core of being able to

build an information-rich site, and Jim Hefferon’s work on a web interface that is further described below.

The outstanding major goal that remains stalled is to work out and implement a standard for interfacing with distrib-

utions.

Example: ctanWeb

Development of the web component of the project is proceeding steadily. The code is in a Subversion archive, and there

is now a beta site development testing. This section describes some features that will likely be present in the end.

One of the main goals of the updated site is to be welcoming to TEX beginners. For instance, the present top page has,

in its second sentence, a link to an overview of TEX and friends, and another link to a short description of the steps needed

to get started on a Unix system, on Windows, or on OS X.

Visitors can browse the archive’s directories in a way similar to that offered by tug.ctan.org today. However

there have been some improvements, such as the incorporation of package descriptions into the browsing. (Also, these

web pages are now static for faster response and decreased server load.)

Visitors can browse the packages by functionality. The exact description tree is still under development, but perhaps a

person looking for information on how to set page headers under LATEX would navigate their way through Top > LaTeX

> Page layout > Headers and footers to get to a page listing a small number of packages, one of which is

fancyhdr.

The updated site includes a provision to keep a history of certain packages as part of the package installation script.

MOT05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

118 CTAN Plans

Jim Hefferon

Uploading of packages by developers is metadata-driven. For instance, a package author who gives us an update will

get a screen to edit the metadata — description, version number, related packages, keywords, etc. This puts maintenance

of the metadata in the hands of those best qualified to do it.

All metadata will continue to require approval by a CTAN administrator. However much of the approval process has

been moved to the web so we can have people administering parts of CTAN remotely. In this way, we hope to increase the

number of people involved in CTAN without requiring them to be system administrators.

Search facilities are considerably more advanced than on the present site. There is a search of package descriptions.

There is also a search of all documentation files, including README files and .pdf files. This is better targeted than,

say, a general htDig result; for instance, results show the package caption along with a link to the documentation so a

person can better tell which responses are incidental hits and which are really of interest. (And, behind the screen, all of

the searching relies on a database instead of tug.ctan.org’s present kludge.)

Conclusion

We’ve made progress on CTAN, and many of the elements of the final form have appeared (but much remains to do). We

hope that the changes will help our visitors.

Acknowledgments

The CTAN team would like to gratefully acknowledge the support of the TEX community in general, and especially that

of the user groups TUG, UK-TUG, and DANTE. In particular, the author would like to thank DANTE for support to attend

recent conferences, including EuroTEX 2005. Without that support the work described here would not have been done.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT05

CTAN Plans

Jim Hefferon

119

Verbatim phrases and listings in LATEX

Péter Szabó 〈pts@fazekas.hu〉 ∗

Budapest University of Technology and Ecomomics,
Department of Analysis,
Műegyetem rakpart 3–9.,

Budapest, Hungary H-1111

2004-11-11

Abstract

The examplep package written by the author recently provides sophisticated features for typesetting
verbatim source code listings, including the display of the source code and its compiled LATEX or METAPOST

output side-by-side, with automatic width detection and enabled page breaks (in the source), without the
need for specifying the source twice. Special care is taken so section, page and footnote numbers do not
interfere with the main document. For typesetting short verbatim phrases, a replacement for the \verb

command is also provided in the package, which can be used inside tables and moving arguments such as
footnotes and section titles. The listings package is used for syntax highlighting.

The article reviews the design decisions made during the package development and also presents some in-
teresting implementation internals. examplep is compared to standard LATEX packages such as listings, ltxdoc,
sverb and moreverb. The new codep package and its accomanying Perl script, which provide a convenient
interface to the examplep package for authors of manuals, is also presented. With codep it is possible to
generate the source code, the LATEX or METAPOST output and the compilable example file onto the CD
from a single source embedded into the appropriate place of the .tex document file.

1 Terminology

verbatim text A visually distinguishable textual part of the document (usually typeset with a monospaced,
or typewriter font) that is allowed to contain the full ASCII character set. Verbatim text is often used
to typeset parts of program source files, including TEX source. Verbatim text must be marked up (i.e.
surrounded) in the source of the LATEX document, so backslash and other control characters are typeset
verbatim instead of being interpreted as commands or special LATEX characters.

inline verbatim A verbatim text passage inside a paragraph or table cell.

display verbatim is a vertical verbatim text block between paragraphs.

side-by-side display When typesetting program source in a display verbatim, it is often desirable to show the
output of the program as well. This is especially useful when teaching scripting languages, so the reader
can see the command and its effect side-by-side in a quick glance. For TEX or METAPOST sources and
EPS and PDF source files it is also useful to see the source and the typeset result side-by-side.

Source and Sample Side-by-side displays can be divided to Source and Sample, the latter being program
output or typeset material.

CD-files Files accompanying a book, usually on a CD or DVD shipped with the book, or avalable for download
on the home page of the book. These files usually contain some of the display verbatim material in the
book, so readers do not have to retype them.

∗Thanks to Ferenc Wettl for the fruitful long discussion about the line syntax of the code environment, and also for reviewing
the article.

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

120 Verbatim Phrases and Listings in LATEX

Péter Szabó

2 Special characters in the LATEX source

The special meaning of the input characters in the source file must be disabled in verbatim mode – except for
the character(s) that delimit the end of the verbatim text. The following characters have to be dealt with:

ASCII symbols The ligatures have to be disabled, especially ?‘→ ¿ etc. The safest way is to make both char-
acters of such a ligature active, and defining \def?{\relax\string?\relax} and \def‘{\relax\string‘
\relax}. examplep issues similar definitions covering all such ligatures in the OT1- and T1-encoded CM
fonts.

ASCII letters Most verbatim fonts don’t contain the “fi” or similar ligatures, so examplep takes no care to
disable them.

special TEX source symbols To disable the special meaning of the symbols \ { } $ % ^ & _, examplep
redefines their \catcode for display verbatim. However, catcode changes are not always appriopriate for
inline verbatim, so examplep provides \÷ (see below) which doesn’t change catcodes at all.

other ASCII punctuation Some of these characters ([] ; ’ , . / ~ ! @ * () + | : " < > ? ‘ - =) may be
active, for example, ~ is ÷ ÷, ‘ is a Babel shorthand (e.g. in the Hungarian language module, magyar.ldf);
" is a Babel shorthand (e.g in the German language module); ?, !, : and ; are activated (e.g. by the
French language module), and other characters may be activated, too. So examplep sets the catcode of
all characters in the range 33 . . . 126 to other (12). This includes all ASCII punctuation, letter and digit
characters.

double carets For example, the letter “J” can be input as its ASCII code in hex, prefixed by double carets:
^^4a. However, in verbatim mode we want the 4 characters, not the letter J. There is no problem in
inline verbatim mode, because ^ loses its special meaning once its catcode is changed. However, when
the verbatim material is written to a file or to the terminal, TEX may change “unprintable” characters to
escapes prefixed by ^^. These changes must be reverted when reading the file back. See Subsection 7.2
for more.

high characters Input characters in the range 128 . . . 255 are usually activated by the inputenc package, and
they know how to typeset themselves – so examplep leaves the catcode of such characters intact. However,
in some modes, examplep has already changed all catcodes to 12 and 10 (with \meaning), so it has to
change the catcodes of such high codes back to 13 (active).

3 Features of examplep

These are the most important, unique features:

• layout of side-by-side display may depend on maximum Source width

• automatic hyphenation of inline verbatim. The text is divided into words and punctuation symbols (based
on catcodes). For words, the normal TEX hyphenation patterns apply, and it is allowed to break the line
on both sides of a punctuation symbol.

• customizable isolation of page, section etc. numbers in the Sample and the host document with the
PexaMiniPage environment

• besides the outer level, inline verbatim (when properly escaped inside \Q or \÷) works safely inside macro
arguments, section titles, footnotes, table cells and index entries

• generated CD-files with automatic page and chapter number

• writing verbatim data to CD-files with a Perl script; exact, binary reproduction of verbatim text is guar-
anteed

• ability to write different material to Source, Sample and CD-files

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

121

Table 1: Contexts and features of inline verbatim commands

outer argument tablular elsewhere escaped

\verb + −1 + −1 no
\PVerbOpt + +2 + − no
÷ + +2 − +2 no
\÷ + + + + yes
\Q + + + + yes

1sometimes displays the proper error message
2inner mode only (spaces compressed or lost, % is comment etc.)

• the accents \H and \. work as expected with monospaced fonts in the OT1 encoding. By default,
\texttt{\H o} produces }o in OT1 encoding, because such typewriter fonts (such as cmtt10) have those
accents replaced by ASCII symbols. examplep solves the problem by getting the accent from the cmr font
family.

Some other features:

• side-by-side display of the Source and the Sample

• between-word hypenation of inline verbatim

• customizable left and right indentation of display verbatim

• specifying inline verbatim with nested braces (\PVerb, \Q) or terminating character (\PVerb, ÷, \÷)

• automatic line breaks with hyphenation in display verbatim

• the discretionary hyphen (\hyphenchar) of verbatim text is different from the one in normal text

• line numbering in display verbatim

• writing to temporary files only if needed

• reading back contents of any file in display verbatim

• inline verbatim with a single character (÷) and its escaped version (\÷ and \Q)

• automatic \indent/\noindent, based on empty line above \begin{...}

• ISO Latin accented input character support in all modes (also present in \verb)

• support for syntax highlighting with the listings package [1]

• emits a tab as eight spaces in normal mode, but tabs are supported properly with ttlistings=yes and
ttlistings=showtabs

• simple side-by-side display emulation without temporary files, using srcstyle=leftboth or
srcstyle=leftleft

3.1 Escaped mode of inline verbatim locations

For compatibility reasons, examplep doesn’t change the original \verb and \verb* commands in any way, but
defines its own commands: \PVerb, \PVerbH, \PVerbInner, \PVerbOpt, \Q, ÷ and \÷. Most of the \PVerb. . .
commands are historical. For new documents, only the use of \PVerbOpt, \Q, ÷ and \÷ is recommended. Some
of these commands have to be activated with package load options:
\usepackage[Q=yes,div=yes,bsdiv=yes]{examplep}. The reason why ÷ was introduced is that it is a high
Latin-1 (and Latin-2) character available on the Hungarian keyboard, which is usually not used in LATEX
documents (in fact, \div is used instead). Inline verbatim sources with such a character are compact, and
they can contain all ASCII symbols.

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

122 Verbatim Phrases and Listings in LATEX

Péter Szabó

examplep supports inline verbatim text at the outer level, inside macro arguments, in table cells and elsewhere
(in section titles, in footnotes and in index entries), see also in Table 1. The reason why some of these cases
are treated differently is that catcode changes must be timed correctly so that the proper catcodes are active
by the time TEX reads the verbatim text from the input file for the first time. (Please note that section titles
and index entries are also written to and read back from auxilary files.)

This is quite hard to accomplish in several cases (because TEX’s mouth gathers macro arguments at high
speed, a way before TEX’s stomach could change the catcodes), so examplep provides the commands ÷ and \Q,
which do not change catcodes at all, so they work everywhere. Each special (say, not alphanumeric) character
of the source text of these commands must be prefixed by a backslash, so TEX’s eyes will see it as a controls
sequence token. The backslashes are retained when the construct is written to auxilary files, but they get
removed upon typesetting. Letters, when prefixed by a backslash, get special meaning, for example \V denotes
a visible space. For example, The construct \÷\\\}÷ is seen by TEX’s eyes as \÷13\\13\}13÷13, and its gets
typeset as \} (by running the command \÷). Please note that the construct is properly nested, because all
braces are inside control sequence names. The same result (\}) can be achieved with \Q{\\\}}. Both constructs
are safe, because they can be freely moved to anywhere in the source file. However, for compatibility reasons,
\Q is recommended, because its execution doesn’t rely on the current catcode of the terminating ÷ of \÷. A
more complicated example: ‘‘\Q{\\\V X\ }’’ gets typeset as “\␣X ”. In escaped mode, \V dentoes a visible,
unbreakable space, \S and \␣ denote default space (affected by the pverb-space= option), \B allows a line break
there with a discreationary hyphen (affected by the pverb-linebreak= option), and \n flushes left and starts
a new line.

The \PVerb macros can detect whether they have been invoked from within a macro argument. If so, they do
not insist on catcode changes, but they emit all the tokens that has been seen by TEX’s eyes. (Spaces are already
compressed now, and everything after % is ignored etc., so this is not purely verbatim anymore.) However, this
works only if the macro argument is properly nested with respect to braces, and it is delimited by braces (not
a terminator character).

Please note that there might be problems with verbatim material in index entries processed by makeindex if
characters ", @, ! and | are not quoted properly with ". This is a generic makeindex issue. The quoting must
be applied even inside verbatim material.

3.2 Horizontal alignment of the Source lines

The verbatim environment of standard LATEX reads the whole verbatim text into a macro argument, thus
limiting the length of the verbatim material to the available main memory. This is enough for about 3400 80-
character lines. The verbatim, moreverb, listings and examplep packages parse the input line-by-line, so there is no
such limit. However, with examplep, additional memory is required for aligned mode, which limits the maximum
number of lines to about 2200 (32 pages) when the average line width is 80 characters. Please note that the
maximums mentioned here may be lower if more packages are loaded; in another situatian the maximum number
of lines was 375. As a reference, a plain \halign with all lines having (9999)\hfil\cr only could accomodate
about 5000 lines when no packages were loaded. The maximum memory can be increased by increasing the
extra_mem_bot variable in texmf.cnf or in the environment.

There are two display modes used for display verbatim: paragraph and aligned (see the \pexa@show@pars
and \pexa@show@halign macros, respectively, in the source). Aligned mode is used when multiple columns (such
as line numbers and text) have to be aligned horizontally. Aligned mode uses the TEX \halign primitive to do
the alignment, and this primitive reads the whole construct into memory before typesetting it (in order to be
able to calculate the column widths). The other one, paragraph mode, is used when horizontal alignment is not
needed and side-by-side display is not used. In paragraph mode, each line is typeset as a seperate paragraph,
so the length of the verbatim text is only limited by the available disk space to hold the resulting DVI file.
examplep chooses the mode automatically: for side-by-side display it always chooses aligned mode (so it can
measure the width of the Source before typesetting it), otherwise, if the srcstyle= makes it possible, it chooses
paragraph mode, otherwise it chooses aligned mode. See Figure 1 for details about Source styles.

Please note that the Source styles leftboth and leftbothnumcol display each line twice, as Source and as
Sample, too. This is different from regular side-by-side display, because lines of the Source and Sample here are
forcibly aligned, and this solution doesn’t use a temporary file. The source style leftleft is similar, but it lefts
the author specify different Source and Sample for the same line (they should be separated by & in the source).

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

123

srcstyle=left PAF
9srcstyle=leftnumhang PAF
9srcstyle=leftnum PAF
9srcstyle=leftnumcol AF when the last page number has 2 digits

srcstyle=center PAF
srcstyle=right PAF

srcstyle=paralign PF with source-par-align=justjust
srcstyle=leftboth srcstyle=leftboth A
9srcstyle=leftbothnumcol srcstyle=leftbothnumcol A
srcstyle=leftleft anything A

P: works in paragraph mode
A: works in aligned mode
F: works when Source is read back from file

Figure 1: The effect of the srcstyle= option

I My chapter

Welcome1!

1to our isolated minipage environment

1

1 My section

The chapter begins on page 1.

a
2 + b

2 = c
2 (1)

Indented.

2

1\chapter{My chapter}\label{c}

2Welcome\footnote{to our isolated

3minipage environment}!

4\newpage

5\section{My section}\label{s}

6The chapter begins on page

7\pageref{c}.\par

8\begin{equation}a^2+b^2=c^2

9\end{equation}

10\par Indented.

Figure 2: Display verbatim isolation with the PexaMinipage environment

3.3 Display verbatim isolation

The PexaMinipage environment is provided, which is similar to the built-in minipage environment, but provides
better isolation of the Sample from the container document, because it saves and restores section, page, equiation
(etc.) numbers and also marks (section titles in page headers). Labels (for \label, \ref etc.) are not isolated,
because many packages use them in a non-standard way. See Figure 2 for an example.

The environment also cancels vertical skips (including \belowdisplayskip) at the bottom of its contents.
For space conservation, \abovedisplayskip above the very first displayed equation is also canceled. To vaid this,
put \everydisplay{} before the formula. The environment starts with \noindent, but subsequent paragraphs
are indented.

3.4 Feature comparison

Although there are several LATEX packages providing display and/or inline verbatim environments for LATEX,
examplep has some important unique features not found in other packages (see the beginning of this section for
details). The author has tried the following packages before deciding to write examplep:

verbatim Although the verbatim environment is built-in into LATEX, its most important limitation is that it eats
up TEX memory when typesetting very long verbatim material (of several hundred or thousand lines). The
verbatim package fixes this, and provides the \verbatiminput command (similar to the \PexaShowSource
command of examplep) and the comment environment (similar to PIgnore in examplep).

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

124 Verbatim Phrases and Listings in LATEX

Péter Szabó

moreverb This package extends the verbatim package with additional features: proper handling of tabulators
(also accessible from examplep with the listings interface), line numbering (also available in examplep with
much more customization), verbatim surrounded by a frame (this is not available in examplep, but it
works with listings, with page breaks allowed), the verbatimwrite environment writes its contents to a
file (similar to the WFile environment in examplep).

sverb It provides display verbatim with tabulators and long environments, and it can read and write text from
files. It also has a side-by-side environment (demo) with fancy frames. The verbfwr package (part of the
examplep distribution) was derived from parts of this package.

syntax This package is written by the author of sverb. It provides generic and customizable inline verbatim
support and it also has powerful features to typeset BNF-like grammars and syntax diagrams. It is
documented that no attempt is made to make the constructs work inside macro arguments or section
titles.

alltt This standard LATEX package defines the alltt environment in which the characters \ { } retain their
original meaning, so it is possible to do some manual formatting in the verbatim text.

fancyvrb [5] This is extremely configurable verbatim package provides inline verbatim even in footnotes, display
verbatim even with side-by-side, line numbers on any side, all kinds of francy frames even with page breaks,
text formatting and writing and reading from files; and very long diplay verbatim text. Options can be
specified any time within the argument of the \fvset command. The original verbatim environment is
not modified, but a new one, Verbatim is defined. Setting the background color is not possible.

This package is not actively developed. Version 2.7 (dated 2000/03/21) is part of teTEX. Oddly enough,
the newest version on CTAN is 2.6, which a file timestamp in 2004, but it dated 1998/07/17).

fvrb-ex This package is part of the fancyvrb distribution and uses the fancyvrb package. It provides a side-by-side
display verbatim environment (SideBySideExample). A page break is not allowed in the Source after the
Sample. The xrightmargin option has to be specified manually (e.g. xrightmargin=3cm. The first two
characters of each line in the environment are ignored.

ltxdoc The most important features of examplep inspired by the LATEX documentation package are display
verbatim line numbering with srcstyle=leftnum and inline verbatim started with ÷. The ltxdoc package
typesets everything between two | characters as inline verbatim. This is not supported by examplep to
avoid making an ASCII character active.

listings [1] The most important layout elements of this sophisticated, highly customizable, actively de-
veloped package missing from examplep are: background color, frames (with page breaks allowed),
syntax highlighting and proper tabulator support. Except for the background color and frames,
these features can be used from examplep with its interface to listings, see in Subsection 4.1. Use
\lstset{columns=fullflexible,language=C,backgroundcolor=\color{red},frame=trBL} to try
these features. listings also provides inline verbatim mode (with syntax highlighting), in the character-
delimited argument of the command \lstinline; unfortunately, spaces at line breaks (with option
breaklines) are rendered in an inconsistent way, and line breaks do not work well with background color.

listings has an important weak point: it cannot typeset ISO Latin accented characters with the inputenc
package; the way described in the manual doesn’t work as expected: it puts the accented characters to
the wrong place in the line. This problem, however, is solved when listings is invoked from examplep. See
more about listings in Subsection 4.1.

4 Customization

The operation of examplep can be customized with options as 〈key〉=〈value〉 pairs. Global options, which affect
all subsequent commands within the current block, can be specified as package load options (\usepackage[...]
{examplep}) or as argument of the \PexaDefaults command. LATEX doesn’t allow complicated option values
(such as values containing some expandable macros, for example after linenumberformat=) to be specified
in the \usepackage line – use \PexaDefaults in such cases. Many commands and environment accept local
options, which affect only that construct.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

125

All options have default values, which are indicated below right after the option name. If the option has
a fixed set of possible values, all of them are mentioned, and they are prefixed by =. The defaults have been
chosen so the PSource environment matches the builtin verbatim environment as closely as possible. Note that
the original environment is not overridden before the verbatimenv=yes is specified.

Q=unchanged To enable \Q, use =yes instead of the default.

abreak=unchanged To enable \abreak, use =yes instead of the default.

addvspace-bottom={\vskip\z@skip\addvspace} Specifies the command to add vertical space below display
verbantim. The default works fine, but e.g. packages maintaining the baseline grid might want to change
it.

addvspace-top=\addvspace Command to add vertical space above display verbantim. The default works fine,
but for example, packages maintaining the baseline grid might want to change it.

allowbreak=yes Use =no to disable page breaks in the Source of display verbatim.

allowshrink=yes The default will shrink the Sample horizontally if the Source is too wide. Use =no to disable
this. Use =force to enable shrinking of Source, and with srcstyle=leftleft or srcstyle=leftboth,
also enable shrinking of the Source if it is narrow.

baseline-grid=no Use =yes to adjust the height of the Sample to be an integer multiply of \baselineskip
(with yalign=u and yalign=v).

boxstyle=p Controls how the Sample is boxed. Capital letters are not allowed for side-by-side display. By
default (=p), a PexaMinipage environment is put inside a \vtop. Use =h to put a \hbox only, =v to
put a \vtop only, =V to put a \vbox only, =m to put a minipage environment inside a \vtop, =M to put
a minipage environment inside a \vbox, =P to put a PexaMinipage environment inside a \vbox, =G to
add \begingroup and \endgroup only. The default is recommended for most cases, because the \vtop
provides proper alignment with the Source, and the PexaMinipage environment provides isolation (of page
and section numbers etc.) from the main document.

bsdiv=unchanged To enable \÷, use =yes instead of the default.

div=unchanged To enable ÷, use =yes instead of the default.

firstlinenum=1 Specifies the number of the first line of a numbered Source listing.
Useful with srcstyle=leftnumcol and srcstyle=leftnumhang.

linenumberformat={{...}} Commands to display a line number and the separator in a numbered Source
listing. See the default value in examplep.sty.

linenumbersep={} Commands to display the separator in a numbered Source listing.

listings=no Use =yes to display each Source line with the listings package. Specify options (to be executed in
\lstset), separated by commas in the argument. Read more about the options in the documentation of
the listings package. For example, listings=yes and listings={} uses listings with default options (no
syntax highlighting), and listings={language=C,showtabs} enables syntax highlighting for C language
and enables visible tabulators. See Subsection 4.1 for more information.

listings-verbatimfont=pexavf Set the font to be used in the Source when listings= is active.
See source-verbatimfont= for the possible values.

mp-equation-reset=yes Use =no to make the main document and the Samples inside PexaMinipage share the
same equation counter.

mp-varioref-reset=no Use =yes to make the internal counter vrcnt of the varioref package to be reset for
each Sample inside PexaMinipage. This option doesn’t affect the final output, and varioref expects this
counter not to be reset, so it is not recommended to change the default.

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

126 Verbatim Phrases and Listings in LATEX

Péter Szabó

noligs=some By default, only those ligatures are disabled whose second character is one of ‘ ’ , - < >. Use
=kernel to get the same effect, but using the LATEX built-in \@noligs. Use =most to get all ligatures
with either the first or the second character having code between 32 and 127 and catcode 12. Please
note that ligatures in inline verbatim mode are disabled anyway, because \allowbreak is inserted between
characters of catcode 12, depending on the value of pverb-linebreak=.

pexaminipage-setuphook={} Extra commands to run when starting the PexaMiniPage environment, just after
the environment has finished its own initialization.

pverb-hash=full Use =half to make \PVerb convert ## to #. The command \PVerbH is the same as \PVerb
but forces =half. This is required when \PVerb or ÷ is used inside a macro argument. For exam-
ple, \textit{÷#÷} yields the error message Illegal parameter number in definition of \reserved@a, but
\textit{\PVerbH{##}} works fine. The error message is a general LATEX kernel limitation, for example
\textit{\@gobble{#}} doesn’t work either.

pverb-hyphenchar=hyphen By default, the minus character (ASCII code 45) is used to for automatic word
hyphenation in inline verbatim. Use =char’30 to have character with code 24; see also Subsection 7.6.
Use =none to disable word hyphenation (by setting \hyphenchar to −1). Use =unchanged to get the
hyphenchar from the font (the cmtt and ectt fonts have word hyphenation disabled). Please note that
hyphenation around symbols is affected the pverb-linebreak= option, not this one.

pverb-leftbreakmin=2 Specifies the minimum number of characters in inline verbatim after which it is allowed
to break the line (with pverb-linebreak=). Values allowed are 0, 1 and 2, but 0 usually doesn’t make
sense.

pverb-linebreak=char By default, \PexaAllowBreak is inserted around symbols in inline verbatim, so a line
break (with a discreationary hyphen affected by pverb-linebreakchar=) is allowed there. Use =yes
to insert \allowbreak instead, which allows a line break without discretionaries. Use =no to disable line
breaks around symbols in inline verbatim. The option pverb-hyphenchar= affects intra-word hyphenation
in inline verbatim, not this one.

pverb-linebreakchar={\lnot} Specifies the discreationary hyphen to be used in \PexaAllowBreak. See
also pverb-linebreak=.

pverb-space=invbreak By default, spaces in inline verbatim are invisible, variable width (as allowed by the
font, see also pverb-stretchshrink=) and breakable (i.e. a space can be replaced by a line break if
necessary). Use =invdisc to get an invisible, variable width space which becomes visible (␣) when it is
broken at the end of the line. Use =invfixbreak to get an invisible, fixed width and breakable space. Use
=invnobreak to get an visible, variable width and unbreakable space. Use =visnobreak to get a visible,
fixed width and unbreakable space. Use =visbreak to get a visible, fixed width space with line breaks
allowed on both sides. Use =invbreakleft to get a visible, variable width space with infinite stretchablility
if the line is broken there (this may have strange effect on other line breaks in the paragraph, so please
try to avoid it). The built-in \verb* command uses source-space=visnobreak.

pverb-stretchshrink=yes By default, spaces in inline verbatim are forced to be stretchable and shrinkable
(by \quad/9). Use =no to disable stretchability and shrinkability. Use =unchanged to keep the settings in
the font. Note that \fontdimen3 and \fontdimen4 are changed by this option, and the changes are local
to inline verbatim mode.

pverb-verbatimfont=pexavf Set the font to be used in inline verbatim mode. See source-verbatimfont= for
the possible values.

samplewidth=.5\PexaWidth Specifies the maximum width of the Sample in side-by-side display as a TEX
dimension. The actual Sample can become actually narrower (see allowshrink=. The dimensions
\hsize, \linewidth and \PexaWidth can be used. (Our LATEX book used samplewidth=.45\PexaWidth.)
\leftskip and \rightskip do not affect this option. \hsize can be used, which is the total width avail-
able (including the extra margins added by surrounding list environments), \linewidth is \hsize widtout
the extra margins produced by lists, and \PexaWidth is the total width of the Source, the separator (see
vrule=) and the Sample.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

127

source-par-align=left Specifies the alignment of Source lines when srcstyle=paralign is active. Use =left
(default), =right or =center to specified flush-left, flush-right or centered alignment, respectively. Use
=justify to have the last line flush-left and the previous line justified (please note that each Source line
is mapped to a single paragraph, so the paragraph will have more than 1 line only if the source line is too
long). Use =justjust to have all lines justified. Use =unchanged to keep the alignment of the enclosing
block.

source-sepwidth=\tabcolsep Specifies the horizontal distance between the Source and the Sample. See also
vrule=.

source-space=invfixbreak Specifies how to typeset spaces of the Source. See pverb-space= for the possible
values. The built-in verbatim* environment uses source-space=visnobreak.

source-verbatimfont=pexavf Sets the font to be used for the Source when listings= is not active (see
also listings-verbatimfont= for listings=). Give =ttfamily to use \ttfamily, =pexavf to use
\pexa@@verbatimfont (which defaults to \verbatim@font), =latexvf to use \verbatim@font (which
defaults to \normalfont\ttfamily), =unchanged to keep the current font, or =normalfont to use
\normalfont.

srcstyle=left Specifies the horizontal alignment of the Source lines. See more in Subsection 3.2 and Figure
1.

ttlistings= (no default) Shorthand of listings-verbatimfont=ttfamily,listings=.

url=unchanged To enable \url, use =yes instead of the default. The \url will be defined as \def\url{\PVerbOpt{}}.
This has the disadvantage that inside \textit etc. it cannot typeset URLs having a single # (see
pverb-hash= for more), but the url package has the same limitation. A quick fix: use \itshape instead
of \textit etc.

usewidth=skipwidth Specifies which horizontal part of the main text should be used in a display verbatim.
By default, left and right margins introduced by list environments (such as itemize) and \leftskip
and \rightskip are respected. Use =linewidth to ignore \leftskip and \rightskip but respect list
environments. Use =hsize to use the whole width of main text. Note that this option affects the calculation
of \PexaWidth.

vextrabotdepth=\z@ Dimension to add to the depth of the display verbatim with yalign=v. The default works
fine, but for example, packages maintaining the baseline grid might want to change it for each instance.

vextravskip=\z@ Amount of vertical space to be added above display verbantim with yalign=v. The default
works fine, but for example, packages maintaining the baseline grid might want to change it for each
instance.

vsmallht=1pt Specifies Sample height threshold for yalign=v. If the Sample is lower than this (or sample a
higher than the 1st line of the Source plus \vextravskip – typical for \includegraphics), its top will be
aligned to the top of the Source, otherwise its top baseline (with \vtop) will be aligned to the top baseline
of the Source.

xalign=l Specifies horizontal alignment (=l for left, =r for right) of the Sample box (and the separator) within
its allocated width for side-by-side display. Please note that =r works only with boxstyle=h, because all
other box sizes use their full allocated width.

xindent=deeppre Specifies additional horizontal indentation in display verbatim mode. Use =none to get no
extra indentation. Use =narrower to get \narrower (both \leftskip and \rightskip are decreased
by \parindent). Use =deeper to move one level deeper in the list environment hierarchy and get that
indentation. Use =deeppre (default) to move one level deeper, but don’t change indentation (this is useful
with yindent=deeper – otherwise it is equivalent to =none). Use =deepright to set both left and right
indentation from the left indentation of =deeper.

yalign=u Specifies vertical alignment in side-by-side display. By default, the top of the bounding boxes of the
Source and the Sample is aligned, which looks nice if the Sample is an image, but doesn’t align properly
if the Sample is text with a font of similar size to the Source. Use =b to align the topmost baselines of

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

128 Verbatim Phrases and Listings in LATEX

Péter Szabó

the Sample and the Source. This looks nice if the Sample is text, but it is ugly if the Sample is an image
higher than \baselineskip. The use of =v is recommended, which decides between =b and =u based on
the height of the Sample (see vsmallht= for the details).

yindent=deeper Specifies the vertical space separating display verbatim from the surrounding text. Use
=none no have no extra vertical space, the display verbatim appears to be a new paragraph as far as
\baselineskip and \vskips are concerned. Use =deeper (default) to move one level deeper in the list
environment hierarchy (and use the \parsep and \partopsep etc. specified there). It is recommended to
have yindent=deeper and xindent=deeppre together, so there is no extra horizontal indentation.

verbatimenv=unchanged Use =yes to change the implementation of the verbatim and verbatim* environments
to use the PSource environment.

vrule=rule By default, the Source and the Sample are separated with a vertical rule of width \arrayrulewidth
in the middle of a horizontal space specified by source-sepwidth=. Use =skip to omit the rule but keep
the space. Use =none to have no separator at all.

The other packages (codep and verbfwr) shipped with examplep do not have load options.

4.1 Interface to the listings package

The listings package [1] provides advanced typographic for display verbatim, including proper typesetting of
tabulators and syntax highlighting for more than a hundred languages. examplep doesn’t try to reimplement
these features, but it supports calling the listings package to typeset the Source lines in display verbatim. The
surroundings (line numbers, vertical separation, horizontal margins and the Sample) are not effected, only the
Source line contents are passed to listings. This implies that the border and the background color support
provided by the listings package doesn’t work with examplep. To use the interface, the listings package must
be loaded, and either the listings= or the ttlistings= options of examplep has to be active when the Source is
typeset. Additional options can be specified to listings in the argument of \lstset at any time. The interface
has been tested with the listings package dated 2000/08/23 and 2004/09/07.

examplep treats tabulators (ASCII code 9) as 8 spaces. This is acceptable at the beginning of the line,
but it may be incorrect elsewhere. To get tabs right, specify the ttlistings=yes, or, to be more precise, the
ttlistings={tabsize=8} option to examplep. It is also possible to have visible tabulators: specify, for example,
ttlistings={tabsize=8,showtabs}. In our tests listings failed to detect the width of a character of a fixed
width font, so examplep enforces character width using the natural width of the space each time it calls listings.
This workaround made the showtabs listings option work properly. See the documentation of the listings package
for options that affect the typesetting of Source line contents. See an example of using listings from examplep
on page 16.

listings supports fixed width characters with a variable with fonts. However, this support seems to be broken
when used with examplep, so the columns=fullflexible listings option is enforced so proportional fonts will
look proportional. Although the listings package claims that it has accented letter support, this didn’t work well
with the single-character accented letters input using the inputenc package (those characters were positioned to
a wrong place inside the line, possibly because listings has failed to recognise that \lst@UseLostSpace\lst@
PrintToken has to be inserted in front of the accented character into its internal token list). examplep contains
a work-around to this problem, with the following limitations: multibyte input encodings such as UTF-8 are not
supported (will print strange error message); accented characters may not be part of keyword names in syntax
highlighting; accented characters are shown as ^^ hex escapes in aligned mode (see in Subsection 3.2), so they
don’t work with \PexaShowBoth.

listings, when called from examplep, failed to break ligatures such as ‘? and <<. This has the side effect
that guillemots would be typeset instead of bitwise right shift in C language sources. examplep modifies the
\lst@FillOutputBox@ macro so it will add a \relax between each character displayed – so all ligatures are bro-
ken. (This approach is quite differrent from the way LATEX disables a few ligatures with \@noligs; \pexa@noligs
is similar to \@noligs in this respect.)

It is possible to customize the listings package so it typesets some strings differently. For example, with
the literate={<=}{{\leq}}1 listings option, all occurences of <= (even those inside strings of the target
programming language) are typeset as ≤. There are no problems when using this feature from within examplep.
It is also possible for strings and comments in the syntax-highlighted Source to span multiple lines – listings
takes care to remember its internal state between lines.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

129

5 Commands and environments

The arguments between brackets ([and]) are optional: either the the argument and the brackets are all missing
all all present. The arguments named “options” is a comma-separated list of local customization options, defined
in Section 4. The {+ notation in front of an argument means that the argument can be delimited by braces (thus
it must be properly nested), or with any symbol in \dospecials (\ $ & # ^ _ % ~) or in \pexa@cverb@donormals
(‘ ! @ * - + = | : ; ’ " , . / ? < > () []).

\PVerb[〈options〉]{+〈verbatimtext〉} Typesets its argument in inline verbatim mode. Similar to the LATEX \verb
macro, but respects the options. The use of [] is recommended instead of omitting the options altogether,
because [] will ensure that the proper catcode changes are in effect even for the first verbatim character.
This command is robust.

\PVerbH{+〈verbatimtext〉} Shorthand for \PVerb[pverb-hash=half] (extra options cannot be specified). This
command is robust.

\PVerbInner\PVerb. . . Forces the \PVerb. . . command immediately following it to work in inner mode, thus
compressing spaces, respecting comment characters etc. Because of how TEX works, it is impossible to
go the other way round, and force outer mode, because it is too late change catcodes – the argument has
already been tokenized in inner mode. This command is robust.

\PVerbOpt{〈options〉}{+〈verbatimtext〉} Equivalent to \PVerb, but uses a different syntax. For example,
\item[\PVerb[pverb-space=visbreak]{xy}] doesn’t work because of the nested [. Use this instead:
\item[\PVerbOpt{pverb-space=visbreak}{xy}], or \item[{\PVerb[pverb-space=visbreak]{xy}}].
This command is robust.

\Q{〈verbatimtext〉} Similar to \PVerb, but its argument must be escaped (see in Subsection 3.1), and it can be
used in section titles etc. Must be enabled with Q=yes. This command is robust.

÷〈verbatimtext〉÷ Similar to \PVerb, but it can be used in section titles etc. (but not int tabular) (see in
Subsection 3.1). Must be enabled with div=yes. This command is robust.

\÷〈verbatimtext〉÷ Equivalent to \Q, but the argument delimiter is different. Similar to \PVerb, but its argu-
ment must be escaped (see in Subsection 3.1), and it can be used in section titles etc. Must be enabled
with bsdiv=yes. This command is robust.

\url{〈url〉} Must be enabled with url=yes. This command is robust.

\begin{WFile}{〈filename〉} (defined in the verbfwr package) Writes its contents verbatim to the specified file.
TEX .tcx and line ending transformations apply, so it is possible that accented letters will be converted
to ^^hex according to the input encoding.

\begin{WAux} (defined in the verbfwr package) Writes its contents verbatim into the current .aux file. TEX
.tcx and line ending transformations apply, so it is possible that accented letters will be converted to
^^hex according to the input encoding.

\begin{PWSource}[〈options〉] Comination of \begin{WSource} and \PexaShowSource. It is recommended to
have a [] even if there are no options, so the very first token of the contents will be read with proper
catcodes.

\begin{WBoth} Writes its contents to the Source and the Sample temporary file. It is a combination of WSample
and WSample.

\begin{WSample} Writes its contents to the Sample temporary file (pexa-sam.tex), to be typeset by a sub-
sequent \PexaShowSample or \PexaShowBoth. The line must end at \end{WSample} because of technical
reasons.

\begin{WSource} Writes its contents to the Source temporary file (pexa-src.tex), to be typeset by a subse-
quent \PexaShowSource or \PexaShowBoth. It is similar to \begin{verbwrite} in the sverb package and
the \begin{filecontents} LATEX built-in environment. The line must end at \end{WSource} because of
technical reasons.

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

130 Verbatim Phrases and Listings in LATEX

Péter Szabó

\begin{PIgnore} Ignores everything up to \end{PIgnore}. The environment closer must be at the end of its
line. Similar to the comment environment in some other packages.

\begin{PSource}[〈options〉] Typesets its contents in display verbatim. Similar to the LATEX \begin{verbatim}
environment, but respects the customization options. It is recommended to have a [] even if there are
no options, so the very first token of the contents will be read with proper catcodes. This environment is
similar to PWSource, but it doesn’t create a temporary file, so it is faster, srcstyle=leftboth (etc.) can
be used, and there is no ambiguity between ^^e1 and á (etc., see more in Subsection 7.2). Page breaks are
allowed between each Source line. (The implementation of this environment is fairly complex compared
to PWSource.)

\begin{verbatim} Equivalent to \begin{PSource}[]. Must be enabled with verbatimenv=yes.

\begin{verbatim*} Equivalent to \begin{PSource}[source-space=visbreak].
Must be enabled with verbatimenv=yes.

\begin{PexaMinipage}[〈vbox-type〉]{〈width〉} Similar to the LATEX minipage environment (and accepts the
same arguments), but isolates (concerning section numbers etc.) of its contents from the main document
more thoroughly. See Subsection 3.3 for details of isolation.

\PexaShowBoth{〈options〉} Typeets the Source and the Sample side-by-side in display verbatim mode. The
Source comes from the temporary file written by the last WSource or WBoth environment, and the Sample
comes from the temporary file written by the last WSample or WBoth environment. By default, a vertical
separator line is drawn between the Source and the Sample, and page breaks are allowed in the Source
after the end of Sample. It can be called multiple times with different options for the same file.

\PexaShowSample{〈options〉} Typesets the Sample (written by the last WSample or WBoth environment) in dis-
play mode. It can be called multiple times with different options for the same file.

\PexaShowSource{〈options〉} Equivalent to \PexaInputSource with the file written by the last WSource or
WBoth environment. It can be called multiple times with different options for the same file.

\PexaInputSource{〈filename〉}{〈options〉} Typesets the contents of the specified file as Source in display ver-
batim mode.

\begin{code} (defined in the codep package) Typesets its contents side-by-side and also marks its contents to
be dumped to the CD. By default, each line is emitted to all three streams, but lines with special prefixes
will go into the Source, Sample or CD-file stream only. See Section 6 for details.

\PexaAllowBreak Allows a line break here with a discreationary specified in the option pverb-linebreakchar=
inserted.

\abreak A robust command which inserts \PexaAllowBreak when the font {\ttdefault}{m}{n} is active;
inserts \allowbreak otherwise. Must be enabled with abreak=yes.

6 Writing examples with the codep package

Textbooks and manuals tend to have many display verbatim examples. The examples are usually code snippets
which can be further processed by a compiler or another program. Sometimes minor modifications, such as
adding the proper header or trailer, are necessary before the code snippet can be processed. It is customary to
put all code snippets in the book onto the CD accompanying the book. The code environment of the codep
package (part of the examplep distribution) generates CD-files automatically.

Three streams are generated from the contents of each code environment: the Source, the Sample and the
CD-file streams. Most parts of these streams are identical. The Sample usually differs from the Source because
the code snippet has to be typeset specially in the book (for example, \includegraphics has to be used to
typeset an EPS file whose Source is displayed). The CD-file differs from Source because additional header and
footer may be required (such as \begin{document} etc.), which are omitted from the book to conserve space.

The code environment reads the code snippet line-by-line. The type of the line is specified in first two
characters. Lines having the default type are written to all 3 streams, and special line types exist to write to
a specific stream only. The code environment writes the Source and Sample streams to temporary files, and

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

131

upon the end of the environment, it calls \PexaShowBoth (or \PexaShowSource, if the Sample stream is empty)
to typeset the example. The CD-file stream is not written to a file by TEX, but the file name and starting
line number of the code environment is reported in the .aux file. A Perl script (wrfiles.pl, part of the examplep
distribution) has to be called later to the actual generaton of CD-files. It will examine the .aux files, extract
the CD-file stream from the .tex files, and dump these streams to individual files in the CDfiles directory.
The file names can be specified in the code enviroment, and the environment can generate file names based on
chapter and page numbers (so the reader will know from the file name where to read more about the example).
The same file name is never generated again.

The code package was used in our recent LATEX textbook [4] to typeset its examples. Most of the examples
were written in LATEX, but many of them were METAPOST sources, and some of them were others (e.g. config-
uration files, shell scripts or EPS files). Because of the huge amount of LATEX examples, special features were
added to make them easy and convenient to input for the author. For example,

\begin{code}
t \usepackage{url}

URL:
\\\url{http://foo.org/~user/}

\end{code}

is displayed as (depending on the examplep options)

1%^\usepackage{url} URL:
2URL: http//foo.org/~user/
3\\\url{http//foo.org/~user/}

As seen above, examples are quite convenient to input, and examplep takes care of typesetting side-by-side,
determining width of the Source, allowing page breaks, putting margins and \vskips right, adding the rule
the separate the Source and the Sample, adding line numbers, generating file name for CD-file and writing the
CD-file with header and footer.

With codep it is easy to fulfill the following quality criterias: the Sample must be consistent with the Source
(i.e. if the Source is changed during editing to book, the Sample should change automatically); the CD-file must
be consistent with the Source; the CD-file must be directly compilable with LATEX (so a header and a footer
have to be added). When the deadline of finishing the book approaches, there might not be enough time left to
ensure these manually, so a package such as codep is very useful in this situation.

6.1 Example files on the CD

The following CD-file is generated from the code snippet above:

\documentclass{article}

\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[magyar]{babel}
\usepackage{url}

\begin{document}

URL:
\\\url{http://foo.org/~user/}

\end{document}

The CodeDefaultD, CodeDefaultL, CodeDefaultB and CodeDefaultE environments can be used in the
preamble to customize the default header and footer generated into the CD-file. For example:

\begin{CodeDefaultD}
\documentclass[10pt]{article}
\end{CodeDefaultD}
\begin{CodeDefaultL}

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

132 Verbatim Phrases and Listings in LATEX

Péter Szabó

\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\end{CodeDefaultL}

Although TEX is able to write to external files with \textsfrite, there were several reasons for using an
external program (a Perl script) to extract the source snippets from the document sources:

• with \write the file always ends at end-of-line

• \write forces .tex if no extension is specified

• \write removes whitespace from end-of-line

• \write translates accented letters to hat-escapes (e.g. á to ^^e1) unless compiled with
latex –translate-file cp8bit.tcx (–translate-file il2-t1.tcx makes ő in DVI incorrect). There
is the same problem when emitting UTF-8 text.

• it is impossible to distinguish missing files from empty files, so accidental file overwrites are hard to prevent

• it is too late to verbatize if the verbatim text is inside braced macro arguments

The only limitations of this solution are: is not possible to \input or \include a subfile, and then use the
code environment in the referrer file; the subfile has to be included with \include{...} or \input{...} (with
braces); and the subfile must have extension .tex. The first one is usually not a problem, since referrer files
themselves do not typeset text, they only include subfiles. See Subsection 7.7 for implementation details.

6.2 \begin{code} invocation

The input syntax of the code environment has been designed so that typing the most common examples (short
LATEX code snippets) is simple and straightforward, but the author can have full control over all three streams if
he wants to. The contents of the environment is divided into lines. The first two characters of each line specify
the line type and the rest is the line data. The first character of the line type is usually a lowercase ASCII letter
or a punctuation symbol. Line types belong to classes, which are denoted by capital ASCII letters. The order
of the classes in the environment is significant, but the order of the individual types or lines within the class
is irrelevant. Some classes have default lines, which are used only if the class is omitted from the environment.
The default lines make it possible to have default CD-file header and trailer. The clases, in proper order with
allowed types in parentheses), are:

F (f, f !, v, v!) specify the file name.

D (d) the \documentclass line, default uses article

L (l) the preamble specific to the natural language, defaults for Hungarian babel, Latin-2 inputenc, T1 fontenc.
Use the CodeDefaultL environment to override.

P (p≡0, t) the preamble with the \usepackage lines

B (b) \begin{document}

C (<≡c, >≡o, ␣≡2, w, s, x, %) the document contents

E (e) \end{document}

The meaning of the complicated types are:

f Accepts a file name with extension. The use of _ in the name is not recommended. The extension (e.g. .tex)
is mandatory. The chapter and page numbers will be prepended to the file name (only the page number
for document classes without chapters), for example f foo.mp may become 2_63_foo.mp in chapter 2, on
page 63.

v Like f, but removes the default lines from classes D, L, P, B and E. This is ideal for emitting non-LATEX
examples.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

133

f ! Like f, but don’t prepend numbers to the file name.

v! Like v, but don’t prepend numbers to the file name.

p≡0 Writes only to the preamble of the CD-file.

t Writes to CD-file, appends line prefixed by %^ to Source. Useful to indicate in the book that a package is
needed. Example: t␣\usepackage{url}.

<≡c Writes to Source and CD-file.

> Writes only to Sample.

x Writes to Sample and CD-file.

␣≡2 Writes to Source, CD-file and Sample.

w Writes only to CD-file.

s Writes only to Source.

% Comment, ignored.

The code environment omits the Sample part from the book if the Sample is empty, and it omits the whole
display verbatim environment (but still writes to CD-files) if both the Sample and Source are empty.

6.3 An example with METAPOST code

If the eempost package is also loaded, the following code can be used to typeset a simple, syntax-highlighted
METAPOST source and its output:

{\PexaDefaults{listings={language=metapost}}\begin{code}
v house.mp
> \begin{EempDef}{house.1}{}{}
w beginfig(1)

u:=18bp; picture V; V:=image(
draw unitsquare scaled u xscaled 2;
fill (0,u)--(2u,u)--(u,1.5u)--cycle

withcolor red);
draw V rotated 10;
draw V shifted (3u,0);

w endfig; end
> \end{EempDef}
> \leavevmode\EempUseFig{house.1}{0}{0}
% ^^^ Dat: \leavevmode to get the Overfull \hbox warning
\end{code}
} % Dat: nothing allowed after \end{code} in its line

If eempost is not loaded, the following code should be used instead:

{\PexaDefaults{listings={language=metapost}}\begin{code}
v house.mp
> \begin{WFile}{house.mp}
x beginfig(2)

u:=18bp; picture V; V:=image(
draw unitsquare scaled u xscaled 2;
fill (0,u)--(2u,u)--(u,1.5u)--cycle

withcolor red);
draw V rotated 10;
draw V shifted (3u,0);

x endfig; end
> \end{WFile}

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

134 Verbatim Phrases and Listings in LATEX

Péter Szabó

> \leavevmode\includemps{house.2}
\end{code}
}

The \includemps command should be defined in the preamble as:

\usepackage{graphicx}
\DeclareGraphicsRule{*}{mps}{*}{}
\makeatletter
\@ifundefined{Ginclude@eps}{}{\def\Ginclude@mps{\Ginclude@eps}}
\def\includemps{\@ifnextchar[\includempsb{\includempsb[]}}
\def\includempsb[#1]#2{\includempsc{#1}#2\@nil}
\def\includempsc#1#2.#3\@nil{%

\IfFileExists{#2.#3}{\includegraphics[#1]{#2.#3}}{
\GenericWarning{}{Please run: mpost #2^^J\@gobble}}}

\makeatother

This should work with both dvips and pdflatex. The typeset output looks like this:

1u:=18bp; picture V; V:=image(
2 draw unitsquare scaled u xscaled 2;
3 fill (0,u)−−(2u,u)−−(u,1.5u)−−cycle
4 withcolor red);
5draw V rotated 10;
6draw V shifted (3u,0);

7 Some implementation details

7.1 Starting from poor man’s inline verbatim

The following macro, derived from a macro in the .dtx documentation of David Kastrup’s binhex package [2],
typesets its argument in inline verbatim mode:

{\catcode\string‘>12 \gdef\stripprefix#1>{}}
\def\verbatize#1{{\ttfamily

\toks0{#1}\edef\next{\the\toks0}% Dat: make # OK
\fontdimen2\font=0pt % Dat: hide spaces
\expandafter\stripprefix\meaning\next
\unskip % Dat: strip final space, possibly after command
\fontdimen2\font=\dimen0}}% Dat: reset global change

This demonstration show how useful the TEX primitives \string and \meaning are. Both of them convert
tokens to characters with catcode 12 (other) or 10 (space). Token lists with spaces are hard to post-process
by TEX macros, because TEX macro expansion ignores spaces before undelimited macro arguments. But it is
possible to write a macro which converts spaces to anything with catcode 12, for example the \sca macro below
does this:

\begingroup\catcode\string‘‘12 \lccode‘‘‘\%\lowercase{\endgroup
\def\scc#1 {\ifx\hfuzz#1\else#1‘\expandafter\scc\fi}}

\def\scb#1#2{\scc#2\hfuzz#1} \def\sca{\scb{ }}
% try with: \message{\sca{foo bar }}

It is possible to change % in the definition above to anything, including a space: the replacement character will
have catcode 12. After such a conversion, the text to be emitted can be easily processed to add TEX macros,
change catcodes back to 13 for ISO Latin high accented characters, replace spaces with appropriate constructs,
insert \allowbreak to the right places to enable line breaks etc. The \PVerb macro, when invoked in inner
mode (i.e. read inside a macro argument) works this way, and respects the options specified by the author.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

135

7.2 Hex escapes with output translation

The TEX primitives \write, \message and \errmessage may escape some characters when printing them. By
default, TEX changes the code ranges 0–31 and 127–255 (the codes outside the printable ASCII range), escaping
such codes with a ^^: for example, the tabulator (code 9) becomes ^^I, and characters having a high code in
the font (not the input) encoding are dumped in hexadecimal, for example ő (having code 174 in T1 encoding)
becomes Ž. (This behaviour depends on the default .tcx file the TEX distribution uses. No translation occurs
with cp8bit.tcx. To spot the difference, run tex -translate-file cp8bit "\message{^^I^^1fá}\end", and
then change cp8bit to .missing., and run again.) The transformation is lossy: both \message{ő} and
\message{\string^^ae} yield the same result: ^^ae. Escaping the caret as ^^5e doesn’t help either, because
the TEX unescapes carets recursively when reading back the written file. Since ISO Latin accented characters
are more often needed in verbatim environments than double carets, examplep does the necessary unescaping
when it reads the file back. The back-transformation doesn’t work with UTF-8, because the 2nd byte is not
decoded by the time the first one is being executed. The unescaping would be done by TEX itself if the caret
had its original catcode 7, but that would imply that the non-escaping, verbatim carets wouldn’t work.

The unescaping is implemented in a straighforward, but ugly way in the \pexa@dohex@low. . . macros. The
caret escapes are parsed in a huge \if\else\if construct nested in 40 levels, and once the hexadecimal code
is available and converted to upper case, the \lccode‘+="〈code〉\lowercase{+} construct is used to insert the
appropriate character with catcode 12 (~ is used instead of + to get an active character, catcode 13). The
construct is not expandable, but it works because it is used for typesetting. The caret is made active and
defined to execute \pexa@dohex, so each caret in the file will get unescped.

7.3 Disabling ligatures

The only way to disable a ligature in TEX is to insert a nonexpandable tokens into the input stream be-
tween the characters forming the ligature. For example, f{}i or f\relax i can be used to get “fi” instead
of “fi”. The most important ligatures (in addition to ligature letters) to be disabled in verbatim mode are:
<< >> ?‘ !‘ ,, ‘‘ ’’ -- and ---. This can be accomplised by inserting a \relax token in front of each
‘ ’ , - < and >. The \pexa@noligs@some command of examplep does exactly this, for example, it defines
{\lccode‘~‘<13 \gdef~{\relax\string~}}. The definition slightly different from the one of the \@noligs
command in the LATEX kernel: \def<{\leavevmode\kern\z@\char‘\<}; but the effect is the same. The
\pexa@noligs@most command, on the other hand, makes all characters with category code 12 in the range
32. . . 127 active, and adds \relax to both sides. This change doesn’t affect ASCII or accented letters, but
usually there are no ligatures with letters in typewriter fonts. See also the noligs= load option.

7.4 Detecting inner/outer brace in inline verbatim mode

The \PVerb commands work differently based on whether they are inside a macro argument or not. More
precisely, they detect whether they are able to change the catcode of the following token. If so, they are in outer
mode (i.e. outside a macro argument), so they change all the other catcodes as well, so consecutive spaces and
comment characters will be included in verbatim, too. Otherwise, they are in inner mode, their argument is
already read and tokenized by TEX’s eyes, so changing catcodes is pointless.

The auto-detection works this way: the catcode of all the special characters (as enumerated in \dospecials;
including braces) is changed to 3 (math-shift). Then the next token is read into \reserved@a with
\afterassignment\pexa@cverb@gottoken\let\reserved@a= . No tokens are ignored this way, not even
spaces. The \pexa@cverb@gottoken macro then examines the catcode of the character in \reserved@a, and
if it is 3, it continues in outer mode, otherwise it continues in inner mode. In inner mode, the next token is
forced to be an open-brace, because verbatim material with braces not nested cannot be read into inner mode
anyway (TEX would print an error message when it is trying to find the end of the macro argument containing
the \PVerb construct).

Another common trick is used when parsing the argument in outer mode when it is delimited by braces. Nor-
mally a TEX macro expansion (using the definition \def\pexa@cverb@outerc#1{...}) can read an argument
that is in braces, but in our case the very first opening brace has been already read (by \let above), so we have to
insert it back: \catcode‘\{1 \catcode‘\}2 \expandafter\pexa@cverb@outerc\expandafter{\iffalse}\fi.
The \iffalse}\fi here is needed for making the definition properly nested.

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

136 Verbatim Phrases and Listings in LATEX

Péter Szabó

7.5 Inline verbatim in section titles

The TEX command \write, \message and \edef fully expand their arguments, and similar expansion is enforced
by the \markboth built-in LATEX macro for section titles and page headings. Therefore macros in section titles
have to be protected so their expansion is delayed until the section title is typeset. LATEX offers \protect for
this: if the macro control sequence is preceded by \protect, its expansion is properly delayed; the expansion
of the argument has to be delayed manually in a similar way. Some macros have \protection included; they
are called “robust”. If the definition a macro starts with \DeclareRobustCommand instead of \newcommand, the
macro is defined to be robust (and its body can be retrieved by looking at the control sequence with a space
added, e.g. \expandafter\show\csname␣sqrt␣\endcsname).

\protect can have three definitions depending on what time it is processed: it is \string in a \typeout
or a LATEX error or warning message (try \typeout{\meaning\protect}); it is \noexpand\protect\noexpand
when \writeing to a file (most commonly the .aux file); otherwise it is just \relax (≡ \@typeset@protect;
try \pagestyle{headings}\section{\meaning\protect} and spot the difference between the main text, the
section title and the .aux file).

The \÷ and \Q inline verbatim commands are made robust, so they can be used in macro arguments. In fact,
they are extra-robust, since they take care of protecting their arguments when being written to a file by LATEX.
Protecting here means adding \noexpand in front of each token in the argument. The token parsing is easy
since the argument – by the nature of these commands – may not contain braces or spaces. The implementation
looks like this.

\long\def\÷#1÷{\Q{#1}}
\long\def\Q{\ifx\protect\@typeset@protect\expandafter\@gobble\fi

\@thirdofthree\@firstoftwo\displayit\protectit}
\def\displayit#1{...}
\def\protectit#1{\noexpand\÷\protectnext#1÷}
\long\def\protectnext#1{\noexpand#1%

\ifx#1÷\else\expandafter\protectnext\fi}

The first trick is in the body of \Q: the argument is passed to either \displayit or \protectit, depending on
the current value of \protect. If the condition is true, \@gobble is called, which removes \@thirdofthree, so
\@firstoftwo will choose \displayit (otherwise, \@thirdofthree chooses \protectit). The second, more
classical trick is the rôle of \expandafter in the definition of \protectnext: it makes the \fi token disappear,
so the tail-recursive call to \protectnext will grab the next token into #1 instead of \fi itself.

7.6 Special hyphenchar in inline verbatim

When inline verbatim is hyphenated, care has to be taken to make the discretionary hyphen different from a
regular, verbatim hyphen. (There is a similar problem with spaces disappearing when the line is broken; to
avoid this, try setting the option pverb-space=visbreak or pverb-space=invdisc.) TEX auto-hyphenation
takes the discretionary hyphen from the \hyphenchar of the font. So the solution is adding a new glyph to the
verbatim font, changing the font encoding vector to include the glyph, and then setting \hyphenchar.

We have chosen character position 24 (per-thousand sign) of the T1 encoding to be replaced by a soft hyphen
(), which is deliberately narrower than all the other characters, so the reader immediately sees its function. For
example: “foo
bar”. We have drawn the glyph in Fontforge, saved the data to PFB, converted it to human-readable
format with the command type1fix.pl shorthyp.pfb gsx: shorthyp.gsx, extracted the human readable
glyph definition (/shorthyp { ... }) from the output. We have changed the /FontName and injected the
glyph to original font with the following command:

perl -x -S type1fix.pl --set-leniv=0 --dump-spaces=no --pack \
--dump-bars --dump-stde --dump-ends=no --debug-warnings \
--chk-insize=no --set-uniqueid=random --set-fontname=t1xtts \
--set-glyph="/shorthyp { 50 354 hsbw 315 vmoveto -17 vlineto 0
-8 0 -8 6 -4 rrcurveto 4 -6 8 0 5 0 rrcurveto 195 hlineto -124
vlineto -11 0 -21 15 vhcurveto 2 0 3 1 2 1 rrcurveto 10 2 1 12
0 12 rrcurveto 0 8 -1 8 0 5 rrcurveto 130 vlineto 0 5 1 7 0 7
rrcurveto 0 12 -2 11 -11 3 rrcurveto -5 1 -6 0 -5 0 rrcurveto
-12 0 -12 -1 -10 0 rrcurveto -98 hlineto -16 0 -19 2 -17 0

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

137

rrcurveto -32 -6 -3 -24 hvcurveto closepath endchar} def" \
t1xtt.pfb pfb: t1xtt-shorthyp.pfb

We have changed six lines in tex256.enc to match the glyph names in the font (e.g. /endash → /rangedash),
and we have changed position 24 to /shorthyp. We have also changed the name of the encoding in the beginning
of the file. We have inserted the following line to the PostScript font map files (e.g. psfonts.map), without the
line break:

t1xtts t1xtts "TeX256-shorthypEncoding ReEncodeFont"
<tex256-shorthyp.enc <t1xtt-shorthyp.pfb

We have also added a new TFM file based on the old one. We have dumped the old one with tftopl
-charcode-format=octal t1xtt.tfm, modified the width (CHARWD) of character 24 (CHARACTER O 30), and
saved the modifications with pltotf modified.pl t1xtts.tfm. We’ve added the LATEX font map file t1xtts.fd
with the following content:

\DeclareFontFamily{T1}{xtts}{\hyphenchar\font\m@ne}
\DeclareFontShape {T1}{xtts}{m}{n}{<->t1xtts}

The \hyphenchar settings above disables automatic word hyphenation, so words inside \texttt etc. won’t
be accidentally hyphenated. We have copied all the files above to the appropriate directories and we have
run mktexlsr to update the file list. We have included some options in \PexaDefaults line in the doc-
ument preamble: pverb-hyphenchar=char’30 (for automatic word hyphenation) pverb-linebreak=char,
pverb-linebreakchar={\string\char’30␣} (inserted around symbols).

We have also defined \def\pexa@verbatimfont{\normalfont\fontfamily{xtts}\selectfont}, and we
have made sure that the T1 encoding is in use (\usepackage{t1enc}).

The overall effect of these modifications was that examplep now used our glyph for automatic word hyphen-
ation and as discreationary hyphen around symbols in inline verbatim mode. The demonstrations above shows
that it is quite complicated to change a single glyph in a LATEX font. It is hoped that the situtation will improve
with TEX’s successors.

7.7 Passing information about the CD-files to wrfiles.pl

wrfiles.pl is used to extract the CD-files from the LATEX sources of a book. The reasons why an external program
is used instead of TEX’s built-in \write command are described in Subsection 6.1.

The file names and environment start line numbers are passed to wrfiles.pl in the .aux file(s). For example,
the line \@gobble{code:foo.tex:156:2_pic3.mp} is a declaration that there is a code environment starting
at line 156 in the file foo.tex. wrfiles.pl understands such declarations, and it also understands lines like
\@input{foo1.aux}, so dumping works even if the document is separated to several \included source files.
The declaration above is ignored by LATEX when it reads back the .aux file (because \@gobble gobbles its
argument).

Although the \inputlineno primitive is mentioned twice in the TEXbook [3], its – rather straightforward
– purpose is not documented there. But the real problem is that TEX doesn’t remember the name of the file
being read. \jobname contains the name of the top-level .tex file, so it doesn’t work when that file \includes
or \inputs subfiles containing code. The codep package thus modifies the \InputIfFileExists command to
save the file name to the macro \codep@code@@inputfile if the extension is .tex. (The other most common
extension after the preamble is .fd: such a file is loaded each time a LATEX font that has not been used
yet is selected.) The implicit limitation here that code won’t work unless the extension of the file included
is .tex. Hooking \InputIfFileExists affects \include{...} and \input{...}, but not not \input␣...,
\documentclass or \usepackage. This is not a problem if the author remember that he has to use braces
around the file name.

Since there is no hook for \endinput (and some packages rely on that \endinput is an expandable primitive),
it is not possible to set up a stack of names of files being read. Thus, if file A has included file B, an after
that code environment placed in A will not work, because the declaration line read by wrfiles.pl will contain the
name of B instead of A. This is not a serious limitation, becase files including other files usually don’t typeset
text by themselves after the inclusion.

The primary reason why wrfiles.pl needs the .aux file is that it has to embed the page and chapter numbers
into the file names. Although wrfiles.pl could find the source file with the code environments by trying to match
line numbers with all source files in the current directory, we have decided to make it fail when the file name
is not emitted properly into the declaration, so it is sure that the examples in the book and on the CD are
consistent.

MOT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

138 Verbatim Phrases and Listings in LATEX

Péter Szabó

8 Future work

The most important features to be added and other improvement possibilites:

• a better approach towards automatic hyphenation of inline verbatim, after studies in typography

• allow wider sample if source is small enough

• why doesn’t \selectlanguage work inside \begin{PSource}[srcstyle=leftboth]

• \PVerb{foo} mustn’t insert “¬” if foo is at end-of-line

• \PVerb{...} inner unnested braces (\futurelet?)

• differentiated \penalty values in \PVerb

• paragraph mode should work with side-by-side displays (of course, measuring the width of the Source has
still to be done in aligned mode)

• ASCII tabulator (9) characters aren’t supported properly, they are just converted to spaces. The width of
the tab character should depend on its horizontal position in the line. (With listings=, the results are
already correct.)

• framing and background color support to display verbatim

• accented characters should work with listings and \PexaShowBoth. The original catcode of ^ should be
kept so TEX itself would parse the hex escapes.

• an interface to \lstinline in listings, with line breaks allowed

9 Conclusion

examplep, as it is now, is a highly customizable LATEX package that provides both inline and display verbatim
mode with several advanced features, many of which are not available in any other packages. The code envi-
ronment is also provided which can typeset both the Source and the Sample column of a side-by-side display
verbatim from the same LATEX source stream, furthermore it can emit the stand-alone working version of the
Source into a CD-file. These features make the code environment especially useful for sofware textbook and
manual authoring. The whole examplep distribution is under the GNU GPL, and it is freely available from
CTAN. An earlier version of the packages was used to typeset all the examples in a 770-page introductionary
book about LATEX.

examplep is not complete. Some important features are not implemented yet and the package has not been
tested thoroughly. Some parts of the code are really ugly, partially because it has not been polished up after
writing, and partially because the architecture of TEX and LATEX doesn’t provide an elegant way to address
the problem. For example, active characters are overloaded: they are used by inputenc, babel (shorthands) and
listings (syntax highlighting) for different purposes – these packages have to make extra effort to cooperate with
each other. We hope that TEX’s successors will improve these conditions, and the core system will provide a
generic way to tokenize verbatim text instead of changing catcodes.

References

[1] Carsten Heinz. The Listings Package, 7 September 2004.
CTAN:macros/latex/contrib/listings/listings-1.3.dtx.

[2] David Kastrup. The binhex.tex package for expansible conversion into binary-based number systems, 2001.
CTAN:macros/generic/kastrup/binhex.dtx.

[3] Donald E. Knuth. The TEXbook. Addison–Wesley, 1984.

[4] Ferenc Wettl, Gyula Mayer, and Péter Szabó. LATEX kézikönyv. Panem, Budapest, 2004.

[5] Timothy Van Zandt, Denis Girou, and Sebastian Rahtz. The ‘fancyvrb’ package. Fancy Verbatims in LATEX,
1998.
CTAN:macros/latex/contrib/fancyvrb/fancyvrb.dtx.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX

Péter Szabó

139

TEX forever!

Jonathan Fine
Learning and Teaching Solutions
The Open University
Milton Keynes
United Kingdom
J.Fine@open.ac.uk

http://www.pytex.org

Abstract

This paper explores new ways of doing input to and output from TEX. These
new ways bypass our current habits, and provide fresh opportunities.

Usually, TEX is run as a batch program. But when run as a daemon, TEX
can be part of an interactive program. Daemons often that run forever, or at
least for a long time. Hence the title of this paper.

Usually, parsing and transformation of the input data is done by TEX macros,
with little outside help. Often, this results in input documents that only TEX
can understand. Also, TEX macros can be hard to write. We demonstrate the
replacement of TEX macros by an external program. This is done in real time.

Usually, TEX’s principal output is a dvi representation of typeset pages, for
processing by a printer driver. However, TEX’s log file or console can be used to
allow TEX to output the boxes it holds internally. (Alternatively, an extension of
TEX could write this data out in a binary form.) Shipping out boxes rather than
dvi allows an external program to do the page makeup.

Don Knuth’s original conception was that TEX would be “just a typesetting
language”. In some sense he “put in many of TEX’s programming features only
after kicking and screaming”. The developments described above reduce our
dependence on TEX macros, and so bring our use of TEX closer to Knuth’s original
conception. Doing this will greatly improve its usefulness.

Long live TEX!

Introduction

In 1990, Don Knuth told us [8, p.572] that his work
on developing TEX had come to an end. He went on
to say:

Of course I do not claim to have found the
best solution to every problem. I simply
claim that it is a great advantage to have a
fixed point as a building block. Improved
macro packages can be added on the input
side; improved device drivers can be added
on the output side.

In this paper, the author tries to follow this
advice. There are imperfections in TEX, and the lack
of proper support for Unicode fonts and filenames is
a major weakness. However, TEX also has enormous
strengths. It is archival. It carefully uses integer
arithmetic to ensure that it gets the same line and
page breaks, regardless of the machine it is running

on. Its algorithm for breaking a paragraph into lines
is reliable, adaptable and efficient. TEX is without
rival for complex mathematical typesetting.

Often, TEX is used with LATEX as the macro
package front end, and with dvips as the device
driver. Sometimes, the word ‘TEX’ is used to refer
to the whole system. However, in this paper we
mean by ‘TEX’ the typesetting program written by
Don Knuth. And so LATEX and dvips are tools for
use with TEX.

This paper is concerned with making improv-
ments on the input and output sides of TEX, both
areas of work where there is an enormous amount
still to do. However, our proposals are not exactly
macro packages and device drivers.

A note to the reader: This paper has been writ-
ten for a general audience, and in particular for those
who are not TEX experts. At the same time, discus-
sion of technical details is at times either unavoid-

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

140 TEX Forever!

Jonathan Fine

1 ¶ textfile → marked up text and math
2 † text + transform → horizontal primitives
3 * horizontal primitives → hlist
4 † math + transform → math primitives
5 * math primitives + parameters → hlist
6 * hlist + parameters → vlist
7 † vlists + page make up → page boxes
8 * page boxes → sequential dvi file
9 ¶ sequential dvi file → random access dvi file
10¶ random access dvi file → rendered page

Table 1: How TEX works, in 10 stages
† usually done using TEX macros.
* usually done using TEX’s built in procedures.
¶ file input and output matters.

able or helpful. Therefore, I hope that the experts
will forgive my stating the obvious, and that the
others forgive my discussing the difficult.

References: Many of the articles cited here
have been reprinted in the collection Digital Typog-
raphy [13]. Page numbers in citations refer to [13],
and not to the original publication.

How TEX works

Table 1 gives a concise description as to how TEX
works. On the input side we propose that an exter-
nal program perform the transformation in steps 2
and 4.

On the output side we have two proposals. The
first is that (8) be replaced by:

8′. page boxes → stream of dvi pages

The second, which is more ambitious, is that
(7) be replaced by:

7′. vlist → external program

followed by page makeup in that external program.
Thus we continue to use TEX’s excellent type-

setting, but reduce the use of its macros.

TEX—just a typesetting language

TEX is a typesetting program, written by Don
Knuth, that is particular good at mathematical and
technical typesetting. TEX is reliable and stable,
and is very widely used by academic mathematicians
and physicists.

TEX has a macro programming language,
which allows features to be added. The best known
and most widely used TEX macro package is LATEX.
(This is not quite accurate. Although originally
LATEX used TEX, since 2003 it by default uses
e-TEX, which is an extension of TEX. So it is no
longer purely a TEX macro package. This has no
bearing on our discussion.)

In 1996 Don Knuth, describing his intentions
when he started to develop TEX, said [11, p.648]:

I’m not going to design a programming
language; I want to have just a typesetting
language.

and at the same time he said (loc. cit.):

In some sense I put in many of TEX’s pro-
gramming features only after kicking and
screaming. [. . .] In the 70s, I had a negative
reaction to software that tries to be all
things to all people. Every system had its
own universal Turing machine built into it
somehow, and everybody’s machine was a
little different from everybody else’s.

But the need for more features caused the program-
ming constructs to grow (see Table 2 below). See
also [16] for a ‘wish-list’ of future developments.

Therefore, by removing commands from TEX,
we can come closer to Don’s original conception of
TEX. However, for this to succeed in practice, some
other means of adding new features is required. In-
deed, one of the major problems TEX users have now
is that the existing programming constructs barely
support the demand for new features. This we dis-
cuss later.

In this section we outline how to cut TEX down
to the bare minimum. To be specific, in this sec-
tion we ask: What commands are required in order
to access TEX’s algorithm for breaking a paragraph
into lines?

To create a paragraph one needs to be able to
load fonts, change fonts, and set a character in the
current font. One also needs commands for append-
ing glue, kerns and the like to the paragraph.

To break the paragraph into lines, one needs
the \par primitive (also known as \endgraf) and a
means of assigning values to the line-breaking pa-
rameters, such as \hsize.

In other words, the basic operations are to add
an item to the current horizontal list, and to form
a paragraph out of the current horizontal list. (For
mathematics and table typesetting there are similar
basic operations.)

It should at this point be clear that certain
primitive TEX commands are not required in or-
der to do typesetting. These commands include
all the \def commands (such as \def, \chardef,
\xdef), \let, \begingroup and \endgroup. Once
category codes have been set up, there is no further
need for \catcode. And there is certainly no need
for commands such as \expandafter, \noexpand,
\aftergroup and \futurelet. All these are not

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!

Jonathan Fine

141

Control sequence Date added

\if 21 Jun 1978
\pausing 16 Mar 1978
\uppercase 25 Nov 1978
\xdef 28 Nov 1978
\ifmmode 23 July 1978
active characters 25 Jan 1980
\let 25 Mar 1980
\ifx 13 July 1981
\catcode July 1982
\expandafter, \openin 12 Sep 1982
\string 12 Sep 1982
\immediate 12 Oct 1982
\csname, \endcsname, \fi 13 Nov 1982

\everymath, \everydisplay, 2 Dec 1982
\futurelet

\endinput 7 Dec 1982
\jobname 25 Dec 1982

\globaldefs 20 Jan 1983
\iffalse, \iftrue 3 Feb 1983
\everyvbox, \everyhbox 6 Mar 1983
\everyjob 18 Mar 1983
\advance, \multiply, \divide 25 May 1983

\noexpand, \meaning
\afterassignment 27 May 1983
\escapechar, \endlinechar 4 Jul 1983
\errhelp 11 Jul 1983
\aftergroup, \newlinechar 16 Jul 1983
\ifhbox, \ifvbox 27 Aug 1983
\holdinginserts 30 Sep 1989

Table 2: Some TEX control sequences not needed
for typesetting (after [7])

typesetting commands, and exist only to allow fea-
tures to be added to TEX.

Moreover, these commands cause difficulty for
both TEX users and programmers. Their introduc-
tion is perhaps a sign that things were starting to
go in the wrong direction.

In [7] Knuth published, in edited form, the log
books he kept while he was developing TEX. In
these, we can see the introduction of features. (See
Table 2.)

Suppose all programming commands are dis-
abled by \let-ting them be undefined, like so:

\let \afterassignment = \undefined

Provided we remove enough commands, we will
have, as Don wanted TEX to be in the first place,
“just a typesetting language”. A language without
features, and without the capability of adding
features (which is itself a feature).

Comparison with PostScript and with machine
code is instructive. Most PostScript is generated by
programs that translate from a higher-level language

down to PostScript. Similarly, much machine code
is generated by compiling ‘C’ source files.

Many of us write input files for (LA)TEX, using a
text editor. We won’t do that for a featureless TEX.
It’s too much hard work, and anyway we want to
write in a higher-level language. We are suggesting
that an external program perform the text trans-
formation that is traditionally performed by a TEX
macro package.

Improved macros — input transformation

This section could also be titled:

\let \def = \undefined

Don suggested that we add improved macro
packages on the input side. Now, a macro package
has two main purposes. One is issuing typesetting
instructions to TEX. This will create a galley (or
page of unlimited depth). The second purpose is
the output (or page makeup) routine, which breaks
the galley into pages of a suitable size.

In this section we consider the creation of a gal-
ley. Marked-up text, such as

\section{Improved macros}

is translated (by LATEX in this case) into a large
number of low-level instructions. The title

Improved macros

is scarcely translated. Each character sets itself,
and space characters produce default interword glue.
(Later, we present an example of this.)

It is \section{} that does most of the work.
Here are some of the technical details. It selects the
font to be used, and the paragraph parameters for
the title (in case it is wider than the measure). It
also places glue and penalties before and after the ti-
tle on the galley. It might also add a section number,
and record information for the table of contents.

High-level commands are being translated into
low-level typesetting instructions. This translation
need not be done by LATEX (or indeed by any other
TEX macro package). For example, in the WEB sys-
tem of literate programming, much of the work is
done using external programs. Similarly, XSLT tem-
plates are often used to transform text, prior to it
being passed to TEX to typesetting.

For over 10 years the LATEX3 project has been
working to enhance LATEX by providing [15, p.1]

a flexible interface for typographic designers
to easily specify the formatting of a class of
documents.

Such an interface might, for example, be simi-
lar to Cascading Style Sheets (CSS) for HTML. We
have seen that Don Knuth only reluctantly added

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

142 TEX Forever!

Jonathan Fine

programming features to TEX. The author believes
that TEX macros are not a suitable language for cre-
ating the above interface, and that the long delay in
its delivery is evidence for this.

This interface could instead be written as an
external program. In a later section we describe
QATEX, which is a wrapper around TEX that ef-
fectively allows TEX to interact with external pro-
grams.

Improved macros — output routines

This section could also be titled:

\let \output = \undefined

One of the most interesting and best parts of
TEX is the algorithm it uses for breaking a para-
graph into lines. The algorithm for breaking the
galley into pages is not so good, although for simple
technical material it is more than adequate.

In this paper we do not suggest improved out-
put algorithms (we have discussed this elsewhere
[4]). Instead, we describe a solution to a related
problem. The TEX macro language is not a suit-
able environment for the writing of complicated page
makeup algorithms. Here we describe a means of
moving the problem to another domain.

The galley produced by TEX consists of a ver-
tical list. This vertical list consists of boxes, glue,
penalties, and so forth (see The TEXbook, page 110
for a complete list). The \showlists command
prints a detailed description of the content of this
vertical list.

The output of \showlists can parsed by an
external program, and used to reconstruct within
that program the vertical list created by TEX. If
the external program can also send low-level type-
setting instructions to TEX, then TEX in effect has
become a callable function available to the external
program. (As in QATEX, the interactive console or
more exactly stdin and stdout can be used for this
communication.)

This is not a completely new idea. In 1996, Jǐŕı
Veselý asked [10, pp620–621]:

Once I was asked about the possibility to
make a list of all hyphenated words in the
book. I was not able to find a way in your
book to do this.

To this, Don replied (loc. cit.):

This would be easy to do now in a module
specially written for TEX. I would say that
right now, in fact, you could get almost
exactly what you want by writing a filter
that says to TEX “Turn on all the tracing
options that cause it to list the page con-

tents.” Then a little filter program would
take the trace information through a UNIX
pipe and it would give you the hypenated
words. It would take an afternoon to write
this program; well, maybe two afternoons . . .
and a morning.

We develop this idea later in the paper.

Instant Preview and TEX as a daemon

This section could also be titled:

\let \end = \undefined

Interactive programs typically require a re-
sponse time of less than a tenth of a second, while
a response in a hundreth of a second is seen as
instantaneous.

On my current 800 MHz PC, the command

$ tex story \\end

takes about 0.137 seconds, while

$ tex \\end

takes 0.133 seconds. The first command typesets
a small page of material; the second does nothing
but start TEX and then exit. Thus, typesetting the
small page takes about 0.004 seconds.

It follows from this that typesetting material for
Instant Preview is tolerable if the start-up time is
included, while it will be perceived as instantaneous
if TEX is run as a daemon.

Running TEX as a daemon is an example of
TEX forever. We wish for TEX to start up when the
computer boots, and to remain running indefinitely.
Moreover, we might prefer that there were only a
single instance of the TEX daemon running.

Documents and macro packages may have to
be adapted, to make the most of Instant Preview.
The key concept seem to be this: That the source
file be partitioned into regions by markers, which we
call ‘belays’, and that the macro package be able to
typeset each region independently. In other words,
that the macro package support random access type-
setting. This is, again, an example of TEX being en-
hanced by an improved macro package on the front
end.

The author has already written [5] about
Instant Preview. At the conference he hopes to
demonstrate the latest progress.

Decorating dvi files

TEX has no built-in notion of colour, or of graphics
inclusion. However, the \special command allows
device drivers to produce special effects. By decora-
tion we mean the application of colour, change bars
and the like to the rendered page.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!

Jonathan Fine

143

In the domestic setting, decoration of a room
or a house does not move the walls or make other
structural alterations. In typesetting, adding deco-
ration should not affect typesetting decisions, such
as the line breaks and the placement of items on
the page. (This is not to say that the typographic
design should not take into account the subsequent
application of decoration.)

The current practice regarding decoration is to
use a fairly simple dvi processor, and to have the
(LA)TEX macro package place appropriate \special

commands into the dvi file. From the point of view
of a device-driving dvi processor, this is probably
correct. It seems that, historically, low-level capa-
bilities were added to device drivers. Then macro
packages were written to access these new features.

From the point of view of the macro package,
this approach is probably wrong. As already noted,
decoration should not affect typesetting decisions.
This is an important property, whose fulfilment
should be central to the approach taken.

Suppose, for example, that some text is to be
printed in a spot colour. Placing a \special at the
start or end of a word does not affect its hyphen-
ation. Therefore something like

% usage: \color{red}{Text to go in red}

\def\color#1#2{%

\special{push #1}%

#2%

\special{pop}%

}

will suffice, at least in the simplest cases.
However, a page boundary might break the red

text. This places a burden on the dvi processor,
to keep track of this information. Typical dvi pro-
cessors allow random access to the pages in the dvi

file. Having to look at previous page(s) breaks this
random access.

The solution we suggest is to write a dvi-to-dvi
filter that resolves these random access problems.
Such a filter is not, of course, a device driver, but it
can be used with any device driver. Its purpose is to
translate high-level specials into low-level specials.

TEX is being held back by the weakness of tools
for decorating text. For example, a common require-
ment is to place a background rectangle behind a
paragraph of text. If the paragraph is broken over
two pages, the background rectangle should be sim-
ilarly broken.

In 1987 Don Knuth and Pierre MacKay dis-
cussed a similar problem, namely implementing
bi-directional typesetting without extending TEX.
They wrote [14, p159]:

How can we get TEX to do this? The best ap-
proach is probably to extend the driver pro-
grams that produce printed output from the
dvi files that TEX writes, instead of trying to
do tricky things with TEX macros.

In the same article [13, p161] they then produced a
“much more reliable and robust scheme by building
a specially extended version of TEX”.

QATEX— or ask a friend a question

TEX is a typesetting language, with limited text-
processing and other capabilities. Things that are
easy to do in other languages are hard to do in TEX.
Examples are to find the dimensions of an EPS or
other graphics file, or to calculate the sine and cosine
of an angle, so that space can be left for rotated text.

Traditionally, such questions have been an-
swered by writing TEX macros. The author finds
that TEX macros are not a suitable language for
such text manipulation tasks.

Here is an extract from the \Gread@eps macro
in the LATEX file graphics.sty.

\immediate\openin\@inputcheck#1 %

\ifeof\@inputcheck

\@latex@error{File ‘#1’ not found}%

\@ehc

\else

\Gread@true

\let\@tempb\Gread@false

\loop

\read\@inputcheck to\@tempa

\ifeof\@inputcheck

\Gread@false

\else

\expandafter\Gread@find@bb

\@tempa:.\\%

\fi

\ifGread@

\repeat

\immediate\closein\@inputcheck

\fi

The author has developed QATEX, which allows
the TEX macro programmer to ask another process
to answer questions. Such as: What is the bounding
box of myfile.eps?

QATEX (pronounced ‘kwa-tech’) provides a dif-
ferent route. Questions and answers are the essence
of QATEX. When QATEX is used, lines such as:

!Q=qatexlib.eps.bbox(myfile.eps)

!A=0,0,0 0 35 97

appear in the TEX’s log file.
The first line is a question, produced using a

\write command. The second line is the answer.

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

144 TEX Forever!

Jonathan Fine

The characters !A= are a prompt, produced using a
\message command.

The remainder of that line is the answer to the
question. The prefix 0,0, tells TEX that the ques-
tion was successfully posed and answered. There
follows the information asked for. This information
is supplied by a process external to TEX.

TEX uses \read -1 to \temp to read this in-
formation from its stdin stream. So far as TEX is
concerned, this data might have come from the user.
In fact, it has come from a program, namely QATEX.

QATEX works as follows. It is a wrapper progam
that invokes TEX, and takes control of its standard
input and output. When it sees a question line, fol-
lowed by the answer prompt, it parses and answers
the question, then sends the answer to TEX, using
TEX’s standard input. However, QATEX does not
answer the question itself. It imports a module — in
the example above the eps module —to answer the
question for it.

Here is the definition, in Python, of a function
that returns the bounding box of an EPS file, as a
string. If not found, it raises an exception. It took
me less than 10 minutes to write. It would be part
of a eps module for use with QATEX.

File: qatexlib/eps.py

_bb_prefix = '%%BoundingBox: '

def qa_bbox(filename):

f = open(filename)

for line in f:

if line.startswith(_bb_prefix):

sizes = line.split()[1:]

return ' '.join(sizes)

msg = "File '%s' has no bounding box"

raise Exception, msg % filename

Alternatives and complements to QATEX

In this section we compare QATEX to shell escape,
eval4tex, PerlTEX, sTeXme and Pymacs. Each of
these has some similarity with QATEX.

Shell escape. Modern implementations allow TEX
to issue shell commands, as if they had been typed
at a command prompt. This allows, for example, a
command such as makeindex to be run after TEX
has processed the body of a document, but before
setting the back matter.

However, it also allows other commands to
be run, such as the deletion of files. And TEX
documents can execute arbitary TEX commands.
(Strictly speaking, this is not true. For example, in
Active TEX [3] all characters are active. This allows
a macro package to prevent execution directly from
a document of all but specified commands.)

Often, TEX documents are distributed in source
form. If shell escape is enabled, the typesetting a
document could result is a shell escape command be-
ing run, that finds and deletes all your files. Clearly,
shell escape is a security risk. For this reason, shell
escape is disabled by default, and is rarely used.

Even without shell escape, TEX macros and
therefore documents can overwrite existing files.
(TEX has no inbuilt ability to delete files. But it
can destroy their contents.) Therefore, modern
implementations of TEX refuse to open for writing
files that are not in or beneath the current directory,
or a similarly specified area.

This restriction is not applied to the reading of
files. Therefore, it is possible for a TEX document,
when typeset, to include in it other files. These other
files might be confidential.

Therefore, in line with the theme of TEX being
“just a typesetting system”, it might be sensible to:

\let \openout = \undefined

\let \openin = \undefined

\let \input = \undefined

and have another program take responsibility for se-
curity. The security monitor could then send mate-
rial to be typeset to TEX’s standard input stream.

eval4TEX (by Dorai Sitaram) is a two-pass process
that allows TEX to send expressions to Scheme for
evaluation [1]. It provides a \eval macro, that is
used as below. (The example is Sitaram’s, and my
exposition follows his).

\eval{(display (acos -1))} % gives pi

On the first pass, the Scheme code

(display (acos -1))

is written to an auxiliary file, together with some
indexing information.

Before the second pass, a helper program
eval4tex runs Scheme on the auxiliary file, to cre-
ate a second auxiliary file. On the second pass, the
\eval command picks up values from the second
auxiliary file, and refreshes the data in the first.

As Sitaram writes:

This strategy is quite common in the TEX
world. The popular TEX-support programs
BibTeX and MakeIndex, which generate bib-
liographies and indices respectively, both op-
erate this way.

sTeXme (by Oleg Paraschenko) is another ap-
proach to integrating TEX with Scheme [19]. Here
is his summary of the goals of the project.

The (LA)TEX macro language was a great de-
velopment when it appeared, but now it is

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!

Jonathan Fine

145

too out-of-date. Programming in TEX is a
fun, but more often it is a pain.

As it seems for me, only very few people
can write (LA)TEX macros, but a lot of people
would like doing it (like me, for example).
This is the problem.

One of the solutions is to provide another
scripting language for TEX. That’s what is
the goal of the sTeXme project. It should
provide the Scheme programming language
as a TEX scripting language.

This project has two parts, namely an extension
to TEX, that allows it to interpret Scheme code, and
an extension to Scheme that allow it access TEX
internals. We say more on this later.

PerlTEX (by Scott Pakin) uses standard Perl and
TEX without extensions [17]. Here is his summary
of the goals of the project.

TEX is a professional-quality typesetting
system. However, its programming language
is rather hard to use for anything but the
most simple forms of text substitution.
Even LATEX, the most popular macro pack-
age for TEX, does little to simplify TEX
programming.

Perl is a general-purpose programming lan-
guage whose forte is in text manipulation.
However, it has no support whatsoever for
typesetting.

PerlTEX’s goal is to bridge these two
worlds. It enables the construction of
documents that are primarily LATEX-based
but contain a modicum of Perl. PerlTEX
seamlessly integrates Perl code into a LATEX
document, enabling the user to define macros
whose bodies consist of Perl code instead of
TEX and LATEX code.

Here is Scott Pakin’s equivalent to \eval:

\perlnewcommand{\reversewords}[1]

{join " ", reverse split " ", $_[0]}

\reversewords{TeX forever!}

PerlTEX, like QATEX, invokes TEX under the
control of a separate process. Unlike QATEX, it does
not take control of TEX’s standard input and out-
put. Invoking \reversewords causes TEX to write
material to a specially named file. This file corre-
sponds to the question in QATEX. The controlling
Perl process then computes the answer to the ques-
tion, and writes it to another specially named file.
Meanwhile, the TEX process goes into a loop, to poll
for the existence of the answer file. Once found, it
is \input by TEX.

PerlTEX seems to have a performance problem.
On my 800 Mhz PC, the following example:

\documentclass{article}

\usepackage{perltex}

\perlnewcommand{\nothing}{}

\begin{document}

% I’ve got plenty of nothing ...

\nothing\nothing\nothing

\nothing\nothing\nothing

\nothing\nothing\nothing

\nothing % 10 nothings

% We’re busy doing nothing ...

\end{document}

takes about 3.0 seconds to execute. This includes
startup time. (On the same machine, it takes QATEX
about 1/3000 seconds to do nothing once.)

Here is at least a partial explanation. Instru-
menting the code for PerlTEX shows that in compil-
ing the above document, TEX polls for the existence
of the helper file approximately 5,000 times. The
exact number varies. Adding:

\input nothing % input an empty file

to the polling loop reduces the time taken to about
1.8 seconds, and reduces the number of pollings to
about 500. The UNIX nice command could also
help here.

Pymacs (by François Pinard) is not a way of using
Python with TEX. It is a way of using Python with
the Emacs editor [18]. To quote its author:

Pymacs is a powerful tool which, once started
from Emacs, allows both-way communication
between Emacs Lisp and Python. Pymacs
aims Python as an extension language for
Emacs rather than the other way around, and
this asymmetry is reflected in some design
choices. Within Emacs Lisp code, one may
load and use Python modules. Python func-
tions may themselves use Emacs services, and
handle Emacs Lisp objects kept in Emacs
Lisp space.

Pymacs is mentioned because is was higly in-
fluential on the author’s approach to the integration
of TEX with a scripting language. (At that time,
Python had not been chosen.)

Different approaches compared

In the previous two sections we looked at QATEX,
shell escape, eval4tex, sTeXme and PerlTEX. In
this section we make some comparisions.

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

146 TEX Forever!

Jonathan Fine

Philosophy QATEX is like shell escape, in that sim-
ple queries are sent to another process. The other
approaches assume that complex code will be writ-
ten within, or otherwise produced by, TEX macros.
This code is then evaluated by another program.

For example, in QATEX the problem of revers-
ing words might result in the following conversation
between TEX and the external process:

!Q=qatexlib.string.reverse(TeX forever!)

!A=0,0,forever! TeX

The question sent to QATEX could not be along
the lines of: “What is the result of evaluating this
complex Perl or Scheme expression?” However, such
is not the expected use. Rather, it is expected that
TEX will send a short and simple query. If the an-
swer is long, it could be placed in an external file.
Once that is done, TEX can be told, as the answer,
that the file is ready to be \input (assuming \input

is still defined).

Architecture The architecture of the implementa-
tion of PerlTEX is closer to that of eval4tex than
that of sTeXme. Perl code is placed in the body of
TEX macros, and this code is sent out to Perl for
evaluation. Unlike sTeXme, and like eval4tex, it
does not require either an extension to TEX or a
special version of the command interpreter for the
extension language.

PerlTEX is similar to QATEX in that TEX is run
under the control of an external program. However,
QATEX uses standard input and output for commu-
nication, whereas PerlTEX polls named files.

QATEX provides an efficient and portable low-
level interface between TEX and an external process.
PerlTEX is a higher-level package. There is no rea-
son why the QATEX interface, or something similar
to it, should not be used by PerlTEX, so as to im-
prove performance. The same applies to eval4tex,
where using this interface would remove the need for
a second run. It would also provide better interac-
tion.

Security Any process that evaluates code supplied
by a document will expose a security problem, un-
less the code evaluator is already secure (as in Java,
for example). PerlTEX provides security by using
a secure Perl sandbox. QATEX provides security by
having TEX (and thus the document) supply only
data.

Of course, any program that evaluates un-
trusted data as if it were trusted code has a security
issue. If it is necessary to evaluate safely untrusted
code, then a secure sandbox is required. This is
the key security issue. QATEX is a small interface

application, which does not attempt to solve this
problem. There is no reason why QATEX should not
be used with such a secure sandbox. But that is a
matter for the developer who builds upon QATEX.

Integration and extension Of all the projects
considered in this section, sTeXme is the most
ambitious. It involves making major extensions to
TEX, to produce a new program, called sTeXme.

The new name is necessary. TEX experts will
already know that Don Knuth does not object to
the sources of TEX the program being used as the
basis for creating a superior program. However, he
is most insistent that programs that are not TEX
must not be called TEX. More exactly, in [8, p572]
he wrote:

That is all I ask, after devoting a substan-
tial portion of my life to the creation of these
systems and making them available to every-
body in the world. I sincerely hope that the
members of TUG will help me to enforce these
wishes, by putting severe pressure on any per-
son or group who produces any incompati-
ble system and calls it TEX or Metafont or
Computer Modern — no matter how slight
the incompatibility might seem.

This insistence on the stability and consistency
of TEX is, in this author’s view, a significant contri-
bution to its longevity. Users know what to expect,
and get what they expect, when they use TEX.

Regarding the scope of his new program
sTeXme, Oleg Paraschenko reports:

[. . .] Scheme code can be executed from
TeX and that Scheme code can access TeX
internals (getting a string from the TeX
string pool, getting a macro definition as the
Scheme list).

The source file stexmelib.c on the Source-
Forge repository indicates that Paraschenko is
building a C-coded Scheme extension, in which
equivalents to TEX boxes and the like can be stored.
This indicates that there are many points of contact
between his project and the next section.

PyTEX

The goal of the PyTEX project is to combine Python
programming with TEX typesetting. To understand
this, think of Tcl/Tk: Tcl is a scripting language
and Tk is a toolkit for building GUI programs. Perl
and Python also have interfaces to Tk, allowing
them to use Tk when building GUI programs.

Now think of LATEX as LA/TEX. LA is a front end
to the TEX typesetting program written in TEX’s

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!

Jonathan Fine

147

macro language. PyTEX, or Py/TEX if you prefer, is
to be a front end to TEX written in Python.

PyTEX replaces the part of TEX that Don
Knuth said he did not want to write, namely the
TEX macro programming language, with something
more widely used. Our aim is to provide an alter-
native means of programming typesetting decisions
and logic. This will make TEX easier to use.

Here is an example of the interface. We are in
Python, and wish to typeset a paragraph of text,
namely

The cat sat on the mat.

to a measure of 6 picas, which is about one inch
(or 25 millimetres). This is a toy example. After
typesetting the paragraph, we wish to bring it into
Python for page makeup.

To see how this is done, issue the command

$ cat cat_sat.tex | tex | grep ’^[.\]’

where the source stream is

% cat_sat.tex

\tracingonline 1

\showboxbreadth \maxdimen

\showboxdepth \maxdimen

\scrollmode

\setbox0\vbox{%

\hsize 6pc

The cat sat on the mat.\par

\showlists

}

The annotated output of the grep is:

This is an annotation.

Start of the first line of paragraph.

\hbox(6.94444+0.0)x72.0, glue set 0.58331

indentation box, 20pt wide

.\hbox(0.0+0.0)x20.0

The word "The".

.\tenrm T

.\tenrm h

.\tenrm e

normal interword glue

.\glue 3.33333 plus 1.66666 minus 1.11111

The word "cat".

.\tenrm c

.\tenrm a

.\tenrm t

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm s

.\tenrm a

.\tenrm t

Zero width line filling glue.

.\glue(\rightskip) 0.0

Penalty for breaking page at this point.

\penalty 300

Interline glue.

\glue(\baselineskip) 5.05556

Start of second line of paragraph.

\hbox(6.94444+0.0)x72.0, glue set 20.88878fil

.\tenrm o

.\tenrm n

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm t

.\tenrm h

.\tenrm e

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm m

.\tenrm a

.\tenrm t

.\tenrm .

Inserted by TeX, for internal reasons.

.\penalty 10000

Allow the last line of para to be short.

.\glue(\parfillskip) 0.0 plus 1.0fil

.\glue(\rightskip) 0.0

This is a complete description of the paragraph
formed by TEX’s line breaking algorithm.

This is the essence of the interface between
Python and TEX. Material is sent to TEX to be
typeset, say using stdin. The \showlists command
is used to write the results to stdout, from which
they are picked up by Python.

On the input side, Python is responsible for
parsing the input stream, and placing appropriate
items on the horizontal list. It is also responsible
for ensuring that nothing inappropriate is placed on
the list. The whole process should not generate TEX
errors (although warnings about overfull boxes and
so forth are welcome).

On the output side, Python parses the output
stream, and from it reconstitutes the boxes that TEX
has formed, thus forming a Python object.

In Python code, our example might look like

hlist = Hlist() % new horizontal list

text = "The cat sat on the mat."

hlist.extend(text)

vlist = hlist.linebreak(hsize=6*pica)

where hidden in the call to the linebreak() method
there is a sending of data to TEX, and a reconstruc-
tion in Python of the boxes that TEX built. From
here on, the output or page-makeup routine can be
written in Python. Note that cat_sat.tex invokes
no TEX macros.

Conclusions

In the 15 years since TEX has been frozen, very few
deficiencies have been found in the algorithms it
uses for breaking a paragraph into lines, for type-
setting mathematics, and for setting tables. Since
1990 there has been little (but valuable) progress in

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

148 TEX Forever!

Jonathan Fine

the area of Unicode fonts, for which an extension
of TEX genuinely is needed. TEX was written to
be archival, and it is holding up well after its first
quarter-century or so.

There are many problems in our use of TEX.
This paper has discussed several:

• coloured text and other decorations,

• interactive use of TEX,

• input transformation,

• programming page makeup.

All of these arise not out of TEX itself, but out of
the way in which we use TEX.

There is an irony in our use of TEX macros.
Recall that when Don was looking at the design of
TEX he found that: [11, p.648]:

Every system I looked at had its own uni-
versal Turing machine built into it somehow,
and everybody’s machine was a little differ-
ent from everybody else’s.

He then went on to say:

I was tired of having to learn yet another
almost-the-same programming language for
every system I looked at; I was going to try
to avoid that.

What we have now with TEX macros is a Turing
machine very different from any other. This is just
what he wished to avoid. However, QATEX provides
a powerful complement to existing TEX macro pack-
ages, and PyTEX will use TEX as “just a typesetting
language”, which is what Don wanted it to be in the
first place.

In 1996, Piet van Oostrum asked Don Knuth
about TEX’s macro programming language [11,
p648–9]:

I don’t know if you have ever looked into the
LATEX code inside, but if you look into that,
you get the impression that TEX is not the
most appropriate programming language to
design such a large system. Did you ever
think of TEX being used to program such
large systems and if not, would you think of
giving it a better programming language?

In response to this, Don Knuth said (loc. cit.):

It would be nice if there were a well-
understood standard for an interpretive
programming language inside an arbitary
application. Take regular expressions— I
define UNIX as “30 definitions of regular
expressions living under one roof.” [laughter]
Every part of UNIX has a slightly different
regular expression. Now, if there were a

universal simple interpretive language that
was common to other systems, naturally I
would have latched onto that right away.

The theme of this paper is TEX typesetting with
fewer macros. We use instead a “simple interpretive
language”, namely Python. If we learn to use TEX
in new ways, and take good care of it, TEX will be
good for its second quarter-century.

Long live TEX!

References

[1] eval4tex, http://www.ccs.neu.edu/home/

dorai/tex2page/eval4tex-doc.html

[2] Jonathan Fine, Editing .dvi files, or Visual
TEX, TUGboat, 17 (1996), 255–259

[3] , Active TEX and the DOT input syntax,
TUGboat, 20 (1999), 248–254

[4] , Line breaking and page breaking, TUG-
boat, 21 (2000), 210–221

[5] , Instant Preview and the TEX daemon,
EuroTEX 2001 Conference Proceedings, 49–58

[6] , TEX as a callable function, EuroTEX 2002
Conference Proceedings, 26–35

[7] Donald E. Knuth, The Errors of TEX, Soft-
ware—Practice and Experience, 19 (1989), 607–
685. (Reprinted in [9])

[8] , The Future of TEX and Metafont,
TUGboat, 11 (1990), 489 (Reprinted in [13])

[9] , Literate Programming, CSLI (1992)

[10] , Questions and Answers II, TUGboat, bf
17 (1996), 355-367 (Reprinted in [13])

[11] , Questions and Answers III, MAPS
(Minutes and APpendiceS), 16 1996, 38–49
(Reprinted in [13])

[12] , The future of TEX and METAFONT,
TUGboat, 11 (1990), 489 (reprinted in [13])

[13] , Digital Typography, CSLI (1999)

[14] Donald E. Knuth & Pierre MacKay, Mixing
Right-to-Left Texts with Left-to-Right Texts,
TUGboat, 8, (1987), 14–25. (Reprinted in [13])

[15] Frank Mittelbach & Chris Rowley, The
LATEX3 Project, http://www.latex-project.

org/guides/ltx3info.pdf

[16] NTG TEX future working group, TEX in 2003:
Part I Propositions and Conjectures on the Fu-
ture of TEX, MAPS (Minutes and APpendiceS),
21 1998, 13–19

[17] PerlTEX, http://www.ctan.org/

tex-archive/macros/latex/contrib/

perltex

[18] Pymacs, http://pymacs.progiciels-bpi.ca

[19] sTeXme, http://stexme.sourceforge.net

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!

Jonathan Fine

149

The 16 Faces of a Dutch Math Journal

Hans Hagen

Abstract

Much of what ConTEXt originally provided originated from our daily needs, at that
time dictated by educational consultancy and course development. However, the last
couple of years most features find their origin in the demands of publishers, users as well
as an occasional ”Let’s see (prove) if TEX can do it (better)”. One of those users is the
Dutch Math Society (NAW).

Quite a while ago the Dutch Math Society decided to restyle their journal and the
decision was made to use ConTEXt as typesetting engine, one reason being its ability to
typeset on a grid and place graphic in columns. Since it happened in the early days of
ConTEXt, some of the demands resulted in rather complex and often weird macros.1

Advanced mixed font support, magazine-like column features, tight integration with
MetaPost, flexible placement of elements etc. are nowadays supported in the kernel in
a more natural way, if only because the core of ConTEXt has become more flexible and
mature. And so the moment has come to let the editors switch to the reimplemented
journal style.

In this talk I will illustrate how needs by demanding users like the Dutch Math Society’s
Journal have brought ConTEXt to where it stands today and is heading tomorrow.

1These were written by Taco Hoekwater, who did a pretty good job, as proven by the fact that up to date
these macros are still in use.

TUT03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

150 The 16 Faces of a Dutch Math Journal

Hans Hagen

Chris Heunen, Dick van Leijenhorst Tensegrities NAW 5/5 nr. 4 december 2004 279

Chris Heunen
Faculteit NWI

Radboud Universiteit Nijmegen

Postbus 9010

6500 GL Nijmegen

heunen@math.ru.nl

Dick van Leijenhorst
Faculteit NWI

Radboud Universiteit Nijmegen

Postbus 9010

6500 GL Nijmegen

bolke@cs.ru.nl

Tensegrities

Wie wel eens het Kröller-Müller museum heeft bezocht, zal in de

beeldentuin zeker de hoge toren, opgetrokken uit louter stalen bal-

ken en kabels, hebben gezien. Deze ‘Needle Tower’ is een werk van

Kenneth Snelson en dit beeld is niet de enige vorm die op deze

manier is te construeren. In dit artikel wordt ingegaan op enkele wis-

kundige aspecten van deze constructies: hoe kunnen we deze zo-

genaamde tensegrities, of houtje-touwtje-figuren, klassificeren op

structuur? Chris Heunen studeert momenteel af op het gebied van

complexiteitstheorie bij onder andere Dick van Leijenhorst, univer-

sitair hoofddocent aan de Faculteit der Natuurwetenschappen, Wis-

kunde en Informatica van de Radboud Universiteit Nijmegen. Zij stel-

len een nieuwe aanpak ter classificatie voor, waarbij ze echter snel

tegen complexiteitstheoretische harde problemen aanlopen.

Een tensegrity is een structuur die zijn integriteit behoudt onder

spanning. Het concept is van Kenneth Snelson ([10]), een Ameri-

kaanse beeldhouwer, en is populair geworden door de befaamde

architect Buckminster Fuller. De voornaamste toepassingen lig-

gen dan ook in de bouwkunde: vanwege hun geringe gewicht,

opvouwbaarheid, en de geringe invloed van uitwendige krach-

ten, zijn tensegrities ideaal voor bijvoorbeeld daken van voetbal-

stadia. Maar ook in de ruimtevaart liggen toepassingen, en in de

celbiologie.

Tensegrities bestaan slechts uit twee elementen: balken en ka-

bels. Tenminste, zo worden ze in de bouwkunde genoemd. Maar

je kunt ook zelf speelgoedvarianten construeren uit houtjes en

touwtjes, en ze hebben dan ook wat weg van Hoberman spheres en

Bucky balls. Als je het goed doet, kun je de touwtjes zelfs vervan-

gen door elastiekjes, zonder dat dat invloed heeft op het uiterlijk:

in plaats van een rigide bouwwerk krijg je er dan een die vanzelf

zijn vorm weer aanneemt na een val of een mep. (Maar daarover

later meer.) De touwtjes houden dus tegelijkertijd het hele bouw-

sel bijeen maar de houtjes uit elkaar.

De figuren zijn niet alleen fascinerend om te zien (Snelson

maakt er kunstwerken van) en om mee te spelen, maar ook wis-

kundig interessant: wat is een tensegrity eigenlijk, wiskundig ge-

zien? Hoe kan het zijn vorm behouden? Kunnen we ze klassifi-

ceren? Velen is groepentheorie aangeleerd aan de hand van de 17

behangpatronen. Zo lijken ook de wat onbekendere tensegrities

geschikt om mooie wiskunde met een fraai voorbeeld te onder-

steunen.

Wat is een tensegrity?

Laten we maar meteen beginnen met de definities en eisen. Een

tensegrity is een verzameling punten v1 , . . . , vn ∈ R
3. Tussen

twee van zulke punten loopt ofwel een houtje, ofwel een touw-

tje, ofwel niks. Dit stellen we voor met de ‘typefunctie’ t :

{1, . . . , n}2 → {houtje, touwtje, niks}.

Elke verbinding heeft een bepaalde ‘stijfheid’; dit modelleren

we met een functie c : {1, . . . , n}2 → R
+. Voor elastiek zal c klei-

ner zijn dan voor staalkabel, want de eerste ‘trekt minder hard’

dan de laatste bij gelijke uitrekking. Uiteraard is c(i, j) = 0 als vi

280 NAW 5/5 nr. 4 december 2004 Tensegrities Chris Heunen, Dick van Leijenhorst

Een tensegrity met 30 houtjes (doorgetrokken) en 70 touwtjes (gestippeld)

en v j niet verbonden zijn. (Natuurkundigen zullen c als de veer-

constante herkennen.)

Tenslotte veronderstellen we een functie r : {1, . . . , n}2 → R,

die de rustlengte van elke verbinding representeert. Te allen tijde

hebben we dus voor elke i, j ∈ {1, . . . , n}

t(i, j) = houtje ⇒ ‖vi − v j‖ ≤ r(i, j)

t(i, j) = touwtje ⇒ ‖vi − v j‖ ≥ r(i, j)

Een houtje ‘duwt een punt weg’, terwijl een touwtje ‘aan een punt

trekt’; het lijkt misschien verrassend dat houtjes uit kunnen rek-

ken, maar in de bouwkunde worden vaak telescopische staven

gebruikt. Daarom is het ook nutteloos zowel een houtje als een

touwtje tussen twee punten te hebben, en zijn onze t, c en r dus

welgedefinieerd.

Een fatsoenlijke tensegrity is stabiel, wat wil zeggen dat bij elk

punt de trekkende kracht de duwende opheft. Een stabiele tense-

grity voldoet dus volgens Hooke aan

∀1≤i≤n

n

∑
j=1

c(i, j) ·

(
vi − v j − r(i, j)

vi − v j

‖vi − v j‖

)
= 0

(1)

We eisen ook dat een tensegrity samenhangend is. Bovendien mo-

gen de houtjes elkaar niet aanraken, in het bijzonder niet in hun

eindpunten. Dit weer om bouwkundige redenen: kogelgewrich-

ten zijn moeilijk. Zo’n gewricht kunnen we echter gemakkelijk

simuleren, in figuur 1 zijn bijvoorbeeld 3-gewrichten gesimuleerd

door touwtjes:

De hoofdvraag waarin we nu geïnteresseerd zijn, is ‘welke

tensegrity-structuren (v1 , . . . , vn , t, c, r) voldoen aan (1) voor vaste

n ∈ N?’. En ‘structuur’ bedoelen we hierbij in de groepentheo-

retische zin: als je een tensegrity v1 , . . . , vn hebt, dan voldoet een

willekeurige permutatie die t, c en r respecteert natuurlijk ook,

maar dat vinden we flauw.

Eerder werk

Als je echter op zoek gaat in de literatuur, zul je hier weinig

over vinden. Het meeste is gericht op ingenieurs [2–3]. Maar zo-

als gezegd zijn er ook toepassingen in de celbiologie [4–5]. En

in de ruimtevaart; er zijn zelfs theorieën dat het universum zelf

de structuur van een tensegrity heeft — zwarte gaten leveren

compressie (houtjes), terwijl gelinkte melkwegstelsels spannin-

gen daartussen vormen (touwtjes). Af en toe kom je exotischere

toepassingen zoals [6] tegen, waarmee ingenieurs met op tense-

grities gebaseerde filmbeelden kunnen inschatten hoe stevig een

constructie is. Ook kun je op een cultus stuiten die gebaseerd is

op het idee dat tussen mensen ook aantrek- en afstoot-krachten

werken.

Wiskundig is er echter weinig verricht. Het enige noemens-

waardige werk is dat van Connelly en Back [1]: zij maakten een

catalogus van tensegrities. Het idee hierachter is in zekere zin

‘top-down’. Ze schrijven een symmetriegroep voor, en gaan ver-

volgens na welke tensegrity-structuren hieraan voldoen. Dit le-

vert een alleraardigste lijst op, met plaatjes en al, zie [11].

Naast voldoende voorwaarden stellen wij ons echter ook nood-

zakelijke ten doel. Dat noodzaakt ons tot grovere methoden, meer

in een ‘bottom-up’ stijl.

Nieuwe aanpak

We gebruiken dan ook een andere aanpak dan Connelly en Back

in [1]. Ten eerste scheiden we de structuur van een tensegrity van

zijn realisatie. Mits juist uitgevoerd, heeft dat als voordeel dat de

klassificatie gemakkelijk verloopt, en daarna enkel nog een filte-

ring op daadwerkelijk realiseerbare klassen gedaan hoeft te wor-

den.

De structuur leggen we vast in een graaf. Om precies te zijn,

een ongerichte, complete, rib-gekleurde graaf. Als punten van de

graaf nemen we simpelweg 1, . . . , n. De ribbe {i, j} geven we

‘kleur’ t(i, j). We spreken vervolgens af welke symmetrieën we

toelaatbaar achten, en laten zien dat deze symmetriegroep werkt

op onze grafen. Vervolgens kunnen we de symmetrieklassen be-

palen als de banen van de collectie grafen onder de groep.

Maar dan hebben we teveel klassen: het vastleggen van de

tensegrity-structuur in een graaf lijkt weliswaar heel natuurlijk,

het is ook enkel dat. De graaf zegt alleen iets over verbonden-

heid, maar niets over fysische realiseerbaarheid. We moeten dus

nog een eliminatieproces toepassen op de klassen. Dit komt erop

neer dat we voor elke klasse moeten nagaan of er v1 , . . . , vn ∈ R
3

zijn die voldoen aan (1), c en r.

Grafen en groepen

Ten eerste zullen we n maar eens vastleggen. Uit de stabiliteitseis

(1) volgt direct dat er geen punten zijn die enkel door touwtjes

bereikt worden. En omdat verder houtjes disjunct zijn, weten we

dus dat elk houtje precies twee punten met zich meebrengt, en dat

dat dus ook alle punten zijn. Noodzakelijkerwijs moet n dus even

zijn, laten we zeggen n = 2N, waarbij dus N het aantal houtjes is.

Vervolgens kunnen we de 2N punten in de graaf een

standaard-oriëntatie toebedelen, omdat we weten dat er N hout-

jes zijn. Deze normaalvorm neemt alvast iets van de keuzevrijheid

Chris Heunen, Dick van Leijenhorst Tensegrities NAW 5/5 nr. 4 december 2004 281

in t weg. We kiezen de punten zó, dat precies tussen 2i − 1 en 2i

een houtje loopt: t(2i − 1, 2i) = houtje (zie figuur 2).

Merk trouwens even op dat het niets uitmaakt of we nu met de

complete graaf werken, of dat we de niks-verbindingen gewoon

uit de graaf weglaten.

Zij nu Γ de verzameling van al deze complete, rib-gekleurde

grafen met 2N punten. Een element γ van Γ is dus een functie,

die aan een ribbe {i, j} zijn ‘kleur’ t(i, j) toekent. Zij verder Γ̃ de

deelverzameling van Γ van alle grafen op normaalvorm: Γ̃ = {γ ∈

Γ : ∀1≤i≤N [γ({2i − 1, 2i}) = houtje]}.

Met SX noteren we de symmetrische groep op de eindige ver-

zameling X, dus de verzameling permutaties van X met als ope-

rator functiecompositie. Hierbij zullen we S{1,2,...,k} afkorten tot

Sk. Herinner dat een groepswerking van een groep G op de ver-

zameling Γ een homomorfisme G → SΓ is, dus een afbeelding

die de groepsstructuur bewaart. Men gaat eenvoudig na dat per-

muteren van de punten een groepswerking is op Γ . Met andere

woorden: S2N werkt op Γ .

We zouden nu direct kunnen proberen de banen van Γ on-

der S2N te bepalen. Het blijkt echter dat dit erg inefficiënt is

qua rekenwerk. Maar nadat we de klassen bepaald hebben, gaan

we toch de realiseerbare daaruit filteren. Als we dus de niet-

realiseerbare tensegrity-structuren eerder in het proces kunnen

elimineren, scheelt dit alleen maar rekenwerk.

En we kunnen net zo goed wat heuristiek eerder toepassen.

Een goed idee is om houtjes te permuteren in plaats van punten

(SN in plaats van S2N). Maar omdat een permutatie van pun-

ten ook de eindpunten van een houtje kan verwisselen, moeten

we naast alle houtjes permuteren ook elk houtje apart omkeren

(met S2). Deze combinatie heet het kransproduct [7].

Definitie. Zij G en H groepen, waarvan H op een verzameling X

werkt. Schrijf GX voor de verzameling functies X → G. We maken

nu van GX een groep door de operatie van G puntsgewijs door te

voeren: voor f , g ∈ GX definieren we (f · g)(x) = f (x) · g(x),

waarbij de · in de rechterzijde de operatie van G is. Nu werkt H

op GX door de operatie h f (x) = f (hx) voor f : X → G, h ∈ H

en x ∈ X. Het kransproduct van G en H, notatie G ≀ H, is het direct

product GX × H.

Het is de grootste ondergroep van SX die de partities van X,

geïnduceerd door de actie van H op X, invariant laat. Net als S2N

op Γ werkt, werkt ook S2 ≀ SN op Γ̃ . We bewijzen nu dat we door

houtjes in plaats van punten te permuteren geen essentiële moge-

lijkheden verliezen.

Stelling. Door S2 ≀ SN te gebruiken in plaats van S2N verliezen

we geen banen. Preciezer: representanten van banen van Γ̃ onder

Figuur 1 Simulatie van 3-gewrichten door touwjes

Snelsons ‘Needle Tower’ in het Kröller-Müller museum

S2 ≀ SN vormen tevens een compleet stel baanrepresentanten voor

Γ onder S2N .

Bewijs. S2 ≀ SN werkt op Γ̃ , en dus zijn er onder deze groep een

aantal banen Õ1 , Õ2 , . . . , Õk voor zekere k ∈ N. Elke baan bevat

nu een representant (op normaalvorm!): er zijn γ̃1 ∈ Õ1 , γ̃2 ∈

Õ2 , . . . , γ̃k ∈ Õk zodat γ̃i({2 j − 1, 2 j}) = houtje voor 1 ≤ i ≤ k en

1 ≤ j ≤ N.

We zagen al dat ook S2N op Γ werkt, en dat er onder S2N dus ook

banen O1 , O2 , . . . , Ol zijn voor zekere l ∈ N.

Het is triviaal dat iedere S2N-baan O een γ op normaalvorm be-

vat. Maar dan bevat O ook de baan Õi van γ onder de werking

van S2 ≀ SN op Γ̃ , en daarmee ook diens representant γ̃i.

Stel nu dat O ook nog een γ̃ j bevat. In dat geval geldt voor

π ∈ S2N dat π(γ̃i) = γ̃ j. Maar dan laat π de partitie

{1, 2}, {3, 4}, . . . , {2N − 1, 2N} invariant, en is π dus een element

van S2 ≀ SN . Dus moet wel i = j gelden!

De γ̃i vormen dus inderdaad een compleet stel baanrepresentan-

ten voor S2N , en we mogen ons inderdaad beperken tot het bere-

kenen van de γ̃i. �

Merk op dat de groep G die we zo krijgen en willen laten werken

op Γ̃ voortgebracht wordt door de permutaties (1 2), (1 3)(2 4)

en (1 3 . . . 2N − 1)(2 4 . . . 2N).

We hebben nu dus een kanonieke groep G, die op een natuur-

lijke manier alle symmetrieën van onze grafen bevat. Bekijk nu

de collectie Γ̃ van alle grafen op normaalvorm, en laat G hierop

werken. Wat we nu zoeken zijn de banen van Γ̃ onder G. Eén re-

presentant van elke baan is zelfs voldoende.

Om dit exponentiele probleem aan te pakken gebruiken we de

methode van ‘tabular programming’: we beginnen bij de ‘blaad-

jes van de recursie’ en combineren die opwaarts, terwijl we onder-

weg alles weggooien wat we niet meer nodig hebben. In dit geval

verdelen we de gezochte klassen onder in aantal touwtjes K, en

282 NAW 5/5 nr. 4 december 2004 Tensegrities Chris Heunen, Dick van Leijenhorst

Figuur 2 Standaard-oriëntatie van punten, en de zes gevonden structuren voor 4 houtjes en hoogstens 2 touwtjes (N = 4, K ≤ 2)

bepalen de verzameling representanten van banen incrementeel.

De structuur waarvan we gebruikmaken is die van de normaal-

vorm.

Voor de beginwaarde K = 1 is het duidelijk dat er maar één

tensegrity-structuur is met N houtjes en 1 touwtje: het maakt niet

uit tussen welke twee houtjes het touwtje is gespannen (herinner

dat een touwtje niet tussen dezelfde twee punten als een houtje

kan lopen).

Dan gaan we alle klassen met K touwtjes uitbreiden tot K + 1

touwtjes. Neem een klasse met K touwtjes. We fixeren deze eerste

K touwtjes, en bekijken waar het volgende touwtje gespannen kan

worden. Dus voor elke klasse met K touwtjes krijgen we nul of

meer klassen met K + 1 touwtjes.

Hoewel er bij N houtjes maar 2N(N − 1) touwtjes mo-

gelijk zijn, hoeven we niet verder te gaan dan halverwege,

K = N(N − 1). Dit omdat een tensegrity met K > N(N − 1) een

gelijke structuur heeft als een tensegrity met N(N − 1)− K touw-

tjes. We hoeven alleen maar de touwtjes te ‘inverteren’, dat wil

zeggen touwtjes verwijderen waar die waren, en invoegen waar

ze niet waren. En dat is veel gemakkelijker dan de tweede helft

net zo berekenen als de eerste.

We hebben dus het volgende algoritme: zij N gegeven, en G

onze symmetriegroep. Begin met K = 1 en neem als eerste touw-

tje t1 = {1, 3}. Zet R = {G}. Fixeer nu het eerste touwtje, dat

wil zeggen, beschouw als nieuwe groep G :=
⋂

g∈G Stab{t1}(g),

en neem R := R ∪ G, K := K + 1. Herhaal dit proces totdat

K = N(N − 1), en bepaal de tweede helft door ‘touwtjes-inversie’.

Als we dit procédéuitvoeren voor N = 4 zolang K ≤ 2, krijgen

we inderdaad wat we intuïtief zouden verwachten, zie figuur 2.

Figuur 3 De enige tensegrity met 3 houtjes

Met het lemma van Burnside en de daarop voortbouwende stel-

ling van Polýa kunnen we nu het aantal banen (en daarmee het

aantal gevonden representanten) verifiëren [9].

Lemma. (Burnside) Stel dat een eindige groep G op een verzame-

ling X werkt. Dan is het aantal banen van X onder G gelijk aan
1
|G| ∑g∈G |StabX(g)|.

Stelling. (Polýa) Stel dat een eindige groep G op een verzameling

X werkt. Dan is het aantal banen van X onder G met k kleuren

gelijk aan 1
|G| ∑g∈G k#c(g). Hierbij stelt #c(π) het minimum aantal

cykels van de permutatie π voor.

Helaas is het bewijs van het lemma van Burnside een kwestie van

tellen en sommige objecten daarbij weg te laten, en is niet con-

structief. Maar we kunnen het nog steeds gebruiken ter verifica-

tie.

Realisatie

Goed, we hebben dus nu alle theoretisch mogelijke klassen van

tensegrity-structuren met N houtjes. Maar we hebben ook alleen

pas die structuur. In termen van onze definities: we hebben alleen

pas rekening gehouden met de typefunctie t, en nog niet met de

fysische beperkingen c, r en (1). Uit al deze klassen moeten we nog

degenen pikken die echt mogelijk zijn, dus degenen waarvoor c

en r bestaan die aan (1) voldoen.

Laten we eerst maar eens aannemen dat c constant is (behalve

natuurlijk de verplichte c(i, j) = 0 zodra t(i, j) = niks). Dat is niet

zo onredelijk, want als je een tensegrity bouwt heb je toch niet de

neiging om hier weer eens elastiek, daar weer eens staalkabel te

gebruiken.

We doen dus even net of v1 , . . . , vn en r variabel zijn, en probe-

ren hiervoor de stabiliteitsvergelijkingen (1) op te lossen.

Het slechte nieuws is nu dat dit nog niet meevalt. Het gaat hier

om een vectoriëel stelsel non-lineaire vergelijkingen. Daar ken-

nen wij helaas geen specifieke oplossingsmethode voor. Dus gre-

pen we maar naar een generieke methode, die van Gröbner-bases.

Helaas is deze methode dubbel-exponentieel: als er n onbekenden

zijn, kost het O(22n
) elementaire rekenstappen om een oplossing

te vinden.

Resultaten

Dit alles is uitgeprogrammeerd in Magma, een computer-algebra-

systeem, dat weet heeft van zowel groepen als Gröbner-bases.

Magma’s algoritmen staan bekend als zeer snel, en het is uiter-

mate moeilijk om zelf met snellere op de proppen te komen.

En omdat Gröbner-bases inherent ‘moeilijk’ zijn, heeft ook

Magma hier helaas last van: met een weekend rekentijd kwamen

we niet verder dan N = 4, dus tensegrities met 4 houtjes.

Zo bleek dat er maar één essentiële tensegrity-structuur is met

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT03

The 16 Faces of a Dutch Math Journal

Hans Hagen

151

274 NAW 5/5 nr. 4 december 2004 A mystery about to be solved Frank den Hollander, Fabio Toninelli

Frank den Hollander
EURANDOM

Postbus 513

5600 MB Eindhoven

denhollander@eurandom.tue.nl

Fabio Toninelli
Institut für Mathematik

Universität Zürich

Winterthurerstrasse 190

CH-8057 Zürich

toninell@math.unizh.ch

Research Spin glasses

A mystery about to

The study of spin glasses started some thirty years ago, as a branch of the physics of

disordered magnetic systems. In the late 1970’s and early 1980’s it went through a period of

intense activity, when experimental and theoretical physicists discovered that spin glasses

exhibit new and remarkable phenomena. However, a real understanding of the behaviour

of these systems was not achieved and little progress was made in the next twenty years,

especially in mathematical terms. In the 1990’s various related systems were studied with

mounting success, most notably, neural networks and random energy models. Since a

couple of years the field has again entered a phase of exciting development. Some of the

main mathematical questions surrounding spin glasses are currently being solved and a full

understanding is at hand. In this paper we sketch the main steps in this development, which

is interesting not only for the physical and the mathematical relevance of this research field,

but also because it is an example where scientific progress follows a tortuous path.

Fabio Toninelli worked as a postdoc in the Random Spatial Structures programme at

EURANDOM, and recently left for a post-doc position at the University of Zürich. Frank den

Hollander is supervisor of the RSS-group and scientific director of EURANDOM.

Let us begin with a brief history of mag-

netic materials. All matter is composed

of a large number of atoms. Atoms car-

ry a spin, i.e., a microscopic ‘magnet-

ic moment’ generated by the motion of

the electrons around the nucleus. This

spin, which in turn generates a microscop-

ic magnetic field around the atom, can be

viewed as a vector in three-dimensional

space. To simplify matters, assume that

for this vector only two opposite direc-

tions are allowed, up and down. In fer-

romagnets, materials capable of attracting

pieces of iron placed in their vicinity, each

spin has a tendency to align with the spins

in its neighbourhood. At high tempera-

ture, the motion of the spins is so errat-

ic that at any time about half of them are

pointing up and half are pointing down.

Consequently, the net macroscopic mag-

netisation is zero, i.e., the individual mi-

croscopic magnetic fields generated by the

spins cancel each other out. As the tem-

perature is lowered, the erratic motion of

the spins reduces and the spins become

more and more sensitive to their mutual

interaction. The characteristic feature of

ferromagnets is that there is a critical tem-

perature, Tc, below which the spins exhib-

it collective behaviour in that a majority of

them point in the same direction (either

a majority up or a majority down). This

phenomenon is called spontaneous mag-

netisation (see Figure 1).

Below Tc the individual microscopic

magnetic fields sum up coherently to cre-

ate a macroscopic magnetic field, which

is what is ultimately responsible for the

ferromagnet’s capability to attract iron. It

is important to emphasize that this seem-

ingly natural picture took a long time

to emerge — from 1895 (Curie) until

1944 (Onsager) — and that the genius of

many illustrious theoretical physicists and

mathematicians was necessary in order to

fully establish that this is what actually

happens.

The microscopic theory that explains

the collective behaviour of atoms is called

statistical physics. According to this theory,

a system in equilibrium is described with

the help of an energy functional, called

Hamiltonian, which associates with each

microscopic configuration of the system a

macroscopic energy. In our case a config-

Frank den Hollander, Fabio Toninelli A mystery about to be solved NAW 5/5 nr. 4 december 2004 275

be solved

uration means a complete list of the ori-

entations of all the spins. If the spins are

located at the sites x in a macroscopic box

Λ, and if sx ∈ {+1,−1} denotes the value

of the spin at site x (+1 for up and −1 for

down), then the configuration is

s = {sx : x ∈ Λ}

and the Hamiltonian of the ferromagnet is

H(s) = − ∑
x,y∈Λ

x∼y

sxsy ,

where x ∼ y means that x and y are neigh-

bouring sites. Thus, each pair of neigh-

bouring aligned spins gets energy −1,

each pair of neighbouring anti-aligned

spins gets energy +1. At a given tempera-

ture T, the state of the system is described

by the Gibbs distribution associated with H,

µT(s) =
1

ZT
e−H(s)/kT , s ∈ {+1,−1}Λ ,

where k is Boltzmann’s constant and ZT

normalizes µT to a probability distribu-

tion: µT(s) is the probability that the sys-

tem assumes configuration s. When T is

lowered, µT tends to concentrate more

and more around the configurations hav-

ing minimal energy, the so-called ground

states of the system. For the ferromagnet

these ground states are those configura-

tions where all the spins have the same

value. Indeed, it is only when sx = +1

for all x or sx = −1 for all x that all terms

in H(s) give a negative contribution, lead-

ing to the maximal value for µT(s). This

maximum is a pronounced peak when T

is small, explaining why for low tempera-

ture in a typical configuration the majority

of the spins is aligned.

Spin glasses

Now that we have briefly introduced

some important concepts from the theo-

ry of magnetism, we are in a position to

explain what spin glasses are. Consider a

system of spins, as before, but assume that

some pairs of neighbouring spins prefer to

be aligned, while the others prefer to be

anti-aligned. The former are said to have a

ferromagnetic interaction, the latter an anti-

ferromagnetic interaction. Say that for any

given pair of spins the type of interaction

is chosen randomly with equal probability.

It is because of this randomness in the in-

teractions that such systems are called dis-

ordered.

In terms of the Hamiltonian, the above

model can be defined as

H(s) = − ∑
x,y∈Λ

x∼y

Jxysxsy ,

where, for each x ∼ y, Jxy can be either +1

(indicating a ferromagnetic interaction) or

Figure 1 Spontaneous magnetisation: the magnetisation
m(T) as a function of the temperature T for a typical con-
figuration of the spins; m(T) is the difference between the
number of up-spins and the number of down-spins divided
by the total number of spins. The characteristic feature of
ferromagnets is that there is a critical temperature, Tc , be-
low which the spins exhibit collective behaviour in that a
majority of them point in the same direction (either a ma-
jority up or a majority down). By symmetry, configurations
with the opposite magnetisation −m(T) are equally likely.

276 NAW 5/5 nr. 4 december 2004 A mystery about to be solved Frank den Hollander, Fabio Toninelli

Figure 2 The magnetic susceptibility χ(T) as a function
of the temperature T. χ(T) measures the sensitivity of the
system to the application of a magnetic field and shows
a cusp at the critical temperature Tc. This cusp signals a
freezing of the spins in random directions.

−1 (indicating an anti-ferromagnetic in-

teraction), with probability 1
2 each. This

Hamiltonian was introduced in 1975 by

Edwards and Anderson [8], in an attempt

to describe a class of disordered magnet-

ic systems found a few years earlier by

experimental physicists and termed ‘spin

glasses’. Examples in this class are disor-

dered magnetic alloys, i.e., metals contain-

ing random magnetic impurities, such as

AuFe or CuMn.

What is the analogue in this case of

the behaviour depicted in Figure 1? Even

at low temperature there is no reason

why the majority of the spins should

be aligned. Indeed, due to the equal

competition between ferromagnetic and

anti-ferromagnetic interactions the corre-

sponding magnetisation m(T) will be ze-

ro for all T. One might thus conclude that

the model simply has no critical tempera-

ture and therefore exhibits no interesting

phenomena.

However, in the early 1970’s it was

found experimentally, by Cannella and My-

dosh [6] and by Tholence and Tournier

[19], that there still is a critical tempera-

ture below which the system undergoes

an ordering transition, in the sense that the

spins act coherently in some sort of way

(see Figure 2). This fact came as a surprise

to the physicists.

In simplified terms, what happens is

the following. Above Tc, the spins be-

have essentially independently from one

another, i.e., their orientation is hardly in-

fluenced by the spins in their neighbour-

hood. As a result, the typical configura-

tions of the system are those that are com-

pletely disordered. This is true both for

the ferromagnet and for the spin glass.

Below Tc, however, the spins show co-

operative behaviour and can be found in

more than one class of typical configura-

tions. In the case of the ferromagnet de-

scribed above, there are two classes of

typical configurations, namely, those hav-

ing magnetisation +m(T) and −m(T), re-

spectively. These classes of configurations

are called pure states. In the case of the

spin glass, instead, there are many pure

states, which are not characterised by a

non-zero magnetisation, but rather by the

occurrence of many ‘mesoscopic domains’

(microscopically large but macroscopical-

ly small) in which the spins show some

form of ‘local magnetic order’. In fact, a

whole ‘hierarchy’ of such domains occurs.

At present it is not yet clear what the fea-

tures of these domains precisely are. The

important point, however, is that the exis-

tence of a transition at Tc is experimentally

observable.

The Edwards-Anderson model is far

too difficult to be analysed theoretically in

detail, even today. In fact, condensed mat-

ter physicists have been disputing heated-

ly in the past three decades about what

precisely happens at low temperature. In

1975 Sherrington and Kirkpatrick [15] in-

troduced a simplified version of this mod-

el. The difference with the Edwards-An-

derson model is that each spin is influ-

enced not only by its neighbouring spins,

but by all the spins in the system. The cor-

responding Hamiltonian reads

H(s) = −
1

|Λ|1/2 ∑
x,y∈Λ

x �=y

Jxysxsy ,

where Jxy is +1 or −1, with probabili-

ty 1
2 each, for all x �= y (rather than for

x ∼ y only), and a factor 1/|Λ|1/2 is

added to normalise the interaction. In sta-

tistical physical jargon, the Sherrington-

Kirkpatrick model is a mean-field approx-

imation of the Edwards-Anderson mod-

el. Strange as it may seem, this type of

approximation actually makes the model

easier.

For a history of spin glasses up to 1986,

we refer to Binder and Young [2].

Replica symmetry breaking

The article by Sherrington and Kirkpatrick

carried the rather innocent title A solvable

model of a spin glass. The authors nev-

er imagined that they were giving birth

to one of the most exciting enigmas of

modern statistical physics. The solution

they proposed, assuming so-called ‘repli-

ca symmetry’, turned out to be incorrect,

and even self-contradictory as they them-

selves realised very well. It was only a few

years later, in 1980, that the Italian theoret-

ical physicist Giorgio Parisi [14] proposed

a different solution, known as the continu-

ous replica symmetry breaking scheme, which

could account for many of the experimen-

tal observations (both laboratory experi-

ments and computer simulations).

Replica symmetry breaking theory pre-

dicts the existence of a collective be-

haviour with many exotic features, never

before observed in any physical system.

In simple words, Parisi’s theory predicts

that the Hamiltonian of the Sherrington-

Kirkpatrick model has many ground states

(growing in number as the volume of the

system increases), which are highly disor-

dered and which do not seem to be related

to one another via simple transformations.

In contrast, recall that the ferromagnetic

Hamiltonian has only two ground states,

one with all spins up and one with all

spins down, which are fully ordered and

which are related to one another via a

global inversion of all the spins. More-

over, it turns out that for the Sherrington-

Kirkpatrick model, by choosing a differ-

ent realisation of the disorder (i.e., a dif-

ferent choice for the random interactions

Jxy = ±1, again with probability 1
2 each),

the new ground states in general have

nothing to do with the old ones. Even

more surprisingly, if the disorder realisa-

tion is kept fixed but the volume of the

system is increased, then the new ground

states are not related to the old ones either

(‘chaotic size dependence’). In spite of

this extremely irregular situation, accord-

ing to Parisi’s theory the collection of all

the ground states has some regular, highly

non-trivial, geometrical structure, called

ultrametricity, which is not modified when

the disorder realisation is changed. So,

what distinguishes the region above the

critical temperature Tc from the one be-

low, for the Sherrington-Kirkpatrick mod-

el? Suppose that we take two copies —

two replicas — of the system, with the same

realisation of the disorder, and compute

the overlap between them, i.e.,

q(s(1) , s(2)) =
1

|Λ| ∑x∈Λ

s
(1)
x s

(2)
x ,

where s(1) and s(2) are the configurations

of the first and the second replica, respec-

Frank den Hollander, Fabio Toninelli A mystery about to be solved NAW 5/5 nr. 4 december 2004 277

tively. Then, above Tc the overlap is ze-

ro for typical configurations (typical with

respect to the Gibbs distribution and the

disorder realisation), while below Tc it can

assume a range of non-zero random values.

This can be explained as follows. Recall

that, at low temperature, the Gibbs distri-

bution is peaked around the ground states

of the system. Consequently, the config-

urations in the two replicas will each be

very close to one of the ground states (not

necessarily the same one), which causes a

non-zero overlap. Due to the erratic na-

ture of the ground states, the overlap does

not have a fixed value: it varies randomly

with the ground states.

Replica symmetry breaking theory came

as a shock to the physics community, not

only for the novelty of the phenomena

predicted, but also for the way in which

it was presented. It happens frequent-

ly that theories formulated by physicists

are not mathematically rigorous, and con-

tain a number of assumptions and simpli-

fications that need to be justified. Often

full mathematical proofs come only much

later. Here the situation was more deli-

cate: the works of Parisi and co-workers

were not only non-rigorous, they were

based on such strange and daring tech-

niques that it was hard to see how the rel-

evant statements could be formulated in

a proper mathematical language. This is

why part of the mathematics communi-

ty has regarded Parisi’s theory as some-

what magic. Still, the phenomena predict-

ed by the theory were so appealing, and

its range of applications so wide, that it

soon became a standard tool for theoreti-

cal physicists, who were much more excit-

ed by its power than worried by its lack

of mathematical sense and precision. One

could say that Parisi had discovered a new

world.

A review of the results of replica sym-

metry breaking theory up to 1987 can be

found in Mézard, Parisi and Virasoro [12].

Towards a solution

The reader might wonder at this point

whether all the excitement about the Sher-

rington-Kirkpatrick model is really justi-

fied. After all, it is only an approxi-

mate version of the more difficult — but

more realistic — Edwards-Anderson mod-

el, which remains unsolved. In fact, it is

not yet clear how much we really learn

about the Edwards-Anderson model from

a detailed analysis of the Sherrington-

Kirkpatrick model. According to a sce-

nario put forward by Newman and Stein

(see Newman [13]), the behaviour of the

two models may well turn out to be qual-

itatively different: the main phenome-

na related to replica symmetry breaking

may not occur in ‘short range’ models

like the Edwards-Anderson model. Still,

the excitement is understandable. First,

the study of the Sherrington-Kirkpatrick

model has taught us a lot and contin-

ues to do so. In the attempts to under-

stand this model, new ideas and tech-

niques have been invented and further de-

veloped that are extremely interesting and

that have turned out to be fruitful for oth-

er statistical physical models as well. Sec-

ond — and more importantly — it has

gradually become clear that the knowl-

edge gained through the analysis of the

Sherrington-Kirkpatrick model can be ap-

plied to a variety of — apparently unre-

lated — problems in mathematics, physics

and engineering. These problems have

therefore come to be considered as belong-

ing to the realm of spin glasses. Examples

are neural networks (models for memory

and learning), error correcting codes (used

in communications engineering to recov-

er the information transmitted through a

noisy channel) and random combinatorial

optimisation (problems of decision in the

presence of many mutually competing re-

quirements).

From the moment the replica symme-

try breaking theory came into being, try-

ing to prove — or to disprove — the pre-

dictions of Parisi and co-workers became

an exciting challenge for many among the

best mathematical physicists. The task

proved to be quite hard and frustrating,

and for almost twenty years progress was

painfully slow. Much effort was devot-

ed to the search for and the study of

mathematical models that would be easi-

er than the Sherrington-Kirkpatrick mod-

el, but that would still exhibit replica sym-

metry breaking effects. In particular, the

Generalized Random Energy Model, in-

troduced by Derrida [7] in 1985, shows

striking similarities with the Sherrington-

Kirkpatrick model, yet is exactly solvable.

The structure of the Gibbs distribution in

this model has been analysed in full math-

ematical detail by Bovier and Kurkova [4].

Similarly, extensive rigorous results have

been obtained by Bovier, Gayrard and Pic-

co for the Hopfield model of neural net-

works (see [3] and references therein). The

latter is a paradigm for auto-associative

memory, i.e., systems that try to recognize

words — or patterns — that were previ-

ously memorized. In this case, the spins

should be interpreted as the states of the

neurons located at the various sites: sx =

+1 if the neuron at site x is sending electric

pulses, sx = −1 if it is not. When varying

the number of memorized patterns, the

behaviour can range from a ferromagnetic

type to a spin glass type. For an overview

of the expanding panorama of spin glasses

up to 1998, see Bovier and Picco [5].

It gradually became clear — more

through failures than through positive re-

sults — that completely new ideas were

needed to make significant progress in

the comprehension of replica symmetry

breaking. It is only in the last few years

that we are witnessing a rapid and un-

expected boost in the mathematical un-

derstanding of the key questions. Sur-

prisingly, the missing new ideas turned

out to be relatively simple, although they

were very hard to find. The first steps

in this breakthrough were taken in 2000-

2002 by the Italian mathematical physi-

cist Francesco Guerra [10], together with

Fabio Toninelli [11], building on earlier

work by Ghirlanda and Guerra [9]. As

a result, some of the mathematical ques-

tions that had been tackled in vain in the

preceding twenty years could finally be

solved. One important result is the ex-

istence of the ‘thermodynamic limit’ for

the Sherrington-Kirkpatrick model. This

means that physical quantities, like the en-

ergy of the ground states divided by the

volume of the system, converge to a well

defined limit when the volume of the sys-

tem tends to infinity. The proof of this

fact is quite standard in statistical physics

for models with ‘short range’ interactions,

but it is not for mean-field models, espe-

cially not for disordered ones. Another

important result is that with the help of

certain rigorous comparison identities —

so-called sum rules — the thermodynamic

properties of the Sherrington-Kirkpatrick

model can be compared with the cor-

responding expressions given by Parisi’s

theory. These sum rules concern the free

energy f (T, |Λ|) as a function of the tem-

perature T and the volume |Λ|, a quantity

of central importance in statistical physics,

from which all thermodynamic proper-

ties of the system can be deduced. This

free energy is related to the Gibbs dis-

tribution µT via the relation f (T, |Λ|) =

TUT03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

152 The 16 Faces of a Dutch Math Journal

Hans Hagen

18 NAW 5/5 nr. 1 maart 2004 Een meetkundekunstenaar T.A. Springer

T.A. Springer
Mathematisch Instituut

Universiteit Utrecht

Postbus 80010, 3508 TA Utrecht

springer@math.uu.nl

In memoriam Harold Scott Macdonald Coxeter (1907–2003)

Een meetkundekunstenaar

Op 30 maart 2003 overleed op 96-jarige leef-

tijd de meetkundige Harold Scott Macdonald

Coxeter, sinds 1936 verbonden aan de Uni-

versiteit van Toronto (Canada). In Nederland

had hij vele vrienden, waarvan de graficus

M.C. Escher wel de bekendste is. Hij ontving

diverse onderscheidingen en acht eredocto-

raten. In 1948 werd hij fellow van de Royal

Society van Canada en in 1950 van de Brit-

se Royal Society. Sinds 1978 was hij erelid

van het Wiskundig Genootschap en in 1974

werd hij benoemd tot buitenlands lid van de

Koninklijke Nederlandse Akademie van We-

tenschappen. Dit In Memoriam is geschreven

door T.A. Springer voor de Levensberichten

(2003) van de Koninklijke Nederlandse Aka-

demie van Wetenschappen. De auteur is eme-

ritus hoogleraar in de wiskunde aan de Uni-

versiteit Utrecht.

Donald Coxeter werd geboren in Kensington

(Londen) in een familie van Quakers. Zijn va-

der had een familiebedrijf waar chirurgische

apparatuur vervaardigd werd, maar in zijn

hart was hij kunstenaar. In het gezin was dan

ook veel artistieke activiteit: Coxeters vader

musiceerde en zijn moeder schilderde.

Al heel vroeg bleek dat Donald wiskundig

en muzikaal begaafd was. Als kleuter keek hij

graag in de financiële pagina’s van de krant,

omdat daar zoveel getallen te vinden zijn. Hij

wilde eerst componist worden; omstreeks zijn

twaalfde had hij al een strijkkwartet en een

opera gecomponeerd.

Maar wiskunde ging de boventoon voeren.

In 1919 ging hij naar een ‘boarding school’

(St. George’s School te Harpenden ten Noor-

den van Londen). Hij vertelt dat hij daar, toen

hij met een kleine aandoening op de ziekenaf-

deling lag, met zijn buurman John Petrie (zoon

van de egyptoloog Sir Matthew Flinders Pe-

trie) aan de praat kwam over regelmatige li-

chamen (de vijf platonische lichamen), die ze

in hun meetkundeboek ontdekt hadden. Do-

nald kreeg de ingeving dat zulke lichamen ook

in vier dimensies zouden moeten bestaan en

John kon een paar dagen later een realistisch

model van zoiets tekenen, waardoor zij de ex-

tra dimensie konden zien. Toen wist Donald

dat wiskunde, en meetkunde in het bijzon-

der, zijn toekomst moest zijn. Hij was toen

veertien jaar.

Coxeter senior vond dat de school zijn

zoon niet voldoende uitdaging bood en bracht

Donald in contact met wiskundigen. Hij kreeg

het advies zich via privé-onderwijs voor te be-

reiden op een studie in Cambridge, en dat

gebeurde. In 1926 won hij een studiebeurs

van Trinity College. Hij kwam er in contact

met coryfeeën als G.H. Hardy, J.E. Littlewood

(zijn ‘director of studies’), L. Wittgenstein. De

Ph.D.-graad behaalde hij in 1931, zijn supervi-

sor was de meetkundige H.F. Baker. Het proef-

schrift gaat — uiteraard — over meerdimensi-

onale regelmatige lichamen.

In de entourage van Baker leerde de jon-

ge Coxeter de groepentheorie kennen, die de

wiskundige aanpak belichaamt van meetkun-

dige symmetrieën. De negentiende-eeuwse

wiskundigen hadden ingezien dat de symme-

trieën van de platonische lichamen in interes-

sante twee- en driedimensionale groepen van

lineaire transformaties georganiseerd zijn.

Coxeter begreep dat zijn meerdimensionale

regelmatige lichamen samenhangen met inte-

ressante meerdimensionale lineaire groepen

en hij begon omstreeks 1930 over die groepen

na te denken.

Tot 1936 was hij ‘research fellow’ van Tri-

nity College. Hij bracht ook twee academi-

sche jaren (1932–1933 en 1934–1935) door in

Princeton in de Verenigde Staten. Daar leerde

hij veel van O. Veblen en hij maakte kennis

met latere prominenten van zijn generatie als

R. Brauer en N. Jacobson. In 1934 publiceerde

hij de resultaten van zijn groepentheoretisch

werk: de classificatie van ‘kaleidoscopen’

of spiegelingsgroepen, dat wil zeggen groe-

pen van reële lineaire transformaties voortge-

bracht door spiegelingen. In dat fundamente-

le artikel vindt men ook de diagrammen die

deze groepen beschrijven (thans Coxeterdia-

grammen of Coxeter-Dynkindiagrammen ge-

noemd). Hij gaf een exposé van zijn resulta-

ten in de vermaarde ‘notes’ van een college

van H. Weyl over Liegroepen aan het Institute

for Advanced Study in Princeton.

Tegenwoordig komt ieder die in wiskunde

of natuurkunde van doen heeft met continue

symmetrieën (belichaamd in de Liegroepen)

de Coxeterdiagrammen tegen. In genoemd ar-

tikel vindt men ook wat nu het Coxeterelement

wordt genoemd: het product van de voort-

brengers van een spiegelingsgroep.

Een ander artikel uit 1934, dat gaat

over groepen met een presentatie (R2
i =

(RiRj)
kij = 1) als die van de spiegelingsgroe-

pen, is het begin van de theorie van de Coxe-

tergroepen.

In 1936 werd Coxeter een assistant profes-

sorship aangeboden in Canada, aan de Uni-

T.A. Springer Een meetkundekunstenaar NAW 5/5 nr. 1 maart 2004 19

versiteit van Toronto. Op advies van zijn vader,

die de oorlogswolken al zag hangen, en van

G.H. Hardy besloot hij het aanbod aan te ne-

men. Hij is tot zijn dood in Toronto gebleven.

Ook in 1936 trouwde hij met de Nederland-

se Rien (Hendrina) Brouwer, die hij in 1935 in

Engeland ontmoet had bij gemeenschappelij-

ke kennissen. Zij was hem vele jaren een trou-

we steun; zij overleed in 1999. Het echtpaar

had twee kinderen, een zoon en een dochter.

Coxeters academische carrière verliep lang-

zaam, na zeven jaar werd hij associate profes-

sor en pas na twaalf jaar full professor (Coxe-

ter zei dat hij zich voelde als de aartsvader

Jacob, die zeven jaren moest werken voor Lea

en zeven jaren voor Rachel).

Coxeter was een productieve wiskundige;

hij publiceerde ongeveer 200 artikelen. Daar-

naast schreef hij verschillende boeken. Een

standaardwerk is Regular Polytopes (1948,

nieuwe uitgave 1973), waar zijn encyclopedi-

sche kennis blijkt van de literatuur over regel-

matige lichamen. In dat boek komt men ook

Coxeter’s vriend John Petrie tegen als ontdek-

ker van de Petrie-veelhoeken van een regel-

matig lichaam.

In vele talen vertaald is Introduction to

Geometry (1961/1981). De titel van de Duit-

se vertaling Unvergängliche Geometrie geeft

weer wat Coxeter in dat boek voor ogen stond.

Naast boeken over meetkundige onderwer-

pen is er het algebraı̈sch georiënteerde boek

met W.O.J. Moser , Generators and Relations

for Discrete Groups (1957/1980). Coxeter zelf

was het meest gesteld op zijn boek Regu-

lar Complex Polytopes (1974/1991) over re-

De Great grand stellated 120-cell , een van de vele figuren uit het boek Regular Complex Polytopes van Coxeter. Coxeter liet zich graag inspireren door muziek; uit het voorwoord: “This book
has occupied much of my time and attention for nearly twenty years. [. . .] I have made an attempt to construct it like a Bruckner symphony, with crescendos and climaxes, little foretastes
of pleasure to come, and abundant cross-references. The geometric, algebraic and group-theoretic aspects of the subject are interwoven like different sections of the orchestra.”

20 NAW 5/5 nr. 1 maart 2004 Een meetkundekunstenaar T.A. Springer

gelmatige lichamen in een complexe ruimte,

een boek met spectaculaire illustraties. De

bijbehorende symmetriegroepen zijn eindige

groepen van complexe lineaire transforma-

ties, voortgebracht door complexe spiegelin-

gen, een soort gegeneraliseerde Coxetergroe-

pen. De belangstelling ervoor is in de loop van

de jaren steeds meer toegenomen.

Coxeters publicaties zijn zorgvuldig geredi-

geerd en helder geschreven; esthetische as-

pecten waren voor hem belangrijk. Hij was

een inspirerend spreker die altijd iets ver-

rassends bracht. Zijn grote meetkundige in-

tuı̈tie blijkt overal; hij kon meerdimensionale

objecten ‘zien’. De thema’s van Coxeters pu-

blicaties zijn al genoemd: regelmatige licha-

men, meetkundige symmetrieën en de bijbe-

horende groepentheorie, thema’s waarop ve-

le variaties kunnen worden gemaakt, waaraan

hij zelf ook gewerkt heeft. Hier volgen enkele

voorbeelden.

In een artikel uit 1951 worden de (reeds ge-

noemde) Coxeterelementen nader bekeken.

Coxeter vertelt dat de aanleiding was een

voordracht van C. Chevalley over de Bettige-

tallen van compacte Liegroepen. Coxeter her-

kende getallen die hij in zijn Regular Polyto-

pes was tegengekomen. Dit bracht hem ertoe

de eigenwaarden van Coxeter elementen te

bepalen. Die bleken een fraaie wetmatigheid

te vertonen, later door anderen uitvoerig ge-

analyseerd (een voorbeeld van wisselwerking

tussen Coxeters concrete meetkunde en meer

esoterische delen van de wiskunde.)

De icosaëder (het regelmatig twintigvlak)

treft men aan als ruimtelijke configuratie in

sommige virussen. Het optreden van regel-

matige of halfregelmatige lichamen buiten

de wiskunde interesseerde Coxeter zeer. Vice

versa was er bij niet-wiskundigen belangstel-

ling voor zijn werk. De Amerikaanse ontwerper

en architect Buckminster Fuller droeg één van

zijn boeken op aan Coxeter. Fuller maakte in

de jaren ’40 van de vorige eeuw furore met zijn

‘geodesic dome’s’. Daarvan is een belangrijk

constructie-element de ‘buckyball’, een afge-

knotte icosaëder met 60 hoekpunten, 12 re-

gelmatige vijfhoeken en 20 regelmatige zes-

hoeken als zijvlakken, natuurlijk goed bekend

aan Coxeter (Leonardo da Vinci had er overi-

gens al een tekening van gemaakt).

In de jaren ’80 bleken buckyballs op te tre-

den als bouwstenen van moleculen genaamd

fullerenes. Eén ervan is C60, waarvan de mo-

leculen buckyballs zijn met in ieder hoekpunt

een koolstofatoom. C60 heeft zeer bijzonde-

re chemische eigenschappen. De ontdekkers

ervan ontvingen in 1996 de Nobelprijs voor

chemie.

co
p
yr

ig
h
t:

R
.V

.
M

o
o
d
y

Coxeter in Banff, augustus 2001, gedurende een lezing over meetkunde bij Escher.

Coxeter had een speciale relatie met Neder-

land. Hij kwam regelmatig met zijn vrouw op

familiebezoek in Nederland en kreeg contac-

ten met Nederlandse wiskundigen. Er waren

ook andere wiskundige connecties. Coxeter

was vertrouwd met het werk over meerdimen-

sionale regelmatige lichamen van Nederland-

se wiskundigen uit het begin van de twintigste

eeuw (onder anderen E.L. Elte, S.L. van Oss,

P.H. Schoute, W.A. Wythoff). In Nederland zijn

zij wat in het vergeetboek geraakt. Maar hun

werk komt uitvoerig aan de orde in Regular

Polytopes.

Tijdens een bezoek aan Nederland in 1954

nam Coxeter deel aan het vierjaarlijkse Inter-

nationale Wiskundecongres dat toen in Am-

sterdam plaats vond. In het kader van het

congres was er een expositie van het grafi-

sche werk van M.C. Escher, toen buiten Ne-

derland nauwelijks bekend. Coxeter werd er

zeer door geboeid en bezocht Escher in Baarn.

Zij raakten bevriend en Coxeter bracht Escher

in contact met de symmetrieën van het niet-

Euclidische vlak (gevisualiseerd als het in-

wendige van een cirkel). Deze symmetrieën

heeft Escher in zijn latere werk geëxploreerd.

Bijvoorbeeld in zijn houtsnede Cirkellimiet III

uit 1959 (met vissen die naar de rand toe

steeds kleiner worden). Coxeter heeft de tri-

gonometrie die er achter zit geanalyseerd. Hij

was geı̈mponeerd door Eschers intuı̈tieve ge-

voel voor de wiskundige details die Coxeter al-

leen met ingewikkelde trigonometrie kon aan-

pakken. (Coxeter vertelt dat na afloop van een

lezing waarbij Escher ook aanwezig was, deze

hem vertelde dat hij er geen woord van begre-

pen had. . .) Coxeter heeft veel gedaan voor

het bekend maken van Eschers werk buiten

Nederland.

Coxeter overleed plotseling op 96-jarige

leeftijd, op 30 maart 2003. Hoewel zijn mobili-

teit achteruit gegaan was, was zijn geest nog

fris. De meetkunde heeft hem tot het laatst

beziggehouden. k

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT03

The 16 Faces of a Dutch Math Journal

Hans Hagen

153

48 NAW 5/5 nr. 1 maart 2004 GPS and integer estimation Peter Teunissen

Peter Teunissen
Faculteit Civiele Techniek en Geowetenschappen

Technische Universiteit Delft

Postbus 5048

2600 GA Delft

p.j.g.teunissen@citg.tudelft.nl

Vakantiecursus 2003

GPS and integer estimation

Het Global Positioning System (GPS) is een wereldwijd plaatsbepa-

lingssysteem op basis van satellieten. De eerste plannen en ont-

werpen voor het systeem dateren uit de vroege jaren zeventig in de

vorige eeuw; reeds in februari van 1978 werd de eerste GPS-satelliet

gelanceerd. De nominale constellatie omvat 24 satellieten, die elk in

ongeveer 12 uur om de aarde cirkelen. Daardoor kunnen overal ter

wereld, doorgaans minstens vier satellieten tegelijkertijd waargeno-

men worden. Peter Teunissen, hoogleraar mathematische geodesie

en positiebepaling aan de Technische Universiteit Delft verzorgde

in de zomer van 2003 colleges over Global Positioning Systems in

het kader van de, door het CWI georganiseerde, vakantiecursus voor

wiskundeleraren.

The Global Positioning System (GPS) nowadays is used for a

whole variety of positioning and navigation applications. These

applications range from navigating your private sailboat to deter-

mining the millimeter movements of the earth’s tectonic plates.

For the very high-accuracy applications of GPS one needs very

precise range information. These precise ranges for positioning

with GPS are obtained from carrier phase measurements. These

measurements of range inherently contain unknown integer am-

biguities to account for the mismatch of a whole number of wave-

lengths or cycles. This contribution describes the problem of GPS

carrier phase ambiguity resolution, discusses some relevant ele-

ments of integer estimation theory and reviews some of the high

precision positioning applications that come into reach when the

integer carrier phase ambiguities can be resolved quickly and cor-

rectly.

Redundant measurements

As in other physical sciences, empirical data are used in geode-

sy to make inferences so as to describe the physical reality. Ma-

ny such problems involve the determination of a number of un-

known parameters which bear a linear or linearized relationship

to the set of data. In order to be able to check for errors or to re-

duce for the effect these errors have on the final result, the col-

lected data often exceed the minimum necessary for a unique so-

lution (redundant data). As a consequence of measurement uncer-

tainty, redundant data are usually inconsistent in the sense that

each sufficient subset yields different results from another subset.

Hence, redundancy generally leads to an inconsistent system of

linear(ized) equations, say

y ∼= Ax
(1)

where vector y contains the m observations, vector x the n un-

known parameters. The m × n matrix A relates the observations

to the parameters. Redundancy of the above system is defined as

m − rankA, which in case of a full rank matrix simplifies to m − n,

the difference between the number of observations and the num-

ber of unknown parameters.

The above inconsistent system is without additional criteria

not uniquely solvable. The problem of solving an inconsistent sys-

tem of equations has attracted the attention of leading scientists

in the middle of the 18th century. Historically, the first methods

of combining redundant measurements originate from studies in

Peter Teunissen GPS and integer estimation NAW 5/5 nr. 1 maart 2004 49

Figuur 1 Least-squares estimation implies a (n orthogonal) projection of the observation
vector y onto the plane spanned by the columns of matrix A. Example with three observati-
ons and two unknown parameters.

geodesy and astronomy, namely from the problem of determining

the size and shape of the earth, and the problem of finding a ma-

thematical representation of the motions of the Moon. Since its

discovery almost 200 years ago, the method of least-squares has

been and still is too a large extent one of the most popular me-

thods of solving an inconsistent system of equations. Although

the method of least-squares may seem ’natural’ for a student in

modern times, its discovery evolved only slowly from earlier me-

thods of combining redundant observations [1]

GPS positioning basically is determining the location of a

(user) receiver with respect to satellites of which the locations (or-

bits) are known. This determination takes place by measuring dis-

tances, and from a geometric point of view three measurements

would suffice to determine the three coordinates of the user (for-

tunately we know on which side of the satellite configuration the

earth is located). The simplest example of (1) in case of GPS is the-

refore when distances are measured from an unknown GPS re-

ceiver position to more than three GPS satellites of which the po-

sitions are known. Since the distance from the unknown receiver

position r to the known position of satellite s is a nonlinear func-

tion of the unknown position coordinates,

ls
r =

√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 (2)

the common approach is to approximate this relation by a lineari-

zed version, that is, developing the nonlinear relation in a Taylor

series with zeroth and first order terms only, using good approxi-

mate values for the unknown parameters. As a result the (incre-

ments of the) observed distances are collected in vector y, the (in-

crements of the) three unknown coordinates in vector x and the

partial derivatives in matrix A. In reality the equations are far mo-

re complicated than (2) due to the fact that one also has to account

for clock errors, atmospheric delays and orbital errors.

Least-squares

Around 1800 Legendre and Gauss at the same time (most likely

independently), invented the method of least-squares for solving

an inconsistent system of equations. The least-squares solution

to (1) reads

x̂ = (ATQ−1
y A)−1 ATQ−1

y y
(3)

with Q−1
y being the weight matrix. This solution is obtained by

first adding an unknown error vector e to (1), giving the consistent

but undetermined system y = Ax + e, and then minimizing the

weighted norm of e, ‖ e ‖Qy
, as function of x. The least-squares

estimator has various desirable properties. When the positive de-

finite matrix Qy is chosen as the variance-covariance matrix of the

observations, the least-squares estimator has the smallest varian-

ce (best possible precision) of all linear unbiased estimators.

The geometric interpretation of what least-squares does to the

observations is shown in figure 1. The inconsistency between ob-

servations on one hand and model (with unknown parameters)

on the other is removed by orthogonal projection. Vector ŷ = Ax̂

eventually lies in the plane or linear manifold spanned by the

columns of matrix A (indicated by R(A)). The orthogonal pro-

jection realizes shortest distance between the original observation

values y and the adjusted ones ŷ; the observation values are mo-

dified as little as possible, though satisfying the assumed model

afterwards. This follows from interpreting the least-squares esti-

mation principle as the principle of least distance

min
x

‖y − Ax‖2
Qy

.
(4)

The (squared and weighted) distance between y and ŷ = Ax̂ is

minimized.

In order to evaluate the quality of the least-squares solution

in a probabilistic sense, we need the probability density function

(PDF) of x̂. Since x̂ of (3) is a linear function of y, the least-squares

estimator has a Gaussian distribution whenever y is Gaussian dis-

tributed. The PDF of the unbiased least-squares estimator x̂ can

therefore be uniquely characterized by means of the variance-

covariance matrix of x̂. With Qy being the variance-covariance

matrix of the observations, application of the error propagation

law to (3) gives the variance-covariance matrix of the estimated

parameters as

Qx̂ = (ATQ−1
y A)−1 (5)

This matrix can be used to evaluate the precision of the parameter

estimators, as for instance the position coordinates.

GPS carrier phase observable

GPS observations of distance or range are obtained by measuring

signal travel-times (from satellite to receiver) and multiplying the-

se by the speed of light. Two types of distance measurements are

employed: pseudo range code and carrier phase. The code obser-

vation is based on the (binary) code the satellite modulates onto

the signal carrier; the distance can be measured virtually unam-

biguously. For the carrier phase, the receiver measures the diffe-

rence in phase between the carrier wave received from the satelli-

te and the reference carrier wave it generated itself. The (physical)

phase difference reads

ψs
r = φr −φs .

With some simplifying assumptions, the phase of a carrier wave

at some epoch t equals frequency f multiplied by time t: φ = f t.

The receiver compares the reference carrier at time of observati-

on tr with the carrier received from the satellite, which was gene-

rated a little earlier in order to be ‘in time’ at the receiver, namely

at tr − τ s
r , where τ s

r is the signal travel time from satellite to re-

50 NAW 5/5 nr. 1 maart 2004 GPS and integer estimation Peter Teunissen

Figuur 2 A GPS receiver and antenna permanently installed for precisely monitoring mo-
tions of the earth’s crust. Site Ranchita in California in the US. Photo taken from album at
http://www.scign.org/

ceiver.

The above phase difference becomes

ψs
r = fτ s

r ,

and when multiplied by wavelength λ = c
f , λψs

r = cτ s
r = ls

r ,

the distance in meters is obtained; it equals the travel time pre-

multiplied by the speed of light c, exactly as with the code obser-

vation.

Figuur 3 Measurement of phase on the continuous carrier wave transmitted by the satelli-
te. The satellite keeps on transmitting the carrier wave, cycle after identical cycle.

As a consequence of carrying out measurements on a (monoto-

ne) continuous carrier wave, the receiver can not distinguish one

cycle from another. The satellite keeps on transmitting the carrier

wave, in principle cycle after identical cycle, see figure 3.

At some epoch in time the receiver simply starts outputing the

measured fractional difference in phase: frac(ψs
r) ∈ [0, 1〉 cycle.

The full (physical) phase difference is then decomposed into

ψs
r = int(ψs

r)
︸ ︷︷ ︸

Ns
r

+ frac(ψs
r)

︸ ︷︷ ︸

φs
r

.

The observed (fractional) phase difference φs
r (times the wave-

length) does thereby not equal the distance from satellite to re-

ceiver ls
r , but equals this distance apart from an integer number of

wavelengths

λφs
r = ls

r − λNs
r .

As a consequence the vector x in (1) will, next to the unknown

receiver coordinates, now also contain unknown integer cycle am-

biguities Ns
r .

Figuur 4 Least-squares with integer parameters: possible solutions for the vector of obser-
vations form a grid in the column-space of matrix A (A1 and A2 are two columns of ma-
trix A); the solution is no longer allowed to lie anywhere in the plane R(A).

Integer least-squares

The least-squares solution (3) is obtained from solving (4), whe-

re x is allowed to vary over the whole n- dimensional space of

real numbers. In case of GPS however, when use is made of the

carrier phase observations, the vector of unknown parameters x

consists of both real-valued and integer valued parameters (real-

valued coordinates and integer-valued carrier phase ambiguities).

We therefore need to modify the solution (3) so as to take the inte-

gerness of some of the parameters into account. To keep the dis-

cussion simple, it will be assumed here that all parameters in vec-

tor x are integer-valued. Due to the integerness of the parameters,

orthogonal projection of y will now not do the job properly, see

figure 4. Nevertheless one can start with ‘ordinary’ least-squares

as a first step, see figure 5. The solution so obtained for the un-

known parameters will be real-valued and is usually referred to

as the ‘float’ solution.

Figuur 5 Least-squares with integer parameters: the first step consists of ‘ordinary’ least-
squares (orthogonal projection); the solution x̂ for the parameters will consist of real-valued
numbers.

To apply the least-squares principle (4), but now under the con-

dition that the parameters in x are all integers, a second step has

to be carried out. Since the first step projects orthogonally to the

plane R(A), the second step takes place in the plane. From the

orthogonal decomposition

‖y − Ax‖2
Qy

= ‖y − ŷ‖2
Qy

+ ‖ŷ − Ax‖2
Qy

(6)

it follows that the second step amounts to solving the minimiza-

tion problem

min
x

(ŷ − Ax)TQ−1
y (ŷ − Ax) =

min
x

(x̂ − x)T ATQ−1
y A(x̂ − x) = min

x
(x̂ − x)TQ−1

x̂ (x̂ − x)
(7)

Peter Teunissen GPS and integer estimation NAW 5/5 nr. 1 maart 2004 51

for x being integer, where in the last equation (5) has been used.

This minimization can also be visualized in the parameter space,

see figure 6, instead of in the observation space as in figures 1

and 4.

Figuur 6 Least-squares with integer parameters: in the second step the integer solution
for x is sought that is closest to the real-valued solution x̂ of the first step; ‘closest’ is to
be measured in the metric of the variance-covariance matrix Qx̂; the quadratic form (7), set
equal to a constant, is represented by the ellipse in this example with two ambiguities x1
and x2.

The integer least-squares principle has been applied very suc-

cessfully to GPS ambiguity resolution. By the presence of the

variance-covariance matrix Qx̂ in (7), the precision and correla-

tion of the individual real-valued ambiguity estimates is properly

and fully exploited. In contrast to the ‘ordinary’ least-squares so-

lution (3), there does not exist an analytical solution to (7). In prac-

tice a search over possible integer solutions has to be carried out.

The space of integer solutions is restricted by limiting the squared

and weighted distance in (7) to a convenient value. As a result, the

volume of the corresponding ellipse (or hyper-ellipsoid in higher

dimensions) has to be searched through in order to find the inte-

ger least-squares solution of x.

When the ambiguities of the first step are of poor precision and

at the same time highly correlated, the ellipse or ellipsoid gets

very elongated and narrow. As a consequence the discrete search

may get computationally inefficient. For computational efficiency

the quadratic form (7) can be integer transformed, so that the re-

sulting ellipsoid becomes more sphere-like and the transformed

ambiguities become less correlated [2–3].

Alternative integer estimators

Instead of the integer least-squares estimator one can also think

of alternative integer estimators. Starting from the ’float’ solu-

tion, such an estimator x̌ = F(x̂) will consist of a mapping

F : Rn �→ Zn from the n-dimensional space of real numbers to

the n-dimensional space of integers. Due to the discrete nature

of Zn, the map F will not be one-to-one. This implies that diffe-

rent real-valued ambiguity vectors will be mapped to the same

integer vector. One can therefore assign a subset Sz ⊂ Rn to each

integer vector z ∈ Zn:

Sz = {x ∈ Rn | z = F(x)}, z ∈ Zn (8)

The subset Sz contains all real-valued ambiguity vectors that will

be mapped by F to the same integer vector z ∈ Zn. This subset is

referred to as the pull-in-region of z. It is the region in which all am-

biguity ’float’ solutions are pulled to the same ’fixed’ ambiguity

vector z.

Since the pull-in-regions define the integer estimator comple-

tely, one can define classes of integer estimators by imposing va-

rious conditions on the pull-in-regions. One such class is given as

follows [4].

An integer estimator is said to be admissible if

(i)
⋃

z∈Zn

Sz = Rn

(ii)Sz1

⋂

Sz2 = {0}, ∀z1 , z2 ∈ Zn , z1 	= z2

(iii)Sz = z + S0 , ∀z ∈ Zn

(9)

This definition is motivated as follows. Each one of the above

three conditions describe a property of which it seems reasonable

that it is possessed by an arbitrary integer ambiguity estimator.

The first condition states that the pull-in-regions should not lea-

ve any gaps and the second that they should not overlap. The

absence of gaps is needed in order to be able to map any ’float’

solution x̂ ∈ Rn to Zn, while the absence of overlaps is needed

to guarantee that the ’float’ solution is mapped to just one integer

vector. Note that the pull-in-regions are allowed to have common

boundaries. This is permitted if we assume to have zero probabi-

lity that x̂ lies on one of the boundaries. This will be the case when

the probability density function (PDF) of x̂ is continuous.

Figuur 7 Two-dimensional pull-in regions of rounding, bootstrapping and integer least-
squares.

The third and last condition follows from the requirement that

F(x + z) = F(x) + z, ∀x ∈ Rn , z ∈ Zn. Also this condition is a

reasonable one to ask for. It states that when the ’float’ solution is

perturbed by z ∈ Zn, the corresponding integer solution is pertur-

bed by the same amount. This property allows one to apply the

integer remove-restore technique: F(x̂ − z) + z = F(x̂). It therefore

allows one to work with the fractional parts of the entries of x̂,

instead of with its complete entries.

There exist various admissible integer estimators. The sim-

plest integer map is the one that corresponds to integer roun-

ding. In this case the integer vector is obtained from a rounding

of each of the entries of x̂ to its nearest integer. Since component-

wise rounding implies that each real-valued ambiguity estimate

x̂i , i = 1, . . . , n, is mapped to its nearest integer, the absolute va-

lue of the difference between the two is at most 1
2 . The subsets

SR,z that belong to this integer estimator are therefore given as

SR,z =
n⋂

i=1

{

x̂ ∈ Rn | | x̂i − zi | ≤
1

2

}

, ∀z ∈ Zn (10)

The subset SR,z is an n-dimensional cube, with sides of length 1

and centered at the grid point z.

TUT03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

154 The 16 Faces of a Dutch Math Journal

Hans Hagen

2 NAW 5/5 nr. 1 maart 2004 Colofon

Colofon
Het Nieuw Archief voor Wiskunde is een uitgave

van het Koninklijk Wiskundig Genootschap en ver-

schijnt vier maal per jaar. Het tijdschrift richt zich

op een ieder die zich beroepsmatig met wiskunde

bezighoudt, als academisch of industrieel onder-

zoeker, student, leraar, journalist of beleidsmaker.

Het stelt zich ten doel te berichten over ontwikke-

lingen in de wiskunde in het algemeen en in de

Nederlandse wiskunde in het bijzonder.

ISSN 0028-9825

Adres

Nieuw Archief voor Wiskunde

Mathematisch Instituut, Universiteit Leiden

Postbus 9512, 2300 RA Leiden

tel. 071-5277121, fax 071-5277101

http://www.nieuwarchief.nl

Hoofdredactie

Jaap Top (top@math.rug.nl)

Eindredactie

Derk Pik (drpik@math.leidenuniv.nl)

Bladmanager/Advertenties

Reinie Erné (erne@math.leidenuniv.nl)

Mathematisch Instituut, Universiteit Leiden

Postbus 9512, 2300 RA Leiden

tel. 071-5277121, fax 071-5277101

Redactie

Gerard Alberts (g.alberts@wens.kun.nl)

Rainer Kaenders (r.kaenders@ils.kun.nl)

Hans Melissen (j.b.m.melissen@its.tudelft.nl)

Jaap Molenaar (j.molenaar1@tue.nl)

Bureauredactie

Jos Brakenhoff (naw@math.leidenuniv.nl)

Annelies Hafkenscheid (naw@math.leidenuniv.nl)

Medewerkers

Danny Beckers (KUN), Wieb Bosma (KUN), J.A.W.

van Casteren (Univ. Antwerpen), Jan van de Craats

(KMA), Hans Cuypers (TUE), Robbert Fokkink

(TUD), Michael van Hartskamp, Geertje Hek (UVA),

Teun Koetsier (VU), Joop Kolk (UU), Ger Koole (VU),

Pieter Moree (UVA), Jan van Neerven (TUD), Mark

Peletier (CWI), Hans Sterk (TUE), Chris Zaal (F I)

TEX-ondersteuning

Marko Boon (marko@win.tue.nl)

Klaas Pieter Hart (k.p.hart@ewi.tudelft.nl)

Abonnee-administratie/Subscription manager

Mirjam Worst (admin@wiskgenoot.nl)

Uitgeverij Ten Brink, Postbus 41, 7940 AA Meppel

tel. 0522-855175, fax 0522-855176

Abonnementsperiode/Subscription period

Een abonnement gaat in op de dag dat uw aan-

melding ontvangen wordt. De opzegtermijn is

twee maanden vóór het verstrijken van de abon-

nementsperiode. / The subscription starts on the

day that your application is received. The term of

notice is two months before the end of the current

subscription period.

Exchange subscriptions

Koninklijk Wiskundig Genootschap Library

Centrum voor Wiskunde en Informatica

Postbus 94079, NL-1090 GB Amsterdam

Vormgeving

Kitty Molenaar (ontwerp)

Susanne Laws (omslag, begeleiding binnenwerk)

Illustraties

Ryu Tajiri, Amsterdam

Programmatuur (CONTEXT)

Hans Hagen, PRAGMA-ADE, Hasselt (Overijssel)

Druk

Giethoorn ten Brink, Meppel

Koninklijk Wiskundig Genootschap
Het Koninklijk Wiskundig Genootschap (KWG)

is een landelijke vereniging van beoefenaren

van de wiskunde. Het genootschap werd

in 1778 opgericht onder de zinspreuk: “Een

onvermoeide arbeid komt alles te boven”.

Het is ’s werelds oudste nationale wiskun-

degenootschap. Leden van het KWG ontvan-

gen het Nieuw Archief voor Wiskunde als on-

derdeel van hun lidmaatschap.

De contributie voor leden van het KWG bedraagt

D 70 per jaar. Gepensioneerden betalen D 35.

Studenten ingeschreven aan een Nederlandse

universiteit of hbo-opleiding, aio’s en oio’s

kunnen lid worden voor D 25 per jaar.

Pas afgestudeerden kunnen een jaar lang

gratis lid worden van het KWG.

Voor leden van de wiskundige vakverenigin-

gen VVS, NVvW en NVORWO geldt het gere-

duceerd tarief van D 50.

Members of the Société Mathématique de

France, the Gesellschaft für Angewandte Ma-

thematik und Mechanik, the Deutsche Mathe-

matiker-Vereinigung, and of the American,

Australian, Belgian, Indian, London, and

South-African Mathematical Societies living

outside of the Netherlands pay D 50 instead

of the full membership fee of D 70 a year. Con-

versely, these foreign societies, as well as the

VVS and the NVORWO, have reduced member-

ship fees for KWG-members.

A postage charge of D 5 is added for members

living abroad but in Europe, and a charge of D

7,50 for members living outside of Europe.

Instituten in Nederland en buitenland kun-

nen zich abonneren op het Nieuw Archief voor

Wiskunde voor D 90 respectievelijk D 105.

Internetpagina: http://www.wiskgenoot.nl

Ledenadministratie

Mirjam Worst (admin@wiskgenoot.nl)

Uitgeverij Ten Brink

Postbus 41, 7940 AA Meppel

tel. 0522-855175, fax 0522-855176

Bestuur (wiskgenoot@wiskgenoot.nl)

Eduard Looijenga (UU, voorzitter), Herman te

Riele (CWI, secretaris), Fieke Dekkers (UU,

penningmeester), Geertje Hek (UvA), Metha

Kamminga (NHL), Annette Kik (CWI), Vivi Rott-

schäfer (UL), Michel Vellekoop (UT).

Informatie voor auteurs

Kopij

Het Nieuw Archief voor Wiskunde is een geredi-

geerd tijdschrift. Kopij dient electronisch te wor-

den aangeboden aan de hoofdredacteur Jaap Top

(top@math.rug.nl). Uitgebreide informatie en au-

teursinstructies kunt u vinden op internetpagina:

http://www.math.leidenuniv.nl/˜naw

Reprints

Auteurs ontvangen een elektronische reprint in

pdf-formaat.

Volgende nummers

nummer verschijningsdatum uiterste inlever-

datum kopij

2 18-06-2004 24-02-2004

3 03-09-2004 11-05-2004

4 03-12-2004 10-08-2004

1 04-03-2005 10-11-2004

Instituutsleden
De publicaties van het Koninklijk Wiskundig

Genootschap worden mede mogelijk gemaakt

door de bijdragen van de volgende instituten en

instellingen.

Centrum voor Wiskunde

en Informatica

Rijksuniversiteit Groningen

Universiteit van Amsterdam

Universiteit Leiden

Vrije Universiteit

Universiteit Utrecht

Technische Universiteit

Eindhoven

Eurandom

Technische Universiteit Delft

Universiteit Twente

Katholieke Universiteit

Nijmegen

Op het omslag
Brief van Grothendieck aan Serre van 2 april 1984.

Zie bladzijde 42 voor een recensie van de onlangs

in het Engels vertaalde correspondentie.

4 NAW 5/5 nr. 1 maart 2004 Agenda

A
g
e
n

d
a

|
U

p
co

m
in

g
E
v
e
n

ts

Gelieve gegevens voor deze agenda door te geven aan

onderstaand adres.

Please submit items for this calendar to the following

address.

Nieuw Archief voor Wiskunde,

Mathematisch Instituut, Universiteit Leiden,

Postbus 9512, 2300 RA Leiden.

Email: naw@math.leidenuniv.nl

maart 2004

8–12 maart

❑ Buildings and Groups of Lie-Type

Minisymposium over semi-simpele Liegroepen

vanuit combinatorisch perspectief. Docent: Bern-

hard Mühlherr (Université Libre de Bruxelles).

plaats Technische Universiteit Eindhoven

info www.win.tue.nl/math/eidma

15–19 maart

❑ Mathematics with Industry

48ste Europese Studiegroep. Bedrijven leveren

problemen aan die wiskundigen proberen op te

lossen.

plaats Technische Universiteit Delft

info ta.twi.tudelft.nl/swi

19 maart

❑ Kangoeroe

Wedstrijd voor middelbare scholieren en voor leer-

lingen van groep 7 en 8 van de basisschool.

info www.math.kun.nl/kangoeroe

23 maart

❑ Johan Bernoulli lezing

Prof.dr.ir Bart de Moor (Katholieke Universiteit

Leuven) verzorgt de Bernoulli lezing met titel Sys-

tems biology: a new mathematical frontier

plaats Aula Academiegebouw, Rijksuniversiteit

Groningen

25–26 maart

❑ Nationale rekendagen

Conferentie, gewijd aan het rekenonderwijs.

plaats De Leeuwenhorst, Noordwijkerhout

info www.fi.uu.nl/rekenweb/rekendagen

26 maart – 26 september

❑ Goochelen met getallen

Expositie over de plaats en historie van getallen in

de samenleving.

plaats Museum Boerhaave, Leiden

info www.museumboerhaave.nl

29 maart – 4 april

❑Workshop Conformal Invariance, Scaling limits

and Percolation

Organisatoren: Nina Gantert, Remco van der Hof-

stad

plaats Eurandom

info www.eurandom.tue.nl

april 2004

16–17 april

❑ Nederlands-Belgisch Mathematisch Congres

Gastsprekers: Neil Sloane (AT&T), Bernard de

Baets (Universiteit Gent) en Stef Tijs (Universi-

teit van Tilburg), Manjul Bhargava (Princeton Uni-

versity).

plaats Universiteit van Tilburg

info www.uvt.nl/nmc2004

20–29 april

❑ Continuous and Discrete Random Spatial Pro-

cesses

Organisatoren: J. van den Berg (CWI), B. Nienhuis

(UvA).

plaats Lorentz Center, Leiden

info www.lc.leidenuniv.nl

21 april

❑ Koksma symposium

Symposium naar aanleiding van de honderdste

geboortedag van J.F. Koksma.

plaats Vrije Universiteit Amsterdam

info maryke@few.vu.nl

mei 2004

10–14 mei

❑ Approximation Algorithms and Games on Net-

works

Minicursus op de doorsnede van de vakgebieden

algoritme-ontwerpen en speltheorie door prof. Éva

Tardos (Cornell University, USA).

plaats Technische Universiteit Eindhoven

info www.win.tue.nl/math/eidma

Agenda NAW 5/5 nr. 1 maart 2004 5

15 mei

❑ Symposium X Historische kring reken- en wis-

kunde onderwijs

Organisatie: Freudenthalinstituut.

plaats Hogeschool Domstad, Utrecht

info www.fi.uu.nl/nl/indexagenda.html

28 mei

❑ Panama voorjaardag

Panama voorjaardag en NVORW-jaarvergadering.

plaats De Uithof, Utrecht

info www.fi.uu.nl/panama/voorjaarsdag

juni 2004

3–25 juni

❑ Lie groups in Analysis, Geometry and Mecha-

nics

MRI Spring School 2004, AiO-cursus van drie

weken. Sprekers: J.J. Duistermaat, J.A.C. Kolk,

R.H. Cushman, G.J. Heckman, E.P. van den Ban.

plaats Universiteit Utrecht

info www-mri.sci.kun.nl

9–11 juni

❑ Onderwijs Research Dagen 2004

plaats Universiteit Utrecht

info www.fi.uu.nl/nl/indexagenda.html

14–18 juni

❑ Moda 7

Conferentie over het ontwerpen van statistische

experimenten.

plaats Kapellerput, Heeze

info www.eurandom.tue.nl

21–25 juni

❑ 13th European Conference for Mathematics in

Industry

Internationale conferentie over wiskundig model-

leren van industriële processen.

plaats Technische Universiteit Eindhoven

info www.ecmi2004.tue.nl

23–25 juni

❑ Workshop HPOPT 2004

Internationale workshop over High Performan-

ce Optimization Techniques met thema: Optimi-

zation and Polynomials.

plaats CWI, Amsterdam

info www.cwi.nl/˜monique/hpopt2004

30 juni

❑ MSOM Multi-Echelon Inventory Conference

plaats Eindhoven

info www.tm.tue.nl/opc/msom2004

juli 2004

1–2 juli

❑ MSOM 2004 Conference

plaats Eindhoven

info www.tm.tue.nl/opc/msom2004

4–11 juli

❑ ICME-10

10th International Congress on Mathematical Edu-

cation

plaats Kopenhagen, Denemarken

info www.icme-10.dk

6–18 juli

❑ Internationale Wiskunde Olympiade

De 45ste versie van het grootste internationale

wiskundetoernooi voor middelbare scholieren.

plaats Athene, Griekenland

info olympiads.win.tue.nl/imo/index.html

augustus — oktober 2004

15–19 augustus

❑ International Society for Clinical Biostatistics

2004

Internationale conferentie georganiseerd door de

afdeling Medische Statisiek van de Leiden Univer-

sity Medical Centre (LUMC).

plaats Leiden

info iscb2004.clinicalresearch.nl

23–26 augustus

❑ Harmonic Analysis and Homogeneous Spaces

Workshop, gewijd aan harmonische analyse en

haar toepassingen in de mathematische fysi-

ca, niet-communicatieve meetkunde en getallen-

theorie.

plaats Lorentz Center, Universiteit Leiden

info www.lc.leidenuniv.nl

27 augustus

❑ Special day in honour of Gerrit van Dijk

Special day in honour of Gerrit van Dijk on the

occasion of his 65th birthday.

plaats Universiteit Leiden

info harmonic@math.leidenuniv.nl

30 augustus–3 september

❑ Workshop Algebraic Cycles and Motives

Organisatoren: S.J. Edixhoven, J. Nagel, C. Peters.

plaats Lorentz Center, Universiteit Leiden

info www.lc.leidenuniv.nl

6–8 oktober

❑ Woudschoten-conferentie

De 29-ste conferentie van de Nederlands-Vlaamse

Numerieke Wiskunde Gemeenschappen. Thema’s

van deze conferentie zijn Computational electro-

magnetics en Geometrische integratie voor ODEs

en PDEs.

plaats Conferentiecentrum Woudschoten, Zeist

info www.cwi.nl/projects/wnw/conf2004

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT03

The 16 Faces of a Dutch Math Journal

Hans Hagen

155

6 NAW 5/5 nr. 1 maart 2004 Nieuws

N
ie

u
w

s |
N

e
w

s

Deze rubriek is een kroniek van wiskundige activiteiten in Nederland.

Toekomstige activiteiten worden aangekondigd en van voorbije activiteiten wordt

verslag gedaan.

Wilt u uw aankondiging of verslag in deze rubriek geplaatst zien?

Stuur dan uw bijdrage (± 350 woorden, zo mogelijk met illustratie) naar

naw@math.leidenuniv.nl. De redactie behoudt zich het recht voor berichten

te weigeren of in te korten.

Nederlands-Belgisch Mathematisch Congres

Het Koninklijk Wiskundig Genootschap en het Belgisch Wiskundig Ge-

nootschap houden dit jaar een gezamenlijk congres. Het congres vindt

plaats op vrijdag 16 en zaterdag 17 april 2004 aan de Universiteit van

Tilburg.

Er zijn drie hoofdvoordrachten. Stef Tijs (Universiteit van Tilburg)

geeft een voordracht over Nash-evenwichten, Bernard De Baets (Uni-

versiteit van Gent) spreekt over vage verzamelingen en Neil Slaone (AT&

T) over zijn ‘On-Line Encyclopedia of Integer Sequences’. Verder is er de

tweejaarlijkse Beeger lezing (getaltheorie) door Manjul Bhargava (Prin-

ceton University), een speciale voordracht over gokken in het casino

door Ben van der Genugten (Universiteit van Tilburg) en een interac-

tieve veilingles (met een echte veiling) door Casper de Vries (Erasmus

Universiteit Rotterdam). Daarnaast zijn er vijftien minisymposia, korte

presentaties van promovendi en aangemelde voordrachten.

Voor het eerst is zaterdag een congresdag. De organisatie verwacht

dat dit interessant kan zijn voor hbo- en vwo-docenten. Het programma

houdt hiermee rekening en er is een speciaal tarief voor deelname op

zaterdag.

Voor informatie, zie http://www.uvt.nl/nmc2004 Willem Haemers

Veertigste Mersenne-priemgetal gevonden

Het GIMPS-project (Great Internet Mersenne Prime Search) heeft op op

2 december 2003 aangekondigd dat Michael Shafer (werkzaam op de

Michigan State University) het veertigste Mersenne-priemgetal

2
20996011 − 1

gevonden heeft. Het getal bestaat uit meer dan zes miljoen cijfers en

slaat daarmee het vorige record 213466917 − 1, dat gevonden werd op

14 november 2001 en iets meer dan vier miljoen cijfers telde.

Het GIMPS-project wordt op dit moment gedragen in een wereld-

wijd virtueel netwerk van ongeveer 211.000 computers. Mersenne-

priemgetallen zijn genoemd naar Marin Mersenne, een Franse geeste-

lijke, die zo’n driehonderd jaar geleden als eerste getallen van het type

2p−1 bestudeerde. (In die laatste formule is ook p, de exponent van 2,

een priemgetal.) Bij het GIMPS-project wordt gebruik gemaakt van soft-

ware ontwikkeld door George Woltman en Scott Kurowski, draaiend op

’gewone’ PC’s.

Informatie: www.mersenne.org/20996011.htm Dick Klingens

Koksma Symposium

Op woensdag 21 april 2004 vindt op de Vrije Universiteit voor een breed

publiek een symposium plaats naar aanleiding van de honderdste ge-

boortedag van J. F. Koksma (1904-1964), voornaamste grondlegger van

de beoefening van de wiskunde aan de VU. Koksma promoveerde op

4 juni 1930 bij Van der Corput in Groningen. Op 10 oktober van hetzelf-

de jaar werd hij gewoon hoogleraar aan de VU. Voor de VU, die zich

als universiteit waar moest maken, was Koksma een gouden greep. Hij

was een goed wiskundige, die onder meer met Erdős samenwerkte.

Zijn hoofdwerk is Diophantische Approximationen uit 1936. Koksma

was ook een doortastend netwerker, die binnen het Mathematische

Centrum en bij de organisatie van het Internationale Mathematische

Congres in Amsterdam een grote rol speelde. En hij gaf ook nog uitste-

kend college, daarbij het contact met zijn gehoor voortdurend handha-

vend. “U zit toch nog wel in de diligence, meneer Kok”, sprak hij ooit,

Nieuws NAW 5/5 nr. 1 maart 2004 7

toen student Kok glazig begon te kijken.

Op het symposium zal ook het eerste exemplaar van het boek Wor-

steling naar waarheid van H. Blauwendraat worden gepresenteerd.

Dit boek beschrijft de geschiedenis van het wiskunde- en informatica-

onderwijs en -onderzoek aan de de Vrije Universiteit.

Aan het symposium werken onder meer mee: Hendrik Blauwen-

draat, Gerard Alberts, Rob Tijdeman en Cor Baaijen. Aanvang: 14.30 uur.

Plaats: zaal D107, Gebouw voor Natuurwetenschappen.

Inlichtingen: T.Koetsier@few.vu.nl Teun Koetsier

Omdat de Leidse universiteit was gesloten, promoveerde N.G. de Bruijn (midden voor)in
1943 niet bij Kloosterman (rechts zittend), maar aan de VU bij Koksma (derde van links
op de eerste rij, naast Bottema).

Nieuwe opzet tweede fase gepubliceerd en bijgesteld

Donderdag 4 december heeft minister Van der Hoeven de eind oktober

toegezegde nieuwe opzet voor de profielen in havo/vwo aan de Tweede

Kamer gezonden. Globaal is de opzet drie verplichte vakken per profiel,

één vak te kiezen uit een beperkt cluster en één keuzevak in het vrije

deel.

Op 4 februari 2004 zijn de schema’s met de invulling van het havo

en het vwo bijgesteld na het overleg van de minister met de vaste

commissie voor onderwijs van de tweede kamer. Het is opvallend dat

het vak natuurkunde niet langer verplicht is bij het profiel Natuur en

Gezondheid.

Voor het downloaden van de brief van de minister en voor een schema

van de aanpassing, zie: www.tweedefase-loket.nl/downloaden/index.

php Gerard Koolstra

Nieuwe profielen voor havo en vwo zijn een ramp

De rectores van de drie technische universiteiten J. Fokkema,

R. van Santen en F. van Vught waarschuwen in een brief in de NRC

voor de gevolgen van het nieuwste plan van minister Verhoeven. Enige

citaten:

“Begin december heeft minister Van der Hoeven haar nieuwste plan

gepresenteerd voor aanpassing van de profielen in de Tweede Fase van

het voortgezet onderwijs (de klassen 4 en 5 van het havo en de klassen

4, 5 en 6 van het vwo). Alleen al het feit dat dit de derde keer was in

2003 dat de minister met een plan kwam, illustreert hoe complex deze

profielenkwestie is. En hoe omstreden. Want zowel na de lancering van

het eerste plan, in januari 2003, als na de bijstelling van juli waren de

bezwaren niet van de lucht.

De minister roept het beeld op dat de bètavakken moeilijk en weinig

aantrekkelijk zijn en dat het allemaal wel wat minder mag. De twee

natuurprofielen Natuur en Gezondheid (N en G) en Natuur en Techniek

(N en T) worden een stuk lichter, er wordt, met name in het vwo, minder

wiskunde, algemene natuurwetenschappen en natuurkunde gegeven,

terwijl natuurkunde ook nog eens verdwijnt als verplicht vak uit het

N en G-profiel.

De technische universiteiten zijn tegenstander van een verlichting

van de bètacomponent in de twee natuurprofielen N en G en N en T.

Zo’n verlichting staat op gespannen voet met de voorbereiding die het

vwo moet bieden op een vervolgstudie, bijvoorbeeld aan een van de

drie technische universiteiten.

De beide natuurprofielen zijn niet robuust genoeg en bereiden

onvoldoende voor op bijvoorbeeld een technische vervolgstudie. Elk

van de beide natuurprofielen moet vier verplichte, echte bètavakken

kennen. Alleen zo is er voldoende ruimte om het vwo (voorberei-

dend wetenschappelijk onderwijs) inderdaad te laten voorbereiden

op een universitaire vervolgstudie met als doelen: voldoende diep-

gang, ruimte voor vernieuwing, ruimte om aansprekende contexten

uit natuur, wetenschap en techniek aan te reiken en ruimte voor in-

terdisciplinaire ontwikkelingen op de snijvlakken van de klassieke

bètavakken.” bron: NRC Handelsblad, 3 februari

Wiskundig onderzoek leidt tot nieuw muziekinstrument

Twee Canadese wiskundigen, Samuel Gaudet en Claude Gauthier heb-

ben een nieuw muziekinstrument ontwikkeld — de tritare.

Tijdens hun onderzoek op het gebied van getaltheorie stuitten ze op

een verzameling getallen met symmetrieën die mogelijkheden leken te

hebben in de electronica, en uiteindelijk was een nieuw instrument het

resultaat. Het heeft de vorm van een (omgekeerde) Y en heeft zes net-

werken van snaren, die een hele serie geluiden kunnen voortbrengen,

variërend van snaargetokkel tot het luiden van kerkklokken.

Voor meer informatie, zie www.radio-canada.ca/regions/atlantique

/tele/Chroniques/tritare 12371.shtml Gerard Koolstra

Bedrijfswiskunde positief beoordeeld

De opleidingen bedrijfswiskunde van de Nederlandse hogescho-

len leveren waardevolle krachten voor het bedrijfsleven en (semi-)-

overheidsinstellingen af. Dit concludeert de onafhankelijke visitatie-

commissie die, onder voorzitterschap van prof.dr. J. van de Craats, in

2003 vier hbo-opleidingen bedrijfswiskunde voor de eerste keer op

hun kwaliteit heeft beoordeeld. De bevindingen zijn vastgelegd in het

in december 2003 gepubliceerde visitatierapport Analyse en Inzicht.

Het beroep van bedrijfswiskundige is nieuw en nog tamelijk onbekend.

Het overgrote deel van de hbo-studenten in de bedrijfswiskunde is min

of meer toevallig ’tegen de opleiding aangelopen’. Er blijkt dus geen

effectief wervingsbeleid gevoerd te worden. Het volledige visitatierap-

port is te downloaden via de site van de hbo-raad onder publicaties,

(sub)thema kwaliteitszorg.

Zie de website www.hbo-raad.nl Metha Kamminga

8 NAW 5/5 nr. 1 maart 2004 Nieuws

Sneeuwbal binnenstebuiten

Een prachtig — maar vergankelijk — voorbeeld van wiskundige kunst

wordt gevormd door een vier meter hoog beeld van sneeuw dat voor-

stelt hoe een bol volgens de topologische regels der kunst binnenste-

buiten kan worden gekeerd. Dat dit mogelijk is werd pas in 1959 be-

wezen (door Stephen Smale) en concrete ideeën over hoe dit gevisua-

liseerd kon worden stammen uit de jaren zeventig van de vorige eeuw.

Een team onder leiding van de wiskundige Stan Wagon (Macalester

College in St. Paul, Minnesota- VS) heeft vorige maand tijdens het

14th International Snow Sculpture Championship (Breckenridge, VS)

het binnenstebuiten keren letterlijk in beeld gebracht. De creatie kreeg

een eervolle vermelding als ‘meest ambitieus beeldhouwwerk’.

Zie www.sciencenews.org/20040207/mathtrek.asp Gerard Koolstra

Wintersymposium Wiskunde en muziek

Tweehonderd belangstellenden kwamen af op het wintersymposium

van het Koninklijk Wiskundig Genootschap met het thema Wiskunde

en Muziek, dat plaatsvond in de Aula van het Academiegebouw van de

Universiteit Utrecht. Door de grote toeloop moest organisator Metha

Kamminga de dag een kwartier later dan gepland openen.

Er werden drie plenaire lezingen gegeven. De eerste lezing over

boventonen werd verzorgd door Jan van de Craats en was een groot

succes. Hij illustreerde zijn lezing met experimenten aan de vleugel. De

tweede lezing werd verzorgd door sonoloog Rutger Teunissen die een

digitale presentatie hield over signaalbewerking. Ook dit onderwerp

werd uitstekend gevisualiseerd met behulp van computerbeelden met

bijpassende geluidsweergave.

Na de lunchpauze was het de beurt aan Henkjan Honing die

over zijn onderzoek naar de persoonlijke perceptie van het feno-

meen ritme in de muziek vertelde. Dit ging op geanimeerde wij-

ze met vele vragen aan het publiek, zoals:“Kunt u dit ritme klap-

pen?” Als laatste maakte Loek Dikker, componist van filmmuziek,

een aantal improvisaties gebaseerd op verschillende groepen boven-

tonen. Het was een zeer interessante en uitstekend verzorgde dag.

bron: webserv.nhl.nl/˜kamminga/wintersymposium/verslagwintersymp04.html

Wiskundeonderwijs webwijzer

Tijdens de Nationale Wiskunde Dagen te Noordwijkerhout is een

nieuwe website ten doop gehouden. Deze ‘wiskundeonderwijs-

webwijzer’ is het initiatief van de samenwerkende niet-commerciële

wiskundeonderwijs-websites in Nederland, waaronder die van het

Freudenthal Insituut, het APS, de Ned. Vereniging van Wiskundelera-

ren, het Koninklijk Wiskundig Genootschap, de Digitale School, WisBa-

se, Pythagoras, Vierkant voor Wiskunde en Kennislink. De bedoeling is

om onder andere door overzichten per onderwerp en zoekmogelijkhe-

den op meerdere websites tegelijk, de steeds groeiende hoeveelheid

informatie en bruikbaar materiaal toegankelijker te maken, met name

voor leerlingen en docenten.

Internetadres: www.wiskundeonderwijs.nl Gerard Koolstra

Nieuw rekenonderwijs voor ouders onbegrijpelijk

In het februarinummer van het blad J/M, dat zich richt op ouders van

opgroeiende kinderen, wordt aandacht besteed aan het veranderde

rekenonderwijs op de basisschool. Verschillende deskundigen komen

aan het woord over onderwerpen als vermenigvuldiging van breuken

(citaat:“Welke leerling wist nu precies wat hij deed als hij twee breuken

vermenigvuldigde? Bijna niemand toch?”), het verdwijnen van staart-

delingen en het zogenaamde realistische reken- en wiskundeonder-

wijs.

Afgezien van het ontbreken van kritische distantie bij de

geı̈nterviewde deskundigen geeft het artikel een helder overzicht van

de huidige stand van zaken op de basisschool. Derk Pik

Expositie Museum Boerhaave in Leiden

Museum Boerhaave te Leiden exposeert van 26 maart tot en met

26 september demonstratiespellen en historische voorwerpen onder

het thema Goochelen met getallen. Er zijn meerdere thema’s: getal-

len in de natuur, inhoud- en lengtematen, getallen in de astronomie,

landmeetkunde en zeevaartkunde, mechanica en statistiek.

Onder de historische voorwerpen bevinden zich de differentiema-

chine van Babbage uit 1830, oude rekenlinialen, rekenschijven en re-

kencylinders, schoolboekjes , land- en zeekaarten, oude rekenmachi-

nes, planetaria, staatsloten en een Babylonisch kleitablet van 2000 jaar

voor Christus. bron: www.museumboerhaave.nl

Planetarium (1794) George Adams, Londen

Bessensap

Het evenement Bessensap, dat op dinsdag 18 mei plaats zal vinden in

het Amsterdamse NEMO, brengt journalisten, redacteuren, voorlichters

en mediagenieke onderzoekers bij elkaar onder het motto: wetenschap

ontmoet pers, pers ontmoet wetenschap. Bessensap is inmiddels uit-

gegroeid tot een sfeervolle en interactieve gebeurtenis in de niche van

wetenschap, media en samenleving. NWO verwacht veel publiciteit op

en rond deze dag.

Ook mag tijdens Bessensap een aantal onderzoekers zich met

actueel en journalistiek spannend onderzoek presenteren aan

de media. Doel is om via heldere, krachtige en voor journalis-

ten prikkelende presentaties steeds het laatste nieuws te belich-

ten. Bron: e-mailcirculaire NWO

TUT03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

156 The 16 Faces of a Dutch Math Journal

Hans Hagen

72 NAW 5/5 nr. 1 maart 2004 Boekbesprekingen

B
o
e
k
b
e
sp

re
k
in

g
e
n

|
B

o
o
k

R
e
v
ie

w
s

Alle in de vijfde serie van het NAW verschenen

boekbesprekingen zijn te vinden op onze web-

pagina.

Tevens staat daar een lijst met ter recensie

aangeboden congresverslagen en eventueel an-

dere boeken.

Indien u er prijs op stelt een van deze

verslagen te bespreken, meld dit dan binnen

een maand na verschijnen van dit nummer (bij

voorkeur per e-mail) op onderstaand adres.

Eindredactie: Hans Cuypers en Hans Sterk

Redactieadres: Review Editors NAW - HG 9.10

Dept. of Math. and Computer Science

Technische Universiteit Eindhoven

Postbus 513, 5600 MB Eindhoven

Webpagina: www.math.rug.nl/revwg/

e-mail: wgreview.win@tue.nl

G. ’t Hooft

Bouwstenen van de Schepping.
Een Zoektocht naar het Allerkleinste
(6e, herziene en bijgewerkte druk)

Amsterdam: Prometheus Books, 2002

268 p., prijs D 20,35

ISBN 90-446-0145-8

Gerard ’t Hooft, theoretisch fysicus, Nobelprijswinnaar, en onder

dezen een van degenen met de meeste affiniteit voor wiskun-

de, heeft in dit boek geprobeerd te schetsen wat de ‘elementaire-

deeltjes’-fysica is en ook hoe deze zich heeft ontwikkeld. Zijn boek

is bedoeld voor een algemeen — Nederlands — publiek. Dit is al

weer de 6e druk, 10 jaar nadat het uitkwam, en een aantal zeer

recente ontwikkelingen zijn toegevoegd.

Het is te prijzen dat iemand van zijn kaliber aan het populari-

seren gaat, maar vaak vond ik de stof zonder de technische achter-

grond toch nogal mysterieus blijven, en het boek leest niet altijd

even soepel.

Hoewel ’t Hooft veel wiskunde aanroept en ook allerlei wis-

kunde heeft geïnspireerd, is zijn houding die van de theoretisch

fysicus, pragmatisch, zoniet opportunistisch als het om rigoreus-

heid gaat, en zeker niet die van een wiskundige die alleen maar

bewijsbare resultaten accepteert.

Voor wiskundigen is in het bijzonder behartenswaard hoe hij

herhaaldelijk waarschuwt om bij toepassing op de kleine letter-

tjes (de precieze condities van een wiskundige stelling) te letten

bij toepassingen in de natuurkunde. Regelmatig blijkt het daar-

door mogelijk om stellingen te omzeilen, en blijken beweringen

die op wiskundige gronden voor onmogelijk gehouden werden

toch waar.

Er komen vrij veel onderwepen aan de orde, maar eigenlijk

is de functie van dit boek meer om inspiratie voor verder studie

op te doen, dan dat het een toegankelijke inleiding tot het vakge-

bied biedt. Vooral de beschrijving van de ontwikkelingen begin

jaren zeventig, waar ’t Hooft zijn belangrijkste bijdragen leverde,

is instructief. De beschrijving van het ‘standaardmodel’ dat toen

ontwikkeld werd, en dat alle krachten behalve de zwaartekracht

goed beschrijft, vond ik het meest waardevolle gedeelte.

Ook de beschrijving van zijn eigen rol en bijdragen biedt hier

iets extra’s: hoe in Yang-Mills-theorieën het Higgsmechanisme

massa aan deeltjes geeft, de ’t Hooft-Polyakov monopool, asymp-

totische vrijheid — op korte afstand oefenen quarks slechts wei-

nig invloed op elkaar uit. De laatste observatie was door ’t Hooft

gedaan op een conferentie, en korte tijd later door anderen gepu-

bliceerd, wat een interessante prioriteitskwestie opleverde.

Latere ontwikkelingen zoals supersymmetrie, snaartheorie,

M-theorie, en wat dies meer zij worden genoemd, maar daar-

voor kan men eigenlijk beter terecht bij Brian Greene’s The ele-

gant universe. Deze theorieën worden vooral aangedreven door

consistentie-eisen, niet door observaties. Daardoor is het karakter

van de elementaire-deeltjesfysica nogal veranderd, en voor bui-

tenstaanders ziet een en ander er steeds speculatiever uit. De on-

zekerheid omtrent een aantal fundamentele noties komt duide-

lijk naar voren. Ondanks sombere profetieën is de theorie van de

Bouwstenen der Schepping nog lang niet af. A. van Enter

Boekbesprekingen NAW 5/5 nr. 1 maart 2004 73

Recent Trends in Combinatorics
Cambridge: Cambridge University Press, 2001

212 p., prijs £40,–

ISBN 0-521-80170-2

This is a collection of surveys and research papers on combina-

torics and additive number theory, presented at a conference in

Mátraháza, Hungary. The book is dedicated to the memory of the

brilliant and versatile mathematician Paul Erdös.

The foreword gives a flavour of Paul Erdös’ somewhat unusual

lifestyle and an outline of the importance of his work in combina-

torics and other related fields.

The first article is a selection of some old and new problems

and results written by Erdös which, in his opinion, have been un-

deservedly forgotten or neglected.

There is a very interesting paper by Noga Alon on the Combi-

natorial Nullstellensatz. Numerous applications in additive num-

ber theory and in graph theory are discussed and unified proofs

are presented. As an example we mention the following theorem:

for any prime p, any loopless graph G with average degree big-

ger than 2p − 2 and maximum degree at most 2p − 1 contains a

p−regular subgraph.

An article by Peter Cameron and Paul Erdös on sum-free sets

also deserves special attention. For any irrational real number α

the set Sα := {k ∈ N : 1
3 < {kα} <

2
3} is introduced. The set Sα is

sumfree, has density 1
3 and is also maximal. Furthermore the sets

Sα(n) := Sα ∩ {1, 2, · · · , n} are investigated regarding the length

of arithmetic progressions in them. B. Bollobás and O. Riordan

wrote a long article on the Tutte polynomial for coloured graphs.

Results on knots, links and Reidemeister moves are presented. At

the end there is a collection of some challenging problems.

This book can be recommended to all those interested in com-

binatorics and cognate fields. C. de Vreugd

S. Hawking

Het Universum
(Vertaling door R. Jonkers van ‘The Universe in A Nutshell’)

Amsterdam : Bakker, 2001

223 p., prijs D 27,20

ISBN 90-3512-364-6

In Het Universum behandelt Stephen Hawking de nieuwste in-

zichten in de kosmologie, de fysica van het ontstaan en de evo-

lutie van het heelal. Het boek is geschreven voor leken, en is uit-

bundig geïllustreerd.

In de kosmologie wordt een belangrijke plaats ingenomen

door de algemene relativiteitstheorie, die beschrijft hoe de zwaar-

tekracht de ruimte en de tijd kromt. Als gevolg van deze vervor-

ming kan men beredeneren dat het heelal ooit ontstaan moet zijn

in één punt, de Big Bang. Dat is ook precies waar de problemen

ontstaan: door quantumeffecten is de relativiteitstheorie niet gel-

dig voor kleine afstanden. Het grootste deel van het boek gaat

over de verschillende, tot nog toe niet geheel succesvolle pogin-

gen om tot een theorie te komen waarin quantummechanica en

relativiteitstheorie verenigd worden.

In het eerste hoofdstuk wordt een overzicht gegeven van de al-

gemene relativiteitstheorie. Vervolgens komen verschillende mo-

gelijkheden voor een verenigde theorie aan bod, zoals supersym-

metrie, snaartheorie, p-branen en M-theorie. Veel van deze ideeën

veronderstellen dat ons heelal eigenlijk is ingebed in een hogerdi-

mensionale ruimte, die wij niet kunnen waarnemen. Ook ‘imagi-

naire tijd’ speelt daarbij een rol, overigens zonder dat het erg dui-

delijk wordt wat hieronder moet worden verstaan. Daarnaast is er

veel aandacht voor experimenten, die vaak verhelderend werken.

De kromming van de tijdruimte leidt tot fascinerende vraag-

stukken over causaliteit en de richting van de tijd, waarop het ant-

woord vaak nog onbekend is. Het boek bespreekt enkele van die

problemen, bijvoorbeeld of we de toekomst kunnen voorspellen

(misschien, volgens Hawking, als er maar geen informatie ver-

dwijnt in zwarte gaten), en of we terug kunnen naar het verle-

den en dat kunnen veranderen (ja, maar de kans is buitengewoon

klein).

De auteur weet het onderwerp vlot te presenteren en is er in

geslaagd het toegankelijk te maken voor een breed publiek. Dat

brengt onvermijdelijk een zekere vaagheid met zich mee, waarbij

de behandelde theorieën oppervlakkig beschreven worden zon-

der veel uitleg of argumentatie. Daardoor wordt de tekst helaas

hier en daar moeilijk te begrijpen, en blijft de lezer achter met vra-

gen omtrent de precieze betekenis van de gedane beweringen. Dit

wordt verergerd door een aantal storende fouten en onnauwkeu-

righeden, die overigens voor een substantieel deel te wijten zijn

aan de vertaling. M. van Noort

A.W. Grootendorst

Jan de Witt: Elementa Curvarum Linearum
Liber Secundus
Amsterdam: CWI, 2003

313 p., prijs D 17,50

ISBN 90-6196-514-4

In 1997 publiceerde het CWI het eerste boek van de Elementa Cur-

varum Linearum van Jan de Witt (1625–1672). Het was vertaald en

van inleiding en commentaar voorzien door Albert Grootendorst.

Nu is ook het tweede boek van de Elementa beschikbaar.

De Elementa werden geschreven in de periode van de opkomst

van de Cartesiaanse meetkunde. Het eerste deel van het werk van

De Witt betrof een meer klassieke meetkundige verhandeling. In

dit tweede deel laat de auteur zien wat hij van Descartes heeft op-

gestoken. Dat betekent veel formules. Van diverse formules toont

De Witt aan dat ze overeenkomen met de ‘klassieke’ rechte lijn,

parabool, ellips en hyperbool. Enerzijds maken de formules de

tekst van dit tweede boek ‘herkenbaarder’ voor de hedendaag-

se lezer dan het eerste boek was. Anderzijds blijft het een tekst

die onmiskenbaar het stempel van de zeventiende eeuw draagt.

Dat blijkt bijvoorbeeld uit de vele woorden en schijnbaar node-

loze gevalsonderscheidingen, de typografische afwijkingen (zo-

als het gelijkteken en aa in plaats van a2), of de bijzondere wij-

ze waarop factoren ‘buiten haakjes’ worden gehaald. In de inlei-

ding komt de wiskundig-historische context uitvoerig aan bod.

Zo wordt bijvoorbeeld duidelijk dat de gevalsonderscheidingen

bij ons vreemd overkomen omdat wij — in tegenstelling tot De

Witt — negatieve getallen gebruiken. Tevens wordt aandacht be-

steed aan het probleem van Pappus, de zeventiende-eeuwse po-

pulariteit van reconstructie van antieke teksten en hoe een be-

perkt aantal wiskundigen daarop voortborduurde en aldus (in

74 NAW 5/5 nr. 1 maart 2004 Boekbesprekingen

retrospectief) het vakgebied van de analytische meetkunde ont-

wikkelden. De boeken van De Witt vormen een bijzondere link

tussen de antieke teksten en de meer moderne (Cartesiaanse) aan-

pak. Een cultuurhistorische context ontbreekt. Waarom de recon-

structie van antieke traktaten tot de tijdsbesteding behoorde van

Viète, Fermat, Snellius en Van Schooten wordt bijvoorbeeld niet

duidelijk.

Voor teksten met het historisch belang van de boeken van De

Witt is het een goede zaak dat ze op eenvoudige wijze beschik-

baar zijn voor iedere geïnteresseerde. De toegankelijkheid is met

de vertaling, inleiding en toelichting van Grootendorst aanzien-

lijk vergroot. Middelbare scholieren in de bovenbouw van het

gymnasium, studenten wiskunde en studenten van de leraren-

opleiding wiskunde kunnen (delen van) deze tekst nu — onder

begeleiding — bestuderen. Daarmee lijkt me winst geboekt. Het

boek van De Witt illustreert dat de hedendaagse wiskunde niet

vanzelf spreekt, maar dat ze het resultaat is van een eeuwenlang

ontwikkelingsproces.

Er zat een flinke tijdspanne tussen het verschijnen van het eer-

ste deel in 1997 en het tweede deel. Het moge duidelijk zijn dat

wat mij betreft het resultaat het wachten waard was. Het is bijna

jammer dat de Elementa geen derde deel heeft! Grootendorst heeft

de Nederlandse wiskundige gemeenschap een geweldige dienst

bewezen. D. Beckers

Algebraic Combinatorics and Com-
puter Science.
A tribute to Gian-Carlo Rota
Berlin: Springer-Verlag, 2001

546 p., prijs $ 70,–

ISBN 88-470-0078-5

Gian-Carlo Rota was één van de meest veelzijdige wiskundigen

van de twintigste eeuw. Hij begon zijn carrière in de operato-

rentheorie, maar heeft vooral naam gemaakt binnen de discrete

wiskunde (denk aan de Umbrale Calculus en de reeks artikelen

On the Foundations of Combinatorial Theory). Ook had hij uitgebrei-

de kennis van en interesse op het gebied van algebra (met name

invariantentheorie) en kansrekening. Rota kon zeer goed schrij-

ven, zie bijvoorbeeld zijn beruchte vlijmscherpe en erudiete boek-

recensies in Advances in Mathematics of zijn fraaie overzichtsarti-

kelen. Naast zijn aanstelling als hoogleraar wiskunde aan de MIT

was hij ook hoogleraar filosofie aan dezelfde instelling. Hij was

zeer trots op deze tweede aanstelling.

Naast zijn grote visie op de wiskunde in het algemeen, was

Rota bij velen bekend om zijn warme persoonlijkheid en genero-

siteit in samenwerkingsverbanden met andere wiskundigen. Hij

wist feilloos zijn manier van samenwerken aan te passen aan het

niveau van de ander (of die nu AIO was of zeer ervaren onder-

zoeker). Daarnaast kon hij ook zeer scherp de waarheid zien en

zonder terughoudendheid vertellen, wat hem natuurlijk niet al-

tijd in dank werd afgenomen. Een aardige website waar de vele

aspecten van Rota goed naar voren komen is www.rota.org.

Het is gezien het bovenstaande niet verwonderlijk dat, na het

plotselinge overlijden van Rota in 1999, verscheidene boeken en

speciale afleveringen van tijdschriften aan hem gewijd zijn. Het

boek waaraan deze recensie gewijd is, is daar één van. De titel is

enigszins misleidend, omdat het boek artikelen bevat over allerlei

wiskundige onderwerpen en geen artikelen over informatica. Het

boek begint met een artikel van Crapo over verscheidene onder-

werpen die Rota had gesuggereerd. Daarna komt Rota zelf aan

het woord met zijn vier Fubinilezingen, die zeer de moeite waard

zijn en stof tot nadenken geven. Geheel in de stijl van Rota, die

veel belang hechtte aan overzichtsartikelen (zie bijvoorbeeld on-

derdeel 4 van Rota’s Ten Lessons I wish I Had Been Taught, te vinden

op www.rota.org onder het kopje Hotair enterprises), bevat het

boek overzichtsartikelen van Aigner over Catalangetallen en van

Perrin over de combinatoriek van woorden. Vanzelfsprekend be-

vat het boek de nodige artikelen over Umbrale Calculus, zowel

toepassingen (circulante recursieve matrices (Barnabei en Monte-

fusco), het oplossen van recursies (Soto, Koelemeijer en Uw recen-

sent) en invariantentheorie (Brini, Regonati en Teolis)) als verban-

den van Umbrale Calculus (Poisson kansverdelingen (Senato en

Di Nardo) en het splijten van alfabetten (Lascoux)). Van de overi-

ge artikelen noem ik slechts het artikel van Buchsbaum over Weyl

modules, dat naast de nodige fraaie wiskunde ook aardige infor-

matie geeft over de persoonlijke samenwerking met Rota.

Gezien de grote verscheidenheid aan artikelen (zowel qua on-

derwerp als qua niveau) is het moeilijk dit boek onder een be-

paalde noemer te vangen of er een algeheel oordeel over te vellen.

Voor de liefhebber van zuivere wiskunde zijn er in ieder geval al-

lerlei interessante zaken te vinden. A. Di Bucchianico

R.J. Nowakowski

More Games of No Chance
Cambridge: Cambridge University Press, 2003

535 p., prijs £40,–

ISBN 0-521-80832-4

In juli 2000 werd de tweede Combinatorial Games Theory Workshop

gehouden. De proceedings van deze workshop werden gepubli-

ceerd als boek met de titel More Games of No Chance, als opvolger

van Games of No Chance bij de eerste workshop in de serie. De bij-

dragen in het boek houden zich bezig met abstracte combinatori-

sche spelen: strategische spelen voor twee spelers, waarbij steeds

de spelers volledige informatie over de stelling hebben en kans

geen rol speelt. Er zijn artikelen over bekende spelen als Schaken

of Go, over minder bekende moderne spelen zoals Phutball en

Amazons, en over spelen die louter interessant zijn om te analy-

seren maar niet snel door mensen gespeeld zullen worden, zoals

multi-dimensionaal boter, kaas en eieren. Een interessante vraag

bij dit soort spellen is bijvoorbeeld: gegeven een stand gedurende

het spel, heeft de speler aan zet een winnende strategie? Er zijn

verschillende manieren om naar zo’n vraag te kijken: een analy-

se volgens de methodologie zoals in het klassieke boek Winning

Ways van Berlecamp, Conway en Guy, een analyse van de compu-

tationele complexiteit van het probleem, of analyse en het doorre-

kenen van posities met behulp van een computer. In de ruim der-

tig artikelen in het boek komt elk van deze manieren om naar het

Boekbesprekingen NAW 5/5 nr. 1 maart 2004 75

probleem te kijken naar voren. De artikelen in de Winning Ways-

stijl zijn vooral aardig voor degenen die met deze stijl van denken

vertrouwd zijn.

Een paar voorbeelden van andere artikelen: het verslag van het

aanleggen van een database voor eindspelen van Chinees schaak

(Xiangqi, een vorm van schaken gespeeld in China); een bewijs

dat laat zien dat het PSPACE-moeilijk is om te beslissen of een Go

eindspel gewonnen is, waarbij in het eindspel een aantal locale

gebieden zijn waar nog wat ‘kan gebeuren’, elk met een spelboom

van polynomiaal formaat.

Twee artikelen gaan niet over spelen, maar puzzels, en een-

tje over Life: het verslag van een boeiende zoektocht naar

‘spaceships’ in cellulaire automaten zoals Life. Het boek sluit af

met een lijst open problemen in combinatorische speltheorie en

een bibliografie met ruim negenhonderd referenties. Sommige

van de artikelen vragen voorkennis (zoals complexiteitstheorie of

de ‘Winning Ways’-terminologie) van de lezer; andere vragen al-

leen wat wiskundige vaardigheid. Voor wiskundigen en informa-

tici die van de wiskundige analyse van abstracte spelen houden

is dit een leuk boek om eens te lezen (‘voor op het nachtkastje’);

sommige van de bijdragen maken het ook nuttig voor een biblio-

theek op het gebied van de Artificial Intelligence. H. Bodlaender

A.A. Ivanov, S.V. Shpectorov

Geometry of Sporadic Groups II:
Representations and Amalgams
(Encyclopedia of Mathematics and Its Applications)

Cambridge: Cambridge University Press, 2002

286 p., prijs £55,–

ISBN 0-521-62349-9

Het boek Geometry of sporadic groups II, representations and amal-

gams is het tweede deel van de tweedelige reeks over het bewijs

van de classificatie van de vlag-transitieve P- en T-meetkundes.

De auteurs A.A. Ivanov en S.V. Shpectorov richten zich met deze

reeks tot een publiek van onderzoekers in de theorie van meet-

kundes en eindige groepentheorie. De genoemde classificatie van

vlag-transitieve P- en T- meetkundes is onder andere van belang

omdat deze meetkundes afkomstig zijn van de sporadische sim-

pele groepen. Hierdoor is dit boek niet alleen van belang voor de

theorie van meetkundes, maar ook voor de theorie van eindige

simpele groepen.

Na een inleidend eerste hoofdstuk, waarin enkele begrippen

betreffende meetkundes en amalgamen worden vastgelegd en

een aantal eigenschappen hiervan wordt gegeven, volgen zes

hoofdstukken over representaties van meetkundes. Het tweede

hoofdstuk geeft enkele algemene eigenschappen, terwijl het der-

de hoofdstuk representaties van klassieke meetkundes beschrijft.

In de hoofdstukken 4 en 5 worden representaties van meetkun-

des afkomstig van de Mathieu, Held en Conway groepen uitge-

rekend, terwijl hoofdstuk 6 en 7 de representaties van involutie-

meetkundes en meetkundes afkomstig van grote sporadische

groepen behandelen. Volgend op deze hoofdstukken komen vijf

hoofdstukken over groep-amalgamen. De laatste twee hiervan

geven de link met meetkundes door amalgamen van P- en T-

meetkundes te beschrijven. Tenslotte wordt in het dertiende en

laatste hoofdstuk een aantal verdere ontwikkelingen en projecten

geschetst.

De onderwerpen die in het boek behandeld worden, zijn relatief

technisch van aard. De auteurs hebben de daardoor optreden-

de moeilijkheden wat betreft helderheid en inzichtelijkheid op-

gevangen door een helder Engels taalgebruik en door korte sa-

menvattingen aan het begin van elk hoofdstuk te geven. Verder

wordt de leesbaarheid van het boek vergroot door een korte in-

dex. Al met al is dit een boek dat voor een ieder geïnteresseerd in

de theorie van meetkundes en eindige simpele groepen, zeer aan

te raden is. P. Beelen

R. Miron, D. Hrimiuc, H. Shimada, S.V. Sabau

The Geometry of Hamilton and Lagrange Spaces
(Fundamental Theories of Physics)

Dordrecht: Kluwer Academic Publishers, 2001

338 p., prijs D 142,–

ISBN 0-7923-6926-2

According to the preface, this monograph is a continuation of the

books by R. Miron, The geometry of higher-order Lagrange spaces.

Applications to Mechanics and Physics, Kluwer (1997) and R. Miron

and M. Anastasei, The geometry of Lagrange spaces. Theory and ap-

plications, Kluwer (1994), emphasizing Hamiltonian geometry. It

can be considered as a very deep study of the tangent bundle to

a manifold, the Lagrangian aspect, and its cotangent bundle, the

Hamiltonian aspect and the Legendre duality connecting the two.

Very general Lagrange functions on the tangent bundle are al-

lowed, the only condition apart from continuity being, that when

restricted to a single tangent space, its Hessian at any tangent vec-

tor different from zero is nondegenerate. In case the Lagrangian

is positive, satisfies an appropriate homogeneity condition, and

the above Hessians are positive definite, the square root of the La-

grangian defines a Finsler structure. Finsler structures by them-

selves are already a surprisingly rich generalization of Riemanni-

an structures.

Lagrange spaces of higher order also exist, using jet bundels

of the underlying manifold (configuration space). It is a difficulty

to define a dual to this in such a way that a reasonable Hamito-

nian version exists, but R. Miron found a solution in the product

over the base space of the jet bundle of one lower order with the

cotangent space. The study of these higher order Hamilton spaces

occupies about 100 pages.

The reader is assumed to have a good background in differen-

tial geometry. The notation switches between the ‘physics’ nota-

tion in terms of local coordinates and the abstract notation from

differential geometry. I was very surprised by the richness of the

subject, and I think the book is an important reference work for

researchers who are interested in Analytical Mechanics and more

generally in Lagrangians and Hamiltonians occurring anywhere

in Physics. It is an inspiration to students and researchers in dif-

ferential geometry.

Somewhat striking is the use of the English. An interesting

example is that when symmetric matrices are assumed to be pos-

itively defined they had better be positive definite as well. More-

over there are many typographical errors. In some instances they

make a definition unintelligible, and only thorough reading of the

context can help the reader out.

The book has a short but effective index and an extensive bib-

liography. H. Hendriks

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT03

The 16 Faces of a Dutch Math Journal

Hans Hagen

157

Problemen/UWC NAW 5/5 nr. 4 december 2004 341

P
ro

b
le

m
e
n

/U
W

C
U

n
iv

e
rs

it
a
ir

e
W

is
k
u
n

d
e

C
o
m

p
e
ti

ti
e

Eindredactie: Matthijs Coster

Redactieadres: UWC/NAW

Mathematisch Instituut

Postbus 9512

2300 RA Leiden

uwc@nieuwarchief.nl

De Universitaire Wiskunde Competitie (UWC) is een ladderwedstrijd voor studenten.

De uitslagen worden tevens gepubliceerd op de internetpagina http://uwc.ewi.tudelft.

nl/uitslag/uitslag.pdf

Ieder nummer bevat de ladderopgaven A, B, en C waarvoor respectievelijk 30, 40 en 50

punten kunnen worden behaald. Daarnaast zijn er respectievelijk 6, 8 en 10 extra punten

te winnen voor elegantie en generalisatie. Er worden drie editieprijzen toegekend, van

100, 50, en 25 euro. De puntentotalen van winnaars tellen voor 0, 50, en 75 procent mee

in de laddercompetitie. De aanvoerder van de ladder ontvangt een prijs van 100 euro en

begint daarna weer onderaan. Daarnaast wordt twee maal per jaar een ster-opgave aan-

geboden waarvan de redactie geen oplossing bekend is. Voor de eerst ontvangen correcte

oplossing van deze ster-opgave wordt eveneens 100 euro toegekend.

Groepsinzendingen zijn toegestaan. Elektronische inzending in LATEX wordt op prijs ge-

steld. De inzendtermijn voor de oplossingen sluit op 1 februari 2005. Voor een ster-

opgave geldt een inzendtermijn van een jaar.

De Universitaire Wiskunde Competitie wordt gesponsord door Optiver Derivatives Tra-

ding en wordt tevens ondersteund door bijdragen van de Nederlandse Onderwijs Com-

missie voor Wiskunde en de Vereniging voor Studie- en Studentenbelangen te Delft.

Problem A

1. Show that there exist infinitely many n ∈ N, such that Sn = 1 + 2 + . . . + n is a square.

2. Let a1 , a2 , a3 , . . . be those squares. Calculate limn→∞

an+1

an
.

Problem B

Let G be a finite set of elements and · a binary associative operation on G. There is a

neutral element in G and that is the only element in G with the property a · a = a. Show

that G with the operation · is a group.

Problem C

Let {an}n be a sequence (n ≥ 0), with an ∈ {±1} for all n. Define

Sn =
n

∑
k=0

akan−k .

Prove that ∃C > 0 : ∀m > 0 : ∃n > m : |Sn| > C
√

n.

Edition 2004/1

Op de ronde 2004/1 van de Universitaire Wiskunde Competitie ontvingen we inzendin-

gen van Syb Botma, Kenny De Commer, Filip Cools and Hendrik Hubrechts.

Problem 2004/1-A

For every integer n > 2 prove that ∑n−1
j=1

(

1/(n − j)∑n−1
k= j 1/k

)

< π
2/6.

Solution This problem has been solved by Syb Botma, Kenny De Commer, Filip Cools,

Klaas Pieter Hart, Hendrik Hubrechts, Ruud Jeurissen and Jaap Spies. Ruud Jeurissen’s

solution is given here.

Let An−1 denote the left hand side. Changing the order of summation we get

An−1 =
n−1

∑
k=1

1

k

k

∑
j=1

1

n − j
=

n−1

∑
k=1

1

k

n−1

∑
s=n−k

1

s
.

342 NAW 5/5 nr. 4 december 2004 Problemen/UWC

O
p
lo

ss
in

g
e
n

Then

An − An−1 =
n

∑
k=1

1

k

n

∑
s=n+1−k

1

s
−

n−1

∑
k=1

1

k

n−1

∑
s=n−k

1

s
=

1

n

n

∑
s=1

1

s
+

n−1

∑
k=1

1

k

(1

n
− 1

n − k

)

=
1

n

n

∑
s=1

1

s
− 1

n

n−1

∑
k=1

1

n − k
=

1

n

(n

∑
s=1

1

s
−

n−1

∑
t=1

1

t

)

=
1

n2
.

Since A1 = 1, we find An = ∑n
i=1

1
i2 < ∑∞

i=1
1
i2 = π

2

6 (and limn→∞ An−1 = π
2

6).

Problem 2004/1-B

Consider the first digits of the numbers 2n: 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, Does the digit

7 appear in this sequence? Which digit appears more often, 7 or 8? How many times

more often?

Solution This problem has been solved by Filip Cools, Hendrik Hubrechts, Kenny De

Commer, Syb Botma and Jaap Spies. The problem has been taken from V.I. Arnold’s

Mathematical methods in classical mechanics (it is the final problem of section 16 and its

solution is given in section 51). By coincidence a solution of the problem appeared in the

June 2004 issue of the Newsletter of the European Mathematical Society. The answers

are: 7 does occur (though it takes some time before its first occurence) and it occurs more

often than 8. To specify the answer to the third question one has to use an averaging

result (e.g. the ergodic theorem or Weyl’s criterion).

Take logarithms to find that the first digit of 2n is equal to 7 if and only if

log 7 ≤ n log 2 < log 8, mod 1

Represent the circle by the real numbers modulo 1. The map x �→ x + log 2 is an irrational

rotation ρ of the circle. The equation above now says that 7 occurs as the first digit of 2n

if and only if the unit element of the circle rotates into (log 7, log 8) under ρ
n. It is known

that an irrational rotation is uniquely ergodic and by the ergodic theorem, for numbers

a < b in (0, 1) the fraction

|{n ≤ N : ρ
n(x) ∈ (a, b) mod 1}|

N

converges to b − a as N goes to infinity, regardless of the choice of x. It follows that the

fraction of iterates 2n with initial digit 7 is equal to log 8 − log 7 as N goes to infinity.

Similarly, the fraction of iterates with initial digit 8 is equal to log 9 − log 8.

Problem 2004/1-C

We have a circular key chain and we want to colour the keys, using as few colours as

possible, so that each key can be identified by the color pattern — that is, by looking at

the key’s colour and neighboring colours as far away as needed. Let f (n) be the minimal

number of colours required to uniquely disambiguate a circular key chain of n keys in

this way. Determine f (n) for all positive integers n.

Solution This problem has been solved by Filip Cools, Hendrik Hubrechts, Kenny De

Commer and Ruud Jeurissen. It is problem 729 in the Journal of Recreational Mathema-

tics (vol 11, 1979), proposed by Frank Rubin. It has appeared in many puzzle corners ever

after and it has sprouted the ‘distinguishing number’ in graph theory. The answer is that

f (n) = 2 if n ≥ 6 and f (n) = 3 if n = 3, 4, 5.

Enumerate the keys 1, 2, 3, . . . , n cyclically. To disambiguate the chain you have to be able

to find keys 1 and 2, since then you can find the other keys by counting. So f (n) ≤ 3,

since you can colour 1 green, 2 red and colour the others yellow. Suppose n ≥ 6. Colour

1, 3, n red and colour all other keys green. Then 2 is the only green key that has two red

neigbours since n ≥ 6. So you can find key 2 and key 1 is its only neighbour that has a

red neighbour.

Problemen/UWC NAW 5/5 nr. 4 december 2004 343

O
p
lo

ss
in

g
e
n

We need to show that f (n) 	= 2 if n = 3, 4, 5. Suppose we can use red and green to

disambiguate the key chain. Clearly it does not suffice to colour one key differently from

all the others. Since n = 3, 4, 5 we may assume that two keys are green while the others

are red. Turn the key ring around (reflect) in such a way that the green keys exchange

their position. This action does not change the colour pattern, so the key ring cannot be

disambiguated.

Kenny De Commer proposes and solves a related key chain problem: what is the minimal

number of colours that you need in order to disambiguate the chain, regardless of how

you apply the colours?

Problem 2003/1-B

Jos Brands has pointed out that the solution to UWC problem 2003/1-B as given in last

year’s September issue is not correct. We will come back to this problem in a later issue.

In the previous issue we remarked that Bert Jagers gave a general solution to problem

2003/4-B, which is presented here.

Problem 2003/4-B

Let and m and n be coprime. Assume that G is a group such that m-th powers and n-th

powers commute. Then G is abelian.

Solution Let M ⊂ G be generated by all m-th powers and let N ⊂ G be generated by

all n-th powers. These subgroups are clearly invariant under automorphisms, hence they

are normal. Since m and n are coprime G = MN and M ∩ N is contained in the center

of G. Let s ∈ M and t ∈ N be arbitrary elements. To settle that G is abelian it suffices

to show that st = ts, in other words, the commutator [s, t] is equal to e . Observe that

[s, t] = sts−1t−1 ∈ M ∩ N since, by normality, [s, t] is a product of two elements of M

as well as a product of two elements of N. Hence [s, t] is an element of the center, say

[s, t] = z. In other words sts−1 = zt, so stms−1 = zmtm. Since tm ∈ N it commutes with s,

so zm = e. In exactly the same way zn = e. So z = [s, t] = e.

Uitslag Editie 2004/1

Naam A B C Totaal

1. Hendrik Hubrechts 11 9 10 119

2. Filip Cools 10 8 10 112

3. Kenny De Commer 10 3 11 97

Ladderstand Universitaire Wiskunde Competitie

We vermelden alleen de top 5. Voor de complete ladderstand verwijzen we naar de

UWC-website.

Naam Punten

1. Kenny De Commer 142

2. Tom Claeys 138

3. Gerben Stavenga e.a. 136

4. Filip Cools e.a. 107

5. Peter Bruin 99

TUT03 Proceedings EuroTEX2005 – Pont-à-Mousson, France

158 The 16 Faces of a Dutch Math Journal

Hans Hagen

Experiences with micro-typographic extensions of pdfTEX

in practice

Hàn Thế Thành
University of Education,

Ho Chi Minh City,
Vietnam

Februar 21, 2005

Abstract

pdfTEX provides two micro-typographic extensions: margin kerning (also known as character protrusion)
and font expansion. Those extensions have been available for a while, however they are not used much yet,
probably due to their complicated setup and not that visible benefits they bring. In this article I want to
share some experiences, either good or bad, in using those extensions in practice, the tricky parts of them
and how to get the best from what pdfTEX offers without having to know all the low-level details and messy
font issues.

1 Introduction

Font expansion and margin kerning have been introduced several times in various articles, so I won’t go to any
detailed description here. From a practical point of view, what those extensions bring is pretty simple:

1. Margin kerning makes the margins of text look smooth, by moving certain characters out to the margins
by a small amount. The most common case is to move the hyphen character or punctuation marks, but
applying this technique to certain letters also improves the result.

2. Font expansion can help to improve line-breaking. Typically, a text typeset using font expansion has:

(a) less hyphenations,

(b) less overfull and underfull boxes,

(c) more equal inter-word spacing ,

(d) reduced occurrence of “rivers”.

These benefits are most visible in difficult cases, like narrow-column typesetting, disabled hyphenation,
or simply in automated typesetting when manual work needed to correct problematic cases should be
minimized or totally avoided.

Margin kerning and font expansion have been implemented in the hz program by Hermann Zapf and URW;
that’s why I called them together hz extensions of pdfTEX1. For more detailed information on margin kerning
and font expansion, including background and related works on hz extensions in other systems, please refer
to [Thành 2001]. From now, by hz extensions I mean margin kerning and font expansion in pdfTEX.

2 How to start using hz extensions

Similarly as in the case with TEX primitives, the hz extensions as provided by pdfTEX are not easy to use. They
require the understanding how certain concepts in TEX work at the very low-level, as well as the ability to set
up some complicated font-related stuff. Thus the best way to start using hz extensions is via some available

1The hz program is in fact a set of modules implementing certain micro-typographic improvements including margin kerning
and font expansion. hz extensions of pdfTEX are only a small subset of the modules in the hz program

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice

Thế Thành Hàn

159

interface. An article about how to start using hz extensions in practice will be published in TUGboat soon so I
don’t go into the details here. In short, given that we have pdfTEX version at least 1.20a (1.21a is recommended
at the time of writing this paper) and the LATEX package microtype installed, it’s enough to say

\usepackage{microtype}

to activate both margin kerning and font expansion. A recommended next step is to read the microtype manual
to learn more about the options the package offers, as well as advice for new users.

3 Practical experiences

hz extensions have been used rarely in practice, due to the lack of an easy interface and the necessity of complex
font setup as mentioned above. Also, those features are not completely mature yet. For those reasons, a
collection of practical issues would be helpful for those interested in using hz extensions. Some of the issues
described here may sound very technical, or very weird to those who have not tried to use hz extensions in
pdfTEX yet. If it is the case, simply skip the details you don’t understand.

So far, the total number of people who have contacted me to discuss some issue concerning hz extensions is
about ten. Some of them use hz for some occasional projects, some use hz for their regular work. Of course it
doesn’t have to mean that only ten people have been using hz extensions; it only means that at least ten people
tried and had some trouble.

Recently, ConTEXt and LATEX (the pdfcprot and microtype package) make hz extensions easier to use and
become more popular, especially margin kerning. The introduction of auto expansion is also a big step toward
easy use of font expansion.

3.1 Using the auto expansion feature

To deploy font expansion, the expanded TFM fonts must be prepared ahead, using some utility as fontinst,
afm2tfm or METAFONT. This is the most annoying part, even for experienced users. And usually this annoyance
is doubled by the fact that most TFM’s must be used with VF, hence the expanded VF’s must be created as
well.

From version 1.20a, pdfTEX supports a feature called auto expansion, which allows TFM and VF to be
expanded automatically in memory at run time. That means expanded TFM and VF are no longer required,
which is a great relief. In order to use font expansion now, it’s enough to upgrade pdfTEX binaries, install the
LATEX microtype package, and that’s it. No need to deal with expanded TFM’s and VF’s, map files or whatever.
This feature makes things really simple. The implementation however is not that simple and it took some time
to evolve and mature.

There is one catch in using virtual fonts with auto expansion: in virtual fonts accented characters are often
drawn as composition of two glyphs, a base letter and an accent. Using auto expansion will cause the accent in
such composed glyph to be misplaced by a small amount (0.01–0.1pt).

Now one may wonder whether auto expansion should be used in case all the expanded TFM’s and VF’s
already exist (most likely because the user had to create them manually when auto expansion was not available
yet). The answer is if DVI output is not considered (see the next issue) and only Type 1 fonts are being used,
auto expansion should always be used. This is also the typical case.

3.2 Using hz extensions in DVI mode

hz extensions are available in both PDF and DVI mode. Using hz in DVI mode is much similar to PDF, although
it requires some extra setup for dvips to process the expanded fonts. If only margin kerning is used, then there
is no difference whether it is used in DVI or PDF mode.

The question is why one would want to use hz in DVI mode? There are some known reasons:

1. the output is smaller: in PDF mode pdfTEX embeds many instances for a single expanded font, while
dvips embeds only one;

2. the document requires PS processing, for example PStricks;

3. the user just doesn’t need or like PDF, but wants hz .

TUT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

160 Experiences with Micro-Typographic Extensions of pdfTEX in Practice

Thế Thành Hàn

The following (typical) example demonstrates how to make dvips process DVI files with font expansion
enabled. It only makes sense to people who can already make some setup to use font expansion in PDF mode
without auto expansion, which means that you must be able to create the expanded TFM’s and VF’s using
fontinst or afm2tfm or some similar tool. The detailed instructions on how to do that is however out of scope
of this article.

Assume that we have activated font expansion for font cmr12 with stretch limit 20, shrink limit 20 and
expansion step 5. To process the DVI file produced using this setup, we must update the map entry read by
dvips. In my system, the entry for cmr12 is

cmr12 CMR12 <cmr12.pfb

Now it must be replaced by

cmr12 CMR12 <cmr12.pfb

cmr12+5 CMR12 "1.005 ExtendFont" <cmr12.pfb

cmr12+10 CMR12 "1.010 ExtendFont" <cmr12.pfb

cmr12+15 CMR12 "1.015 ExtendFont" <cmr12.pfb

cmr12+20 CMR12 "1.020 ExtendFont" <cmr12.pfb

cmr12-5 CMR12 ".995 ExtendFont" <cmr12.pfb

cmr12-10 CMR12 ".990 ExtendFont" <cmr12.pfb

cmr12-15 CMR12 ".985 ExtendFont" <cmr12.pfb

cmr12-20 CMR12 ".980 ExtendFont" <cmr12.pfb

Then dvips can process the DVI with expanded fonts just like any other DVI files.
The main disadvantage of DVI mode is, however, that the auto expansion feature of pdfTEX cannot be used.

Or to be more precise, auto expansion can be activated in DVI mode and pdfTEX can create the DVI file with
font expansion enabled. Such a DVI file however is pretty useless because DVI drivers cannot process that file,
as they don’t have access to the expanded TFM’s and VF’s (those exist in pdfTEX memory at run time only).

There have been requests to support auto expansion for use with dvips, by changing pdfTEX to write the
expanded TFM’s and VF’s to disk as well as to update some map files. It is likely that this will never be
implemented. The better way to do that is to change the script TEX (pdfTEX) calls to create missing TFM at
run time (on web2c-based systems this is called mktextfm) to create all the required stuff on demand.

3.3 Margin kerning and non-character material

Margin kerning only works with characters. Sometime we need to protrude something that is not a character, for
example some superscript (index), because such a thing would look bad when ending up at the margin without
protrusion. The typical example is the index of footnote, which is typeset into an hbox.

There are two solutions to the above problem:

1. Make margin kerning work even with characters inside boxes. A patch has been made to check whether
the ending element of a line is a box, and if so check the last element of that box, and so on, to ensure that
the last character inside boxes will get protruded. This patch is still experimental at the time writing this
article. Also beware that it is not enough just to have this patch and the right package loaded, because the
default settings for margin kerning as provided by macro packages are suitable for normal text. Superscript
text often has much smaller size than the normal text, so to get the right result the protrusion factors
must be increased. Then it might cause conflicts in other places where the same font is used for normal
text (for example in footnote text).

2. Append a “virtual character” immediately after the material we want to protrude into the right margin
(or prepend in case of the left margin). Such a virtual character is not visible, has no dimension, but has
non-zero protrusion factor so when ending up at the margin it will get protruded. Creating such a virtual
character is quite easy using fontinst. There is also a script available to generate a virtual font with all
blank characters for this purpose2. This approach has been used several times in practice and is reliable.
The drawback is that it requires some extra work in creating those virtual characters and inserting them
into the right places.

2The script was made by Hartmut Henkel, however having read the draft version of this paper he suggested to distribute the
font itself; so the font will be available at pdftex.sarovar.org soon.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice

Thế Thành Hàn

161

3.4 Margin kerning does not work in some cases

Sometimes it happens that margin kerning doesn’t work as expected, some characters are not protruded. There
are usually two reasons:

1. Margin kerning is blocked by some invisible material around the relevant character; usually there is a
workaround using macros.

2. It is a bug in pdfTEX. If your pdfTEX is older than 1.20b then upgrading pdfTEX is the first thing to
consider when encountering some problem with hz extensions. Margin kerning has been improved a lot
from version 1.20b.

3.5 Using margin kerning and font expansion at the same time

Although this seems something evident, sometimes it doesn’t work. The reason is most likely that you are using
pdfTEX version 1.20a, which has this bug.

3.6 Reasonable settings for font expansion

Font expansion must be used with care. While it gives more room for line-breaking, it can also destroy the
whole text if the effect of font expansion becomes visible. Then the question is when font expansion becomes
visible? This question has no definitive answer, as to trained eyes font expansion can be easily detected and
hence annoying, while to others it has no effect. For most people the safe limit is 2% expansion, i. e. the stretch
and shrink limit when expanding a font should not be more than 20 (see pdfTEX manual for explanation of
stretch and shrink limit).

The expansion step is usually set to 5. A too small value leads to large output size (more fonts embedded),
while a too big value can lead to some surprises like unexpected overfull or underfull boxes. This is not a bug
but a limitation in the way pdfTEX implements font expansion.

4 Lessons learned

During the development of hz extensions, many decisions were made and not all of them were good. pdfTEX
started as an experimental project. Most decisions in the beginning were made rather for the purpose to examine
the effect of hz extensions than for practical purpose. Then hz extensions started to be used in practice and
certain things had to be changed to make life easier. Here are some lessons I learned concerning hz extensions:

1. The way margin kerning can be used without changing existing fonts seems to be the right decision.
Settings for margin kerning should be part of fonts just like kerning between pairs of characters, from the
viewpoint of clean design. Doing so however would lead to two problems:

(a) to use margin kerning, we need some kind of extended TFM;

(b) the settings cannot be changed easily.

These problems would make practical use of margin kerning impossible. Clean design is important but
sometime backward compatibility and flexibility play a more significant role.

2. The concept of font expansion in pdfTEX was quite general and flexible, which was good for experiments
as we needed to study the effect of font expansion in as many cases as possible. From the experimental
viewpoint the way font expansion was implemented is not that bad, but from practical viewpoint it is too
cumbersome and hard to deploy. Hence for practical use, a less flexible mechanism which is easier to use
but offers 80% of what font expansion can give is more needed. That’s the reason why auto expansion has
been introduced.

So was it a bad decision that pdfTEX needed expanded TFM for font expansion? For experimental purpose
it was a good decision, however it would be a mistake not to change it after the experiments have been
done.

3. The user interface is as important as the implementation to end users. Without LATEX or ConTEXt support,
hz extensions are pretty useless to most users.

4. Feedback and help from the pdfTEX user community is vital for hz extensions to evolve and mature.

TUT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

162 Experiences with Micro-Typographic Extensions of pdfTEX in Practice

Thế Thành Hàn

5 Recent changes

pdfTEX version 0.14h is the last version of pdfTEX released by me during my stay in Czech republic. Then I
came back to Vietnam and didn’t have time to work on pdfTEX for about two years. During that time pdfTEX
was maintained by the pdfTEX team (lead by Hans Hagen and Martin Schröder). Since March 2004 I came back
to work on pdfTEX development, and version 1.20a is the first release I participated in after the long break.

Here I would like to give a brief summary of some noticeable changes since version 1.20a, as I think that
they might be of interest to pdfTEX users or simply to those who don’t use pdfTEX but want to keep an eye on
what is happening with pdfTEX. Apart from those, there have been many small bug fixes and improvements
but they are too technical to mention here.

1. hz extensions have been significantly improved; some serious bugs have been fixed and margin kerning has
been extended to handle some special cases.

2. Auto font expansion has been introduced: expanded TFM’s are no longer required to use font expansion.

3. The font expansion mechanism has been simplified: the font expand factor (the last argument of
\pdffontexpand) is no longer supported. This parameter was used to simulate font expansion using letter
spacing. Experiments have shown that this technique is not the way to go: it didn’t improve much the
result while it caused many troubles.

4. Support for the configuration file pdftex.cfg is gone; all parameters are set via primitives. Their values
can be dumped to the format file. The only exception is \pdfmapfile: its value cannot be dumped
to the format file, so when pdfTEX starts the value of \pdfmapfile is always set to the default value
"pdftex.map".

5. pdfTEX uses the GNU libAVL library to speed up certain searchings.

6. Support for TrueType fonts has been improved, allowing refering to glyphs inside a TrueType font by their
unicode index. ttf2afm also has been heavily revised.

7. There is a program called pdfxTEX, which is a variant of pdfeTEX that contains experimental features.
Those features may be moved to pdfTEX when they seem to be useful and stable. At the moment the
following extensions are avaiable:

• \pdflastximagecolordepth returns the last color depth of a bitmapped image;

• \pdfximage supports a keyword colorspace following an object number representing a PDF Col-
orSpace object;

• \pdfstrcmp compares two strings;

• \pdfescapestring and \pdflastescapedstring provide a means to escape strings;

• \pdffirstlineheight, \pdflastlinedepth, \pdfeachlineheight and
\pdfeachlinedepth allow fixing line dimensions during paragraph buiding;

• various extensions from Taco Hoekwater:

– support for dimension unit px;
– \tagcode primitive allowing read and write access to a character’s char_tag info.
– \quitvmode primitive quits vertical mode;

6 Pending requests and future development

In this section I would like to mention shortly some issues that have been discussed and the future plan of
pdfTEX.

PDF inclusion with annotations: when pdfTEX includes a PDF figure, all the annotations (the PDF term
for hyperlinks and the like) from the figure are lost. There is a patch for pdfTEX version 1.10b by Andreas
Matthias that copies annotations from included PDF figures. The patch was released during the period
when I was not maintaining pdfTEX and didn’t get attention from other pdfTEX maintainers either. I am
aware of the patch but did not look into the code yet. If this becomes urgent or frequently asked then it
should be re-considered.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice

Thế Thành Hàn

163

Implement virtual fonts using Type 3 fonts: pdfTEX supports virtual fonts in the same way like other
DVI drivers does, i. e. it interprets the DVI commands from virtual fonts to draw characters. It means
that accented characters from virtual fonts are often unsearchable – in fact there are no such letters in the
PDF output but sequences of PDF commands drawing the base letter and the accent. There have been
requests to make letters from virtual fonts searchable. One possible solution is to implement virtual fonts
as Type 3 fonts in PDF. This feature is something very handy to have, as it can allows other nice things
as well. At the moment this feature is still being examined, and might be supported in the future if the
effort required to implement it is not too much.

Support for subfont scheme for use with huge TrueType fonts: Subfont scheme is a trick to split huge
TrueType fonts (usually used for Asian languages like Chinese, Japanese or Korean) into smaller pieces so
that they can be used with 8-bit TEX. pdfTEX has some support for subfont scheme, but still very poor.
At the moment this is being revised and should be improved in the near future.

Support for pdfsync: pdfsync is a package allowing synchronization between a PDF file created by pdfTEX and
its LATEX source: the user clicks on some point in the PDF file and the editor “jumps” to the corresponding
place in the source. The current implementation of pdfsync still has some unsolved issues, due to the lack
of low-level support in pdfTEX. We had some discussions with the pdfsync author and I plan to provide
some hooks to support pdfsync.

7 Acknowledgments

Too many people helped pdfTEX development in various ways, so it is impossible to thank all people here
without missing someone. However, I would like to say thanks to a few people whose impact on pdfTEX is most
vital in the last years:

1. Hans Hagen for his testing, discussions, feature requests, feedbacks and encouragement;

2. Hartmut Henkel for his important contributions on pdfTEX development and maintenance, especially in
hz extensions;

3. Martin Schröder for his effort on keeping pdfTEX in sync with latest sources of libraries and other pieces
of TEXLive and teTEX; he is also responsible for official pdfTEX releases;

4. and NTG and DANTE for financial support on this work.

References

[Thành 2001] Hàn Thế Thành, Margin Kerning and Font Expansion with pdfTEX, in: TUGBoat,
vol. 22(2001), no. 3 – Proceedings of the 2001 Annual Meeting, pp. 146–148.
(Online at http://www.tug.org/TUGboat/Articles/tb22-3/tb72thanh.pdf)

TUT07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

164 Experiences with Micro-Typographic Extensions of pdfTEX in Practice

Thế Thành Hàn

Newmath and Unicode

Johannes Küster*

Abstract

The “Newmath” project aims at de�ning and implementing new standard encodings for math fonts, and
at the development of accompanying tools and packages. Switching math fonts should be made as easy as
switching text fonts. The project stopped in , as e�orts were concentrated on the de�nition of Unicode
codepoints for mathematics.

This article outlines my ideas for further development of Newmath. It deals mainly with the “encodings
and fonts” part of the project. Originally the project aimed only at extending and reorganizing the encod-
ings of existing math fonts, but its objectives should be widened now to Unicode math – to make all those
mathematical characters accessible and usable in TEX-based systems. The last section gives an outlook on
LatinModern Math fonts development.

Introduction

About years ago, the Math Font Group (MFG) started a project to de�ne new standard encodings for TEX

math fonts, together with the development of fonts implementing this new standard and of accompanying tools

and packages. The new encodings should bring an extension to codepoints per font. They should become

the standard for TEX math fonts, ideally making it just as easy to switch between di�erent math fonts as it

has been achieved for text fonts. This whole project is called “Newmath”, short for New Math Font Setup

(“newmath.sty” is the name of the principal LATEX package implementing the new math font setup).

The development of Newmath stopped about years ago, as it was decided (at the EuroTEX conference in

St. Malo in) to concentrate e�orts �rst on “Math into Unicode”, i.e. to identify all mathematical symbols

in (reasonable) use and to get these symbols encoded in the Unicode standard. This goal has been achieved for

quite a while now, mainly with Unicode . in , but work on the Newmath encodings has not been resumed

since (mainly because the people originally involved quit for other projects in the meantime).

Is further development of Newmath still interesting at all, despite Unicode and OpenType fonts? I think

it is, for the reasons discussed below. But its initial objectives should be widened: to make all Unicode math

characters accessible in TEX in a standard way, but also to make math fonts easier to design or to adapt, and to

make them more usable for other typesetting systems.

Current State of Newmath

Partial implementations of the new Math Font Encodings, information about the development of Newmath,

links to articles, conference presentations, mailing list archives etc. can be found at the MFG homepage [].

The development of Newmath stopped in with version .a. The implementation was mainly done by

Matthias Clasen with help from Ulrik Vieth.

* Author’s address: typoma; Karl-Stieler-Str. , D- Holzkirchen, Germany; info@typoma.com; http://www.typoma.com

 The Math Font Group is a joint venture of the LATEX project and the TEX Users Group Technical Working Group on Extended Math

Font Encoding. For more information see the Math Font Group’s homepage [].

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode

Johannes Küster

165

Currently six encodings are de�ned:

– Math Core (MC) contains Math Italic, Greek Upright and Italic, basic delimiters and other “alphabetic”

characters (i.e. most of the characters which are really dependent on the font design and/or which are

most likely to pre-exist in a text font)

– Math Symbol Principal (MSP) contains a Calligraphic (or Formal Script) alphabet, the most important

mathematical symbols, and basic accents

– Math Symbol (MS1 or MSA) contains a Blackboard Bold (or “Doublestroke”) alphabet and additional

mathematical symbols

– Math Symbol (MS2 or MSB) contains a Fraktur (or Blackletter) alphabet, some additional delimiters

and accents, and an “Arrow Kit” (consisting of left and right arrow endings and repeatable middle parts

(with negated and gapped versions), by which a great variety of di�erent arrows at any desired length can

be composed)

– Math Extension Principal (MXP) contains text and display versions of big operators and integrals, wider

version of basic accents (hat and tilde), the larger and extensible versions of the basic delimiters, larger

root symbols, over- and underbrace parts, parts for extensible vertical arrows and bars

– Math Extension (MX1 or MXA) contains additional big operators and integrals, larger and extensible

versions of delimiters, and wider accents (vector, bar, tie, etc.).

Each of the Symbol encodings contains a complete alphabet (A–Z, a–z, digits –, dotless i and j) of a speci�c

design for use in mathematical typesetting.

Compared with TEX’s original “Math Extension” encoding, the new extension font encodings o�er a much

wider range of wide accents (sizes of each accent) and large delimiters (sizes instead of for most delimiters,

 for parentheses and non-extensible delimiters like angle brackets, plus extensible parts as necessary).

UnicodeMath

Since version ., Unicode assigns almost . codepoints for mathematical characters. Due to the way in

which Unicode evolved, and as new versions should be backward compatible, these codepoints are scattered

over many Unicode blocks (mainly over blocks in fact, of which blocks are devoted exclusively to math

characters; another blocks each contain a few characters for occasional use in mathematics).

Additional information about Unicode math is given in the Unicode Technical Report # [] and in “Math-

Class.txt” [], a �le which classi�es the Unicode math characters according to their usage and provides “a

mapping to standard entity sets commonly used for SGML andMathML documents”. The classi�cation is com-

parable to TEX’s mathematical symbol classes, with the additional classes “diacritic” (which is not handled as a

class by TEX, but by \mathaccent) and “fence” (an unpaired delimiter or a delimiter-like separator; normally

treated as \mathrel in TEX).

Glyph Variants in Unicode. Some mathematical symbols did not get a codepoint of their own, instead they can

be accessed as a combination of two Unicode codes (examples are shown below). This is the case for the negated

version of many relators, for variants of negated relators (with a vertical negation slash instead of a slanted one),

and for some symbols which are considered mere stylistic or typographic variants of another symbol.

These variants are shown in three tables in []: Table . there shows those relators with encoded negated

form for which a variant with vertical stroke overlay can be realized by composition of base character and

overlay; Table . shows those relators for which the negated form can only be realized by composition (i.e. the

negated form is not encoded itself); and Table . shows all the currently de�ned glyph variants, which can be

realized as a combination with “Variant Selector ” U+FE.

 Originally, the Math Symbol and Math Extension “Principal” encodings were named “Primary”; later this was changed to “Privilege”.

As I think neither really conveys the intended meaning, I decided to change the name to “Principal”.

TUT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

166 NewMath and Unicode

Johannes Küster

∉ U+ ∈| U+, D NOT AN ELEMENT OF

� U+, ≧| U+, D NEGATED GREATER-THAN OVER EQUAL TO

� U+ � U+, FE LESS-THAN BUT NOT EQUAL TO

Examples of Unicode variants and combinations: with U+D “vertical line overlay”,

with U+ “combining long solidus overlay” (with and without encoded negated version),

and with U+FE “Variant Selector ”

Future Additions to Unicode Math. Of course Unicode math can be and will be extended in the future. At the

time of writing, the current version of Unicode is .. (released March). A few math characters were

added in this version. Furthermore, the Unicode Pipeline Table [] shows some mathematical characters which

are currently under consideration for future inclusion in Unicode. Also newly discovered and newly invented

symbols will be standardized in future version eventually, when they are “used by a considerable number of peo-

ple.” Such possible extension have to be taken into account when designing new math font encodings for TEX.

Reasons for Newmath

To see more clearly how Unicode math could be made usable for TEX, and why Newmath could still be very

helpful, let’s see what Unicode does o�er and what it does not.

Unicode o�ers a very large set of mathematical characters, with a standardized code referring to each char-

acter. But the backward-compatibility leads to a quite unordered way in which characters are presented within

Unicode. This is not a problem for a computer program (e.g. for any automatic conversion program, work�ow

processes and the like), but it makes it di�cult for users to search for a speci�c character, or for font designers

to get an overview over all those math characters.

Unicode does not o�er any sorting or ranking of mathematical symbols, nor much information about the

importance, meaning or usage of most characters. Also Unicode encodes only base characters, thus leaving all

typographic variants aside which are needed in proper mathematical composition. Now theoretically all those

glyphs could be de�ned in one large OpenType font, by assigning glyphs in the Private Use Areas (PUA) of

Unicode, and/or by de�ning those glyphs as alternate forms of their base glyph via OpenType features. Unfor-

tunately, it is not very likely that a standard way of PUA usage will evolve for math fonts. Also, the currently

de�ned OpenType features are hardly suitable or su�cient for math fonts.

So I see many reasons why Newmath is still interesting and could be useful, despite Unicode and OpenType,

and despite any successor of TeX which will be Unicode and OpenType capable:

– Newmath o�ers a standard interface for TEX (LATEX, ConTEXt).

Currently almost each set of math fonts comes with its own encodings, which makes font switching very

cumbersome.

– Newmath will o�er all the typographical variants needed.

This comprises most of the characters in extension fonts: larger and extensible delimiters, arrows and

root symbols; text and display versions of big operators and integrals; wide accents. (This could be done

in an OpenType font as well, of course.)

– Newmath will order, sort and rank mathematical characters.

This will give a much better overview than it is possible in Unicode, making it comparatively easy to �nd

a speci�c character, to judge its importance, etc.

– Newmath could serve as a guideline to font designers.

Within Unicode, it is very hard for a font designer to identify the characters needed for mathematics, and

to seperate indispensable math characters from less important ones. In fact, most font designers will be

abhorred by the prospect of designing additional characters, of which many will be seldom used.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode

Johannes Küster

167

Here Newmath could o�er a clearly arranged and well-ordered set. For example is the math aster-

isk ∗ (U+E LOW ASTERISK) easily overlooked, as most fonts already contain an asterisk * (U+A

ASTERISK), but normally the latter is not suitable for math, which uses a larger version, six-pointed and

vertically centered at the mathematical axis.

– Newmath could be used to classify math fonts.

Currently it is not easy to judge the usability of a speci�c math font, and to gain a quick overview of its

glyph complement set. This could be made much easier by classifying the font according to the set of its

supported Newmath encodings. For example, it should be quite easy then to see that a font has all the

Unicode glyphs needed in Mathematical Logic.

Further Development of Newmath

For further development of Newmath, I see the following areas: Encodings; macros; fonts; packages and tools;

integration and interaction with other packages; additions and enhancements to TEX’s mathematical typesetting

engine.

I am mainly concerned with encodings, macros and fonts here, and my ideas for these areas are detailed in

the sections below.

The development of “packages and tools” will, for a good part, go hand in hand with the development of

macros (for LATEX, ConTEXt and plain TEX). By “integration and interaction with other packages” I mean that

Newmath should work with other math packages (e.g. amsmath or nath in LATEX), but also that Newmath could

borrow and integrate from other packages (e.g. macros in widespread use could be standardized). For possible

“additions and enhancements to TEX’s mathematical typesetting engine”, see Ulrik Vieth’s article []. Here I’m

only dealing with these aspects in the way they in�uence possible encodings.

Of course I won’t and can’t do all the necessary work alone, so anyone who wishes to help and to contribute

is invited to join the project. Also all steps in the development will be discussed on the Math Font Group’s

“math-font-discuss” mailing list (see [] for information about the mailing list and how to join it).

Development of the Encodings

General Considerations. We have to take TEX’s restrictions into account: only families of math fonts are

allowed in one formula (practically, this means in one document in most cases). Therefore the additional en-

codings should be designed in a way that minimizes the loading of additional fonts.

In a TFM �le, only di�erent non-zero heights and non-zero depths are allowed. While one could cope

with this for symbol fonts in most cases, it is a really troublesome restriction when it comes to extension fonts.

This leads to the strange vertical placement of most glyphs in extension fonts, which hinders their usability

outside of TEX. But even within TEX, it could become impossible to cope with for some fonts which di�er in

design from some of ComputerModern’s assumptions.

These restrictions should be overcome by any successor of TEX, maybe best with a new “math font metrics”

format, but for the time being, the encodings should deal with them as good as possible.

But the encodings and macro packages should not be tied too closely to TEX and the current situation; they

have to be �exible enough to be extendable – to other typesetting traditions like those of traditional Russian

mathematical typography, and to font sets which bring their own extensions and special macros, like the Math-

Time Pro fonts.

The Existing Encodings. I consider Math Core as fairly stable. Maybe about characters could be moved to

another encoding. This would allow to include a few Roman characters like e, i, and maybe D (MathCore

 For example, only italic variants of , э, and Ý are encoded here; moving these to an additional font-dependent encoding would allow

to encode their upright variants there as well.

TUT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

168 NewMath and Unicode

Johannes Küster

already contains “d”, and these single Roman letters are quite common in mathematical typography; inclusion

in MathCore would allow kerning with Math Italic letters); but this may sacri�ce compatibility with the old

math font setup.

Both Math Symbol Principal and Math Symbol One are stable as well, maybe with one or two questionable

characters in each one, and with about yet unassigned codepoints in MS 1. The additional Unicode symbols

supply some obvious candidates for inclusion here.

ForMath Symbol Two, I think that the Fraktur digits are a misunderstanding (the “Fraktur digits” currently

included here stem from the Euler fonts, but apparently these are intended as Euler Roman old-style digits; while

proper Fraktur digits – clearly visually seperate from Roman digits – just do not exist). So old-style (tabular)

digits should be put here, at least for math fonts which bring their own digits, like Euler. But in general, putting

old-style digits here would make this encoding dependent on the text font used. A better way could be to

put old-style digits in an additional, font-dependent encoding (alongside with additional letters and letterlike

symbols which don’t �nd a place in MathCore).

The Arrow Kit could be moved to an encoding of its own, as many more arrow pieces could be added then

(Unicode features many additional arrows; some of these are candidates for extensible arrows).

The case is di�erent for the extension fonts: maybe the whole encodings should be overthrown, maybe we

should sacri�ce compatibility with older documents here in favour of a clearer layout. By putting e.g. root,

accents, and over- and underbrace into one encoding, and putting delimiters and big operators into a second

one, most glyphs could be brought to their natural position, which would ease the design and greatly improve

the general usability of such fonts.

New Additional Encodings. For the remaining Unicode math characters (i.e. for the characters not yet encoded

in Newmath), we have to design new, additional encodings. First, let’s see howmany additional characters there

are, and how many additional forms (like larger delimiters) we need. The following table gives a rough number

for the additional characters in each class, with the number of additional codepoints needed in TEX:

Arrows: 250 + arrow kit pieces: 100

Binary Operators: 130

Geometric Symbols: 100

Miscellaneous Symbols: 30

Ordinary Symbols: 90

Punctuation: 15

Relators: 230 + negated variants: 100

Z Notation: 10

Accents and Overlays: 30 + in extension fonts: 90

Big Operators: 0 + in extension fonts: 40

Delimiters: 45 + in extension fonts: 450

Integrals: 25 + in extension fonts: 50

Total number of glyphs: 955 + in symbol fonts: 200

+ in extension fonts: 630

This would mean or additional symbol font encodings (possibly including or arrow kit encodings), and

 or additional extension font encodings.

To minimize the loading of additional fonts, and to o�er clearly arranged font layouts (both to users and

to font designers), we should sort and group the Unicode characters, according to importance, meaning, and

area of use (within mathematics). For example, all symbols speci�c to one �eld of mathematics should be kept

together in one encoding (e.g. logic, geometry, or z-notation symbols).

 Many OpenType fonts come with (at least) four sets of digits: lining and old-style, each as proportional and as tabular. For math,

tabular digits are used, where all the digits have the same width.

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode

Johannes Küster

169

Most documents will only need a limited set of mathematical symbols, and well-designed encodings should

make it possible to keep within TEX’s restriction to math font families in most cases – without the need for

mid-document changes of math encodings.

Unfortunately Unicode does not provide much information neither about the use of a speci�c character nor

about its �eld of use, so many characters need some research before one could group them properly into an

encoding.

Macros and Packages

Along with the new encodings, we do need standard macro names to access those glyphs. Again, any informa-

tion about the meaning of a character is very helpful here, as then the macro could be named accordingly. For

some characters, this is a rather straightforward task.

Ideally, these macro names should be the same in all TEX based systems (especially in plain TEX, LATEX and

ConTEXt). Of course one has to develop a “Newmath” package (or �le bundle) for each system, but these macro

de�nitions will form the core of each such package and will essentially remain the same.

For LATEX, the current version of Newmath already supplies the necessary �les, so we just have to extend

these accordingly. When Newmath development ceased in , ConTEXt was not very widespread yet, but now

Newmath should of course support it (and vice versa).

TEX’s existing math macro names could be broadly categorized as

– descriptive (describing the shape, e.g. \uparrow)

– semantic (describing the meaning, e.g. \sum, \times)

– mixed (partly semantic, partly descriptive, e.g. \otimes).

Obviously Knuth employed the following scheme: any symbol with one �xed meaning gets a macro name

according to its semantics (thus, \sum and not \bigsigmaup or whatever). Any symbol without �xed or with

more-than-one meaning gets a macro name describing the shape. And the mixed names come in for symbols

where the base symbol or a component of the symbol has a semantic name already, but where the meaning of

the combined symbol is not clear or not �xed. Of course the new additional macro names should follow this

scheme, using a semantic name whenever possible.

In addition, Newmath could be extended to gather macros in widespread use, which could be standardized

by including them inNewmath packages. Examples of suchmacros are \abs{...} and \norm{...}. Supplying

such a standardized set of (alternative) semantic macros could be very helpful to many users. In fact, by using

well-chosen semantic macros, a TEX source sometimes can be more readable than its pretty-printed output –

and of course it greatly helps in conversion e.g. to ContentMathML or OpenMath.

LatinModernMath Fonts

Encodings, macro packages, and tools are only useful together with fonts. Freely available math fonts could be

extended and reencoded, and commercial math fonts could be mapped to the new encodings via virtual fonts

(but in most cases they will lack many of the additional glyphs). A good part of this work (on ComputerModern

extension and on virtual fonts for other math fonts) has been done already in the last version of Newmath, of

course based on the math fonts available at that time. For the future development, it doesn’t seem to be a very

useful approach to extend the Metafont sources of ComputerModern, as most users would want PostScript

Type or OpenType fonts. Instead, I think of extending the LatinModern fonts.

The LatinModern math fonts will be a set of freely available math fonts, for use with LatinModern text

fonts. I will design and develop these fonts (with the help of anybody who volunteers to work on these fonts).

However I did not start to work on these fonts yet, so I can only give an account of my ideas and intentions here.

TUT08 Proceedings EuroTEX2005 – Pont-à-Mousson, France

170 NewMath and Unicode

Johannes Küster

I will do the development inMetaType, so the resulting fonts will be in Type format and could be wrapped

as (CFF �avoured) OpenType, too. In general, the design will follow ComputerModern math fonts, with ver-

sions of each glyph: weights (regular and boldface) times optical sizes (/ / pt, or rather “Tiny”, “Caption”,

“Regular”, as the fonts will be freely scalable of course). But the number of glyphs will be considerably extended,

to comprise the complete set of Unicode math characters together with all characters de�ned in Newmath.

Neither the design nor the metrics of the fonts will be completely compatible with ComputerModern: the

design should be more “of a piece” than with ComputerModern and its various extensions (just one example

of such a mis-match: the Hebrew letters Beth, Gimel, Daleth from the AMS fonts do not match the design of

CM’s Aleph, they rather match the Euler fonts’ Aleph); and metrics will be changed as needed (e.g. many new

kerning pairs will be possibly due to the extended encodings).

By default, these fonts will be encoded in the Newmath standard, thus o�ering a freely available implemen-

tation of the standard. But by the MetaType approach the fonts will be independent of any de-facto encoding

– so one could rather easy adapt them to further Newmath development, to di�erent encodings, or even to the

requirements of other typesetting applications.

References

[] Math font group project homepage. http://www.tug.org/twg/mfg/

[] Barbara Beeton, Asmus Freytag, and Murray Sargent III. Unicode technical report #: Unicode support for

mathematics. http://www.unicode.org/reports/tr25/

[] MathClass-.txt – Classi�cation of math characters by usage.

http://www.unicode.org/reports/tr25/MathClass-6.txt

[] Unicode proposed new characters: The pipeline table.

http://www.unicode.org/alloc/Pipeline.html

[] Ulrik Vieth. Math typesetting in TEX: The good, the bad, the ugly. In: EuroTEX (proceedings of the

th European TEX conference, Kerkrade, the Netherlands), pages –, .

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode

Johannes Küster

171

Latin Modern fonts: how less means more

Bogusław Jackowski and Janusz M. Nowacki

Well, less is more . . .

Robert Browning, “Andrea del Sarto,” 1855.

1 Introduction

The Latin Modern project was launched during the
13th European and 10th Polish TEX Conference,
May 2002, Bachotek, Poland. The aim was to prepare
a family of outline fonts, compatible with Computer
Modern fonts ([8]), but, unlike CMs, equipped with a
rich collection of diacritical characters.

At that time, two solutions to the problem ex-
isted: (1) Lars Engebretsen’s AE (Almost EC, [3])
family of virtual fonts, based on Computer Modern
fonts in PostScript Type 1 format released by AMS;
(2) Vladimir Volovich’s collection of PostScript Type 1
fonts, CM-Super ([15]). Engebretsen’s approach has
an important drawback—virtual fonts can be used
only with TEX. From this point of view, Volo-
vich’s CM-Super fonts would be a better choice. The
fonts were produced by Péter Szabó’s TEXtrace ([12])
which, in turn, is based on Martin Weber’s Auto-
trace ([16]). Volovich’s achievement is really impres-
sive, nevertheless we would cast doubt upon the qual-
ity of the outlines of glyphs. This is perhaps the in-
trinsic drawback of the autotracing approach. More-
over, there is a problem with the size of the CM-Super
package. It contains more than four hundred fonts;
the size of the PFB files is almost 60 MB. Finally, it is
not easy to to repeat the process of the font generation
if changes are needed, as manual tuning was involved.
(A comprehensive discussion of alternative approaches
can be found in [5], [6], and particularly [11].)

Finding the situation unsatisfactory, some repre-
sentatives of European TEX Users groups decided to
prepare yet another family of fonts, Latin Modern, be-
ing in a way a continuation of Engebretsen’s approach,
but going further: the aim was to comprise all exist-
ing Latin-based alphabets, not necessarily European.
We were invited to lead the project, which we gladly
accepted.

2 The initial stage of the LM project

Like Engebretsen, we decided to make use of the Com-
puter Modern fonts in the PostScript Type 1 for-
mat, released by AMS. But being bent on working
with human readable sources, we decided to employ
our (anyway favourite) METAPOST-based program,
METAT ([6], [7]). One of the modules of the METAT

package is a converter from PostScript fonts to META-
POST sources. So, the first step was the conversion of
PostScript Type 1 fonts to METAPOST sources that
were to be manually adjusted.

The decision was not obvious at all. The main
disadvantage of such an approach is the “freezing”
of parameterization. As an alternative, we consid-
ered a conversion of METAFONT CM sources into
METAT-conforming ones. It turned out, however, that
this method, although practicable, would be time-
consuming. Taking into account that our main goal
was the extension of the standard TEX fonts with
diacritical characters, we abandoned eventually the
idea of working with METAFONT sources, although
access to the CM parameterization is provided (see
section 4.1).

3 Interim stages of the LM project

The LM family of fonts has been developing evolution-
ary. Our main concern, as already mentioned, was
the enhancement of the character set, but, as a re-
sult of pressure from users, the number of fonts also
increased.

3.1 Serious matters and trifles

The number of glyphs per font grew from less than
two hundred to more than six hundred. Also, the
number of fonts grew. We started with 50 fonts (fol-
lowing Engebretsen); currently, the LM family con-
tains 57 fonts. Among them are fonts that do not
belong to the “Knuthian canon,” for example, the
bold companion for cmssq8 and cmssqi8 (prepared
by Pierre A. MacKay)—see [5], p. 67, for the com-
plete list of LM fonts. The increase of the number of
glyphs resulted of course in the rapid growth of the
number of kern pairs.

The augmentation of the LM family of fonts was
certainly the most important part of the whole enter-
prise. We wrote several tools (mostly awk scripts) that
helped to control the herd of glyphs and interdepen-
dences between them— it is unimaginably difficult to
fiddle with dozens of thousands of glyphs and hun-
dreds of thousands of kern pairs by hand.

As we pointed out in [5], the lion share of our
time was spent on the struggle against tiny details
and exceptions. We were not expected to come up
with brand-new concepts. On the contrary, we had
to comply with the established practice. This, as it
turned out, necessitated looking closely into lots of
various aspects.

One can call most of these problems trifles, but
their amount, relating of course to the size of the
project, created a real problem. Such “trifles” had
to be carefully analysed and even if the result of the
analysis was simply “let’s do nothing,” it took time.
Listing all details would be impracticable, but we can-
not resist to mention just a few in order to demon-
strate how seemingly less important things may cause
more trouble.

TUT09 Proceedings EuroTEX2005 – Pont-à-Mousson, France

172 Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

Figure 1: A seemingly innocuous asymmetry of double
quotes turned out to be fairly bothersome; PostScript
names of the glyphs have been used for the description.

3.2 Detail 1: asymmetry of double quotes

One of such problems turned out to be, somewhat
unexpectedly, the asymmetry of double quotes (see
figure 1). Observe that single quotes are positioned
symmetrically, while double ones are not. This is the
CM fonts heritage: the glyphs quoteleft (reverse apos-
trophe), quoteright (apostrophe), quotedblleft (open-
ing quotes), and quotedblright (closing quotes) were
designed by Donald E. Knuth ([8], p. 140 – 141 and
p. 280 – 281), who decided to introduce asymmetry.
But the glyph looking like an English opening quote is
used in some languages, for example, Czech and Ger-
man, as a closing one. Therefore, Czech TEX users
introduced a special glyph with differently asymmet-
ric sidebearings (quotedblright.cs in figure 1) in their
variant of CM fonts. In consequence, the character
quotedblbase (used as an opening quote, for exam-
ple, in Czech, German, and Polish) also inherited the
asymmetry1.

The proliferation of glyphs caused by the asym-
metry of quotedblleft and quotedblright is of course a
disadvantage because fonts needlessly swell. We de-
cided, however, to inflate them even more: symmetric
quotes were provided as an alternative. We believe
that only the latter ones should be used, but because
of the remnants of history, the problem cannot be re-
solved once forever—asymmetric quotes should be re-
tained.

1 For historical reasons, the glyphs quotedblbase and

quotedblbase.cs slightly differ; the latter is placed asymmetri-

cally also in typewriter fonts.

3.3 Detail 2: non-uniform width of accents

Typically, accents should have the same width. This
is, however, not the case with CM fonts: cedilla,
dotaccent and ring have widths different from the
remaining accents, that is, acute, breve, caron,
circumflex, dieresis (umlaut), grave, Hungarian um-
laut, macron, and tilde, all of which have the same
width of 1/2 em. We cannot say why cedilla and
dotaccent are an exception. The idea behind the ex-
traordinary width of ring can be easily understood if
one inspects the code of the plain TEX ([9]) macro \AA
which typesets the symbol Å (Aring). The glyph ring
is designed to align with the top of the letter A:

\def\AA{\leavevmode\setbox0\hbox{!}%
\dimen@\ht0\advance\dimen@-1ex%
\rlap{\raise.67\dimen@\hbox{\char’27}}A}

It is tempting to have a unique width for all ac-
cents. But this would mean upward incompatibility,
as the \AA macro would cease to work. On the other
hand, it is not urgently needed, as Aring obviously
belongs to the repertoire of LM glyphs. Perhaps the
cure would be to introduce alternative accents and
use the odd-sized ones only with TEX, and only when
compatibility is needed, for example, if the LM fonts
are to be used as a replacement for CMs (see section
4.2). But, as we complained already in section 3.2, a
supererogatory increase of the number of glyphs would
be an obvious disadvantage.
The plain TEX macro \AA is not the only one

that heavily exploits the metric properties of CMs.
The macros \l and \L (which define glyphs lslash
and Lslash, respectively) also are defined in a CM-
dependent manner. Both macros rely on the assump-
tion that there is a special glyph in slot 32 (suppress;
of course, the width of this “accent” glyph is different
from a typical one) and that there are specific, un-
usually large kerns between this glyph and the letters
l and L:

\def\l{\char32l}
\def\L{\leavevmode\setbox0\hbox{L}%
\hbox to\wd0{\hss\char32L}}

For example, the respective kern amounts in cmr10 are
−2.78 pt and −3.19 pt, while other kerns are generally
in the order of a fraction of a point.
There are two intrinsic problems with suppress:

(1) it does appear in worldwide standards, such as
Unicode ([14]) or Adobe Glyph List ([2]), although
lslash and Lslash appear there (the Unicode standard
uses the name stroke instead of slash); (2) accord-
ing to ASCII, slot 32 should be occupied by the space
glyph. The result is easy to predict: most non-TEX
fonts will not work properly with plain TEX and most
non-TEX software will not work properly with stan-
dard TEX fonts. . .

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

173

Figure 2: The lowercase letters in CM caps and
small caps fonts, that is, cmcsc10 (top) and cmtcsc10
(bottom), are higher than the nominal x-height ; this may
befool some typesetting programs which may assume
that lowercase letters should be accented without an
additional vertical shift of the accent—the potential
disastrous results are shown to the right; TEX rises
an accent by the difference between the ex unit and the
actual height of an accentee.

3.4 Detail 3: bogus x-height in small caps

One might expect that x-height (that is, the ex unit
in TEX) is approximately the height of the lowercase
letter x. True, but it depends on the accuracy of ap-
proximation. The difference between the x-height and
the height of the lowercase x is queerly large in CM
caps and small caps (see figure 2). For example, in
cmcsc10 it reaches 0.83 pt. The answer to this riddle
is simple: all roman fonts of the CM family have exactly
the same value of x-height ; in other words, cmcsc10’s
x-height is the height of the cmr10’s lowercase x. This
discrepancy is harmless, if not advantageous, for TEX,
but if the fonts are to be used outside the TEX world,
then one may expect weird results if a given system
is capable of making composed characters. Neverthe-
less, we adopted the CM convention for the LM fonts
in the hope that if a font is used in a different environ-
ment, all necessary characters that could potentially
be composed will be already in it.

4 The present stage of the LM project

The project seems to be approaching a development
plateau: in comparison with the state of the art re-
ported in [5], the number of fonts was not changed,
although the repertoire of characters has been aug-
mented by approximately one hundred glyphs per
font—now each font contains circa 650 glyphs. In
particular, diacritical characters for Vietnamese and
Navajo alphabets have been added—many thanks to
Hàn Th´̂e Thành, Karl Berry and Hans Hagen for their
warm-hearted help.

As was mentioned, the LM family of fonts devel-
oped evolutionary. Everybody knows that evolution is
capable to bring forth really bizzare creatures. So were

the METAT sources of the LM fonts after two years of
evolution. Two years more—and we would be lost in
them. Hence the decision to repeat the initial step:
the METAT sources were once more generated from
the now current LM fonts in PostScript Type 1 for-
mat. Of course, manual tuning was again necessary,
as the structure of automatically generated sources is
not always fit for a particular purpose. The newly
generated sources turned out to be satisfactorily legi-
ble, so we decided to release them publicly. Thus, one
of the project’s main goals was reached.

4.1 Structure of the LM sources—an

overview

The LM family of fonts consists of a few general pur-
pose files and files containing specific data for every
font (see the listing of a sample driver file below). The
data for each font is split into five files that contain:

metric data,

PostScript-oriented data,

encoding data,

the definition of shapes of basic glyphs,

the information about ligatures and kerns.

All these files are governed by a single driver that
inputs them—see lines 5, 6, 7, 10, and 13 in the listing
below:

1 % A driver file for lmb10 Latin Modern font
2 input fontbase;
3 vardef cm_pal = "cmb10" enddef;
4 input comm_mac; % common defs, CM params
5 input lmb10.mpm; % metric
6 input lmb10.mph; % PS-oriented header
7 input lmb10.mpe; % encoding
8 input comm_mph; % common header
9 beginfont
10 input lmb10.mpg; % ‘‘frozen’’ glyphs
11 input comm_mpg; % common glyphs (diacritics)
12 if known generating:
13 input lmb10.mpl; % ligatures and kerns
14 fi
15 endfont

There is no parameterization in these files. All en-
tities are defined using bare numbers. The files are
assumed to be “frozen” and are not expected to be
altered in the future, unless new basic characters are
added or severe bugs are spotted. The exception is, of
course, the encoding file (line 7) that can be modified
as need be.
Each LM font is associated with its CM pal

(line 3). The respective CM driver file is being read
and its parameters are stored for further use; they
are exploited, for example, in the file comm_mpg.mp
(line 11) by the programs defining the characters de-
picted in figure 3.
The comm_mpg.mp file is actually a “pivot” of the

LM fonts. Its main purpose is to define accented

TUT09 Proceedings EuroTEX2005 – Pont-à-Mousson, France

174 Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

glyphs, that is, diacritical characters that can be de-
fined as composites. But not only. The file begins
with three peculiar inputs:

input gly_euro.mp;
input gly_guil.mp;
input gly_vspa.mp;

The files being input are exceptional as they do not
define accented characters. They contain a paramet-
ric METAFONT-based code for the following glyphs:
euro (gly_euro.mp), guillemotleft, guillemotright,
guilsinglleft, guilsinglright (gly_guil.mp), and visible
space (gly_vspa.mp). The selection of glyphs is more
or less arbitrary. The glyphs could be “frozen” as well;
however, we decided to leave them in order to demon-
strate what the METAFONT code would look like after
a manual conversion to the METAT jargon.
Next, the definitions of letters i and j come. If

one is surprised, one shouldn’t. After all, the letters i
and j are simply dotlessi and dotlessj accented with
dotaccent.
Then, the main part of the comm_mpg.mp file en-

sues. It reads as follows:

%% \vb\- Aacute:\- \PICT{Aacute}\-
acc_glyph(_A)(_Acute)(_Aacute);

%% \vb\- aacute:\- \PICT{aacute}\-
acc_glyph(_a)(_acute)(_aacute);

%% \vb\- Abreve:\- \PICT{Abreve}\-
acc_glyph(_A)(_Breve)(_Abreve);

%% \vb\- abreve:\- \PICT{abreve}\-
acc_glyph(_a)(_breve)(_abreve);

%% \vb\- Abreveacute:\- \PICT{Abreveacute}\-
acc_glyph(_A)(_breveacute)(_Abreveacute);

...

The details of the code are unimportant—
the reader is expected to understand what is going
on here without arcane knowledge of the METAFONT

language. We only mention that the persistently ap-
pearing macro acc_glyph automatically generates an
accented character and that lines beginning with a
double percent are meant for the preparing of proofs
of a font.
The code looks a bit boring. Indeed, the major-

ity of diacritical characters are composed using the
macro acc_glyph which roughly corresponds to the
TEX \accent primitive. In particular, the Vietnamese
diacritics are defined in this way (see [4] for the details
concerning the Vietnamese alphabet).
Note that there are different accents for upper-

case and lowercase letters, for example, Acute and
acute. Note also that double accents in the LM fonts,
such as breveacute, are not defined using the macro
acc_glyph, that is, they are supposed to belong to
the basic set of glyphs. They might have been defined
as composed objects, but this would increase the com-

Figure 3: A group of diacritical characters
in the LM fonts for which accents were positioned
by hand. Note that although the suffix caron
misleadingly appears in the glyph names, it is not
an element of the respective glyphs.

plexity of the fonts (for example, abreveacute would
depend on a and breveacute and the latter, in turn,
would depend on breve and acute), which we wanted
to avoid. Moreover, in some cases subtle adjustments
were needed. Therefore, we decided to “freeze” the
double accents, once they had been created.

There are, however, several glyphs that cannot be
obtained in a simple manner (see figure 3). In the LM
fonts, the following glyphs are specially programmed:
dcaron, gcommaaccent, Lcaron, lcaron, tcaron, and
ydotbelow. A punctilious reader may wish to examine
the source code for the details of the implementation.

The final part of comm_mpg.mp defines duplicated
glyphs, that is, glyphs of the same shape, but dif-
ferent names. For example, we decided to keep the
glyphs named Tcedilla and tcedilla for historical rea-
sons, although their proper names are Tcommaaccent
and tcommaaccent (see [5], p. 70 – 71). Such dupli-
cation increases of course the size of a font, but not
excessively. As already mentioned in [5] (p. 71), the
duplication of a character adds only 30 – 40 bytes to
a font. This is done by a METAT module which com-
presses PostScript Type 1 fonts. The module defines
multiple occurrences of the same PostScript code as
subroutines. In particular, whole characters can be
defined as subroutines. This means that only the code
that invokes these subroutines is to be added. Thus,
the duplication of glyphs is moderately harmful which
does not mean that it is always reasonable. In future,
some of the duplicated glyphs might be deleted.

4.2 Using LM fonts with other tfm files

Obviously, as shown in [5], full LM and CM font com-
patibility can not be expected, that is, LM metric files
cannot be used instead of CM ones. Still, it is possible
to use LM fonts as a replacement for a subset of CMs:
one should use CM metric files, a few special encoding

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

175

files and a special font map file for the dvips driver.
A typical line (broken here into two lines for technical
reasons) from the relevant font map file for CM fonts
looks as follows:

cmb10 LMRomanDemi10-Regular
"enccmrm ReEncodeFont" <cmrm.enc <lmb10.pfb

This line says that TEX should use the metric file
cmb10.tfm for typesetting, while the dvips driver
should embed files lmb10.pfb and cmrm.enc instead
of respective files for the CM fonts. Because the di-
mensions of the glyphs occuring both in the LM and
CM fonts are the same (within the accuracy of round-
ing errors) and glyph shapes are very similar to each
other, a user should not notice any difference, unless
there is a bug in the LM fonts.
We hope that this solution will prove sufficient in

most of practical cases. Similar files are provided for
the PL and CS fonts, that is, for the Polish and Czech
variants of the CM fonts. At present, work is being
done on the support for VNS, that is, the Vietnamese
variant of the CM fonts.

4.3 LM fonts in the OpenType format

The PostScript Type 1 format is claimed to be ob-
solete since many years. Actually, all PostScript en-
gines support Type 1 fonts and are expected to sup-
port them also in the future. Recently, however, the
OpenType format becomes a worldwide-accepted stan-
dard (see, for example, [10]). We believe that the TEX
world should acquiesce to this. Therefore, we also pre-
pared the collection of the LM fonts in the OpenType
format.
The current release of the OpenType LM fonts

should be considered experimental, although we gath-
ered some experience during the preparation of the
OpenType fonts for the Antykwa Toruńska family. We
employed the Adobe Font Development Kit for Open-
Type (free but not open; see [1]) for the conversion
from the PostScript Type 1 to OpenType format. An
alternative could be FontForge, a marvellous openware
font program by George Williams (see [17]). Cur-
rently, AFDKO better suits our purpose, but as Font-
Forge is being constantly developed we hope to switch
to it before long.
One of the most important innovations intro-

duced in the OpenType format are so called features.
These are tags that provide additional information
about how to use the glyphs in a font. So far, five
features have been built into the OpenType LM fonts:

cpsp (Capital Spacing).

dlig (Discretionary Ligatures),

frac (Fractions),

liga (Standard Ligatures),

onum (Old Style Numerals).

The availability of these features depends upon
application support, for example, the Adobe InDe-
sign program under the control of the Microsoft Win-
dows 98 operating system offers all of them (see fig-
ure 4), whileMicrosoft Word 2002 in the same system
ignores OpenType features.
Perhaps the toughest problem is the grouping of

LM fonts into subfamilies. The idea of a series of
point sizes, as implemented by Knuth in the CM fonts,
seems to be athwart the nowadays praxis. Never-
theless, we followed the Knuthian tradition—see fig-
ure 4. Feel warned, however, that the adopted group-
ing may likely change after consultations with experi-
enced OpenType users.

5 Conclusions

As one can infer from the title of the paper, our aim
was to obtain a product handy in use at the price of
abandoning features that—as far as we perceive it—
are only moderately usable.
Just two examples:

There are some fonts in the CM family that we
never happened to use: cmff10 and cmfi10. We
decided not to include such fonts into the LM fam-
ily.

We did not follow the idea underlaying the EC
fonts to provide a complete series of font sizes
(our arguments are set forth in [5], p. 66), unlike
Volovich with his CM-Super fonts.

It is for the users to judge whether the goal was
achieved.
Actually, the LM family of fonts in many respects

offers simultaneously less and more, not always un-
equivocally, for example:

The number of fonts is less than in the CM family,
but the repertoire of characters in each font is
much larger.

The LM parameterization is limited in compar-
ison with the CM one, but we expect the po-
tential modifications and augmentations of LMs
to be easier, although the LM sources are much
larger (6 MB after a compression) than the CM
ones. Note that LM fonts take up much less space
than the CM-Super ones (but reckoning with the
uncompressed LM sources, the sizes become com-
parable).

If the LM family would become a basic set of fonts
for TEX (which we hope for), then the national
variants of the CM fonts (PL, CS, VNS) could be
dismissed, which would introduce more order into
the TEX font distribution.

The area of possible applications for the LM fonts
is broader in comparison with the TEX fonts avail-
able so far, because of the furnishing of the LM
distribution with the OpenType format.

TUT09 Proceedings EuroTEX2005 – Pont-à-Mousson, France

176 Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

Figure 4: The OpenType LM family of fonts as seen by the Adobe InDesign program. Note that Adobe Type Manager
used to accept subfamilies that contained at most four variants of a font, that is, normal, italic, bold, and bold italic.
This is no longer the case with OpenType fonts— see the list displayed in the right part of the screen shot.

Although the LM glyph repertoire is already fairly
rich, it can and should be extended further:
the next step will be perhaps the addition of
glyphs specific for African Latin-based alphabets
(cf. [13]). It is not within the scope of the project,
however, to include Cyrillic and Greek alphabets.

There is, however, at least one case where more
means a not wanted more: the significantly large reper-
toire of glyphs per font means that the one-to-one cor-
respondence between an LM font and its metric no
longer exists and that a multitude of font metric files
can be generated for a given font. This abundance is
not necessarily what we want. But as long as TEX
accepts 1-byte fonts only, the situation cannot be im-
proved. This, however, is quite a different story.

The LM project is not finished yet. As all of us
were taught by Donald E. Knuth, the debugging of
software is a never-ending task and therefore software
projects never end. But apart from fixing bugs, when
the LM project reaches the stage of stability of metric
data, we will consider the project essentially finished.
Having legible sources, we are fairly optimistic—as
far as we can assess, the LM project is rather more
than less accomplished.

The current version, 0.98, of the LM fonts dis-
tribution is available either from CTAN or from ftp:
//bop.eps.gda.pl/pub/lm.

6 Acknowledgements

The Latin Modern project is supported by European
TEX Users Groups, in particular by the German-
speaking TEX Users Group DANTE e.V., the French-
speaking TEX Users Group GUTenberg, the Pol-
ish TEX Users Group GUST, the Dutch-speaking
TEX Users Group NTG, and, last but not least,
by TUG—very many thanks. We would like to ex-
press our gratitude also to Harald Harders for prepar-
ing and maintaining the web page “Wishes for Latin
Modern” (http://www.harald-harders.de/latex/
lmodern.html) and to Jurek Ludwichowski for his
willingly offered help, not only during the preparation
of this paper.

References

[1] Adobe Font Development Kit for OpenType,
http://partners.adobe.com/public/

developer/opentype/afdko/topic.html

[2] Adobe Glyph List, ver. 2.0, September 20,
2002, http://partners.adobe.com/public/
developer/en/opentype/glyphlist.txt

and Adobe Glyph List For New Fonts, ver. 1.1,
April 17, 2003, http://partners.adobe.com/
public/developer/en/opentype/aglfn13.txt

[3] Lars Engebretsen, AE fonts,
http://ctan.org/tex-archive/fonts/ae/

[4] Hàn Th´̂e Thành, Making Type 1 fonts for
Vietnamese, TUGboat 24(1), Proc. of the 24th

Proceedings EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

177

Annual Meeting and Conference of the TEX
Users Group, p. 69 – 84

[5] Bogusław Jackowski, Janusz M. Nowacki,
Enhancing Computer Modern with accents,

accents, accents, TUGboat 24(1), Proc. of the
24th Annual Meeting and Conference of the
TEX Users Group, p. 64 – 74

[6] Bogusław Jackowski, Janusz M. Nowacki,
Programming PostScript Type 1 Fonts Using

METAT: Auditing, Enhancing, Creating,
Proc. of 14th EuroTEX, June 24

th – 27th 2003,
Brest, France, p. 151 – 157

[7] Bogusław Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, METAT: A METAPOST-based

Engine for Generating Type 1 Fonts, Proc. of
EuroTEX 2001, 27

th – 27th September, 2001,
Kerkrade, the Netherlands, p. 111 – 119; the
current version of METAT is available from
ftp://bop.eps.gda.pl/pub/metatype1;
METAT for Linux prepared by Wlodek Bzyl can
be downloaded from ftp://ftp.ctan.org/
tex-archive/systems/unix/mtype13/

[8] Donald E. Knuth, Computer Modern Typefaces,
Computers & Typesetting / E, Addison Wesley,
1986

[9] Donald E. Knuth, plain.tex, http:
//www-cs-faculty.stanford.edu/~knuth/

plain.tex.gz

[10] OpenType specification version 1.4,
http://www.microsoft.com/typography/

otspec/

[11] Karel Ṕı̌ska, Creating Type 1 fonts from
METAFONT sources: Comparison of tools,

techniques and results, Preprints for the
25th Annual TUG Meeting, August 30th –
September 3rd 2004, Xanthi, Greece, p. 54 – 64

[12] Péter Szabó, TEXtrace,
http://www.inf.bme.hu/~pts/textrace/

[13] Conrad Taylor, Typesetting African languages,
http://www.ideography.co.uk/library/

afrolingua.html

[14] The Unicode Standard 4.0. Final Unicode 4.0
names list, http://www.unicode.org/Public/
UNIDATA/NamesList.txt

[15] Vladimir Volovich, CM-Super Font Package,
ftp://ftp.vsu.ru/pub/tex/font-packs/

cm-super/

[16] Martin Weber, Autotrace,
http://autotrace.sourceforge.net/

[17] George Williams, FontForge—An outline font
editor, http://fontforge.sourceforge.net/

⋄ Bogusław Jackowski
BOP s.c., Gdańsk, Poland
_JB ackowski@gust ·org ·pl

⋄ Janusz M. Nowacki
Foto-Alfa, Grudziądz, Poland

·NJ owacki@gust ·org ·pl

TUT09 Proceedings EuroTEX2005 – Pont-à-Mousson, France

178 Latin Modern fonts: how less means more

Bogusław Jackowski, Janusz M. Nowacki

Bibliography Styles Easier with MlBibTEX

Jean-Michel HUFFLEN
LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

We emphasise and discuss some methodology about writing bibliography styles
using the nbst language, part of MlBibTEX. Most of the given tricks can also be
applied to developing styles using xslt, since nbst extends it closely. Last we
show that the organisation of a bibliography style in several files allows modular
decomposition.
Keywords: bibliographies, methodology, bibliography styles, multilingual fea-
tures, BibTEX, MlBibTEX, bst, nbst, xml, xslt.

Résumé

Nous dégageons et argumentons quelques méthodes d’écriture de styles bibliogra-
phiques au moyen du langage nbst de MlBibTEX. La plupart des conseils donnés
peuvent également s’appliquer au développement de styles en xslt, le langage
nbst en étant assez proche. Enfin, nous montrons en quoi l’organisation des di-
vers fichiers d’un style bibliographique permet une décomposition modulaire.
Mots-clés : bibliographies, méthodologie, styles bibliographiques, multilin-
guisme, BibTEX, MlBibTEX, bst, nbst, xml, xslt.

Zusammenfassung

Es werden einige Methoden dargelegt und untergesucht, um bibliographische Sty-
les in der Sprache nbst zu schreiben. Da nbst mit xslt nah verwandt ist, kann
diese Anleitung auch für die Programmierung der Styles in xslt helfen. Am Ende
wird an der Aufteilung der bibliographischen Styles in einzelne Dateien gezeigt,
dass eine modulare Dekomposition möglich ist.
Stichwörter: Bibliographien, Methodik, bibliographischen Styles, mehrsprachi-
gen Funktionen, BibTEX, MlBibTEX, bst, nbst, xml, xslt.

Introduction

This article aims to give some methodology about
the development of bibliography styles, that is, spec-
ifications that rule the layout of references put in
the ‘Bibliography’ section of a document, these ref-
erences being built from entries located in bibliog-
raphy data bases.

When we started the development of our pro-
gram MlBibTEX (for ‘MultiLingual BibTEX’) [9], we
were interested in going thoroughly into multilingual
aspects for a bibliography processor belonging to the
programs of TEX’s family and especially, generat-

ing bibliographies as source files for the LATEX word
processor [22], like BibTEX [26]. More precisely, we
aimed to put into action an ‘extended’ BibTEX with
multilingual features comparable with LATEX’s. An-
other example of such an extension is given by the
babelbib package and the bibliography styles in in-
terface with it [7].

As we explained in [12], we think that such
organisation —adopted for MlBibTEX’s first version
[9]— leads to complicated bibliography styles, since
the language bst [25], used within BibTEX, is not
modular: each style is a monolithic program put in

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

179

@INPROCEEDINGS{thys1997,

AUTHOR = {first => Frank,

last => Thys},

TITLE = {Auf der {Spur} des

{Vernichters}},

BOOKTITLE = {Dinoland},

EDITOR = {first => Wolfgang,

last => Holbein},

PAGES = {353--437},

PUBLISHER = {Bastei L\"{u}bbe},

ADDRESS = {Bergisch Gladbach},

YEAR = 1997,

MONTH = aug,

LANGUAGE = german}

Figure 1: Entry using MlBibTEX’s syntax.

only a single file, so if we would like to add multi-
lingual features, we have to extend each style sepa-
rately. This point and others decided us to develop a
new language, so-called nbst, for ‘new bibliography
styles’, close to xslt1, the language of transforma-
tions for xml2 documents. We think that such a
choice is good, since xml becomes a central formal-
ism for document interchange. In particular, using
nbst eases the production of bibliographies for xml
documents: for instance, documents written using
xsl-fo3 [37], a language for describing high-quality
print outputs, or DocBook [38], a system for writing
structured documents.

We explain in [17] why MlBibTEX does not use
xslt itself, after converting bibliography (.bib) files
into an xml-like format, as programs like BibteXML
[6] or bib2xml [27] do. However, if we agree to con-
sider an xslt-like language for bibliography styles,
we have to rewrite most of the bibliography styles
of BibTEX, if we want to provide some continuity
with this program. There exists a way to import bst
functions into an nbst program [11], nevertheless it
is obvious that complete rewriting is prefereable, in
order to take as much advantage as possible of this
programming paradigm. We put some methodology
into action to rewrite BibTEX’s bibliography styles,
we are giving these methods hereafter.

We begin with a small example, in order to il-
lustrate the expressive power of nbst. Second we
show how to design the layout of a reference. We
consider a particular case: the @INPROCEEDINGS en-
try type of BibTEX— for an article in a conference
proceedings or a story in an anthology—but our

1eXtensible Stylesheet Language Transformations.
2eXtensible Markup Language.
3eXtensible Stylesheet Language—Formatting Objects.

<inproceedings id="thys1997" language="german">

<author>

<name>

<personname>

<first>Frank</first><last>Thys</last>

</personname>

</name>

</author>

<title>

Auf der <asitis>Spur</asitis> des

<asitis>Vernichters</asitis>

</title>

<booktitle>Dinoland</booktitle>

<editor>

<name>

<personname>

<first>Wolfgang</first>

<last>Holbein</last>

</personname>

</name>

</editor>

<publisher>Bastei Lübbe</publisher>

<year>1997</year>

<month><aug/></month>

<address>Bergisch Gladbach</address>

<pages>

<firstpage>353</firstpage>

<lastpage>457</lastpage>

</pages>

</inproceedings>

Figure 2: The entry of Figure 1 as an xml tree.

method is easily adaptable to any entry type. Then
we implement our specification. Last, we show how
to organise the different items of a bibliography and
give some advice about the decomposition of an nbst
program into several files. A succint comparison be-
tween bst and nbst statements is given as an annexe,
followed by some complements about writing exter-
nal functions using Scheme —the language used for
developing MlBibTEX [15]—close to the expression
language used as part of dsssl4 [18], the language
of stylesheets of sgml5 [8].

What knowledge is required to read this arti-
cle? A basic one about xml, XPath—the language
used to address parts of an xml document— and
xslt is sufficient to just understand the examples
given hereafter. Good introductions to them are
[29, 30, 34], the ‘official’ references about XPath and
xslt, issued by the w3c6, are [36, 35]. Concerning

4Document Style Semantics and Specification Language.
5Standard Generalized Markup Language, the ancestor

of xml. Now it has just historical interest.
6World Wide Web Consortium.

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

180 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

<!ELEMENT pages (onepage+ |

(firstpage,(ff | lastpage)) |

pages-verbatim)>

<!ELEMENT onepage %INTEGER;>

<!ELEMENT firstpage %INTEGER;>

<!ELEMENT lastpage %INTEGER;>

<!ELEMENT ff EMPTY>

<!ELEMENT pages-verbatim (#PCDATA)>

<!-- Strictly speaking, ‘%INTEGER;’ is a parameter
entity (cf. [29, pp. 163–164]) standing for parsed
character data (‘#PCDATA’). But we use it for
sake of readability, whenever the content of a
text node is an integer, because dtds’
formalism does not know this type. ‘ff’ is for
an unspecified number of following pages.

-->

Figure 3: Excerpt from our dtd: specification of
pages from a journal or book.

MlBibTEX more precisely, all its elements and func-
tions used within path expressions are described in
[13]. On another point, we think that developing
new functions in Scheme by MlBibTEX’s end-users
is only needed for very specific applications, so re-
ferring to an introductory book such as [32] is suffi-
cient to understand the given examples. MlBibTEX
has been developed using the fifth revision of this
language [19].

A small example

Let us consider the bibliographical entry given in
Figure 1. Even if it roughly looks like a BibTEX
entry, we can notice the use of syntactic features
specific to MlBibTEX: a LANGUAGE field7, some key-
words for introducing the different parts of a person
name: ‘first’, ‘last’. All these syntactic features
are described precisely in [13].

If this entry is cited throughout a document,
the corresponding bibliographical reference, to be
put at the ‘References’ section, looks like:

[1] Frank Thys. Auf der Spur des Vernich-
ters. In Wolfgang Holbein, editor, Di-
noland , pp. 353–437, Bergisch Gladbach,
August 1997. Bastei Lübbe.

We got this result by using ‘old’ BibTEX, operat-
ing on an ‘old’ bibliography (.bib) file. The bibli-
ography style used above is plain.bst, that is, items
are labelled by numbers, and first names are not

7Also used in conjonction with the mlbib package [23] or
the natbib package [7], but in MlBibTEX, the corresponding
values need not to be surrounded by braces or double-quote
characters.

FUNCTION {multi.page.check}

{ ’t := % t is given the value of the PAGES field,
% popped from the stack.

#0 ’multiresult := % I.e., multiresult ← false.
{ multiresult not % While multiresult is

t empty$ not % false and t non-empty,
and % do

}

{ t #1 #1 substring$ % compare t’s first
duplicate$ "-" = % character with
swap$ duplicate$ "," = % ‘-’, ‘,’, ‘+’;
swap$ "+" =

or or

% if success, update multiresult;
{ #1 ’multiresult := }

% if not, update t by removing its head:
{ t #2 global.max$ substring$ ’t := }

if$

}

while$

multiresult % pushed result.
}

Figure 4: How BibTEX detects that several page
numbers are given.

abbreviated. This reference is supposed to be put
at the end of a document written in English. If
a German-speaking plain bibliography style —e.g.,
dtk.bst, used for the articles of the journal of the
dante8 group, Die TEXnische Komödie —is cho-
sen, that results in:

[1] Frank Thys: Auf der Spur des Vernich-
ters; in Dinoland (Hg. Wolfgang Hol-
bein); S. 353–437; Bergisch Gladbach;
Aug. 1997; Bastei Lübbe.

so the stylistic differences between these two exam-
ples — for example, ‘.’ after the author’s name in
English, ‘:’ in German and French —shows that the
layout of such references is language-dependent, in
the sense that it is influenced by ‘national’ tradi-
tions.

When MlBibTEX parses the entry of Figure 1,
the entry is processed as if it was the xml tree given
in Figure 2; in fact, it results in the sxml9 repre-
sentation of such an xml tree. We can notice that
this choice allows us to structure information given
in some fields, for example, person names, in the
AUTHOR and EDITOR fields, but also the first and last
pages of a story belonging to an anthology, in the

8Deutschsprachige Anwendervereinigung TEX e.V.
9Scheme implementation of xml, described in [20]. See

[15] for more details about its use within MlBibTEX’s imple-
mentation.

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

181

<nbst:template match="pages">

<nbst:param name="beginning"/>

<nbst:param name="ending"/>

<nbst:value-of select="$beginning"/>

<nbst:variable name="onepage-elements" select="onepage">

<nbst:choose>

<nbst:when test="$onepage-elements">

<nbst:choose>

<nbst:when test="count($one-page-elements) = 1"><nbst:text>\bblp</nbst:text></nbst:when>

<nbst:otherwise><nbst:text>\bblpp</nbst:text></nbst:otherwise>

</nbst:choose>

<nbst:apply-templates select="$onepage-elements[1]"/>

</nbst:when>

<!-- Otherwise, firstpage element, followed by either the ff or a last page. -->

<nbst:otherwise><nbst:apply-templates/></nbst:otherwise>

</nbst:choose>

<nbst:value-of select="$ending"/>

</nbst:template>

<nbst:template match="onepage">

<nbst:param name="first-time" select="true()"/>

<nbst:variable name="following" select="following-sibling::onepage">

<nbst:choose>

<nbst:when test="$first-time"><nbst:call-template name="tie-number"/></nbst:when>

<nbst:otherwise><nbst:value-of select="."/></nbst:otherwise>

</nbst:choose>

<nbst:if test="$following">

<nbst:text>, </nbst:text>

<nbst:apply-templates select="$following[1]">

<nbst:with-param name="first-time" select="false()"/>

</nbst:apply-templates>

</nbst:if>

</nbst:template>

<nbst:template match="firstpage | pages-verbatim"> <!-- Putting a non-breaking space character -->

<nbst:call-template name="tie-number"/> <!-- before a small number. -->

</nbst:template>

<nbst:template match="ff">

<nbst:text> \bblff</nbst:text>

</nbst:template>

Figure 5: Putting page numbers down in nbst.

PAGES field. Such xml trees are conformant to a
dtd10, an excerpt from which being given in Fig-
ure 3. Syntactically, the PAGES field of MlBibTEX
allows the specification of:

• a single page: {353},

• a range of pages: {353--457},

• the first page of an unspecified number of con-
secutive ones: {353+},

• some enumerated pages: {353,439,519},

10Document Type Definition. A dtd defines a document
markup model [29, Ch. 5]. The dtd we use is a revised version
of what is given in [10].

• otherwise, the value associated with this field is
kept verbatim and becomes the content of the
pages-verbatim element: this content will ap-
pear as it is within any predefined bibliography
style.

The bibliography styles of BibTEX deal with
these different syntactic forms, as it can be seen in
Figure 4, but this style of programming seems to us
to be some hack.

Figure 5 shows how page numbers can be pro-
cessed using nbst. Many tags and attributes are the
same than in xslt, except for the namespace used
as a prefix, which is obviously different. We explain

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

182 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

Entity
reference

Character
How to produce

it in LATEX
Numeric
entity

& & \& &

' ’ '

&emdash; — --- —

&endash; – -- –

&eol; ¶a \newline

> < >

< > <

&nobsp;b ~

" " "

a‘¶’ is a typographic sign for the end-of-line character [2,
§ 2.85]. In nbst, this entity is used to begin a new line within
generated files.

bNon-breaking space character.

Table 1: Entities usable in nbst.

later what the parameters beginning and ending
are precisely, but intuitively, we can guess that they
are strings to be put before and after the page num-
bers. Let us notice the use of variables —names
that may be bound to values —and of path expres-
sions in match and select attributes’ values. Us-
ing the following-sibling axis allows us to reach
the subtrees at the right of the current node and
sharing the same parent node, that is particularly
useful to implement loops, in the sense of ‘classical’
programming languages. Putting some enumerated
pages would be done this way if we express it using
a ‘classical’ algorithm:

write(tie-number(first(one-page-elements))) ;
loop

one-page-elements ← rest(one-page-elements) ;
exit when one-page-elements = ∅ ;
write(", ␣") ; write(first(one-page-elements)) ;

end loop ;

Figure 5 shows how this algorithm is put into ac-
tion by means of a recursive template, matching the
first element of page numbers not written yet. This
technique is very common in xslt for iterative algo-
rithms.

Let us focus on the texts generated when these
templates are invoked, more precisely, on the con-
tent of the nbst:text tags: we notice the use of ad-
ditional LATEX commands, for example, \bblp (resp.
\bblpp) for one (resp. several) pages. These names
originate from bibliography styles generated by the
makebst program [3] in interface with the babel pack-
age [24, Ch. 9], and are language-dependent. For
example, the \bblp command is expanded in ‘p.’
for ‘page’ in English and French, in ‘S.’ for ‘Seite’ in
German. How to organise them is shown in [14, § 2].

<nbst:template match="lastpage">

<nbst:value-of

select="concat(’&endash;’,.)"/>

</nbst:template>

<nbst:template match="lastpage"

language="french">

<nbst:value-of select="concat(’-’,.)"/>

</nbst:template>

Figure 6: Default and language-dependent
templates.

Special characters can be denoted by entity refer-
ences, like in xml [29, pp. 48–49]. MlBibTEX knows
more predefined character entities than xml—e.g.,
‘&endash;’, used in Figure 6 —they are summarised
in Table 1: for each, we give its name, the corre-
sponding character, the way to produce it in LATEX
if this character is special11, the decimal number
coding it w.r.t. Unicode [33].

Now let us introduce the main difference be-
tween xslt and nbst. When a range of pages is
to be given, an en-dash character12 should be put
between the first and last page numbers. More pre-
cisely, this is the convention for most European lan-
guages, including English. But in documents writ-
ten in French, this character tends to be replaced
by a single minus character (‘-’). In our style, this
character is put by the template processing the last
page number. Figure 6 gives two version of this tem-
plate: a default version, without the language, and
another version, suitable for the French language.
This language attribute does not exist in xslt; in
nbst, a template with it has higher priority than the
same template without.

Style for a entry type

As we can read in [24, § 13.6.3], introducing small
changes in a bibliography style written using the
bst language is quite easy. Writing the whole of a
style is a worthwhile exercise: we have to know what
has been pushed onto the stack handled by BibTEX,
what we can pop from it, possibly after applying the
duplicate$ function when this value is needed af-
terwards by the program. This language is not mod-
ular, we have to take care of such questions from a

11MlBibTEX uses it only when the mode attribute of the
nbst:output element (cf. Figure 12) is LaTeX. For example,
the element:

<nbst:text>The Bull & the Spear</nbst:text>

produces ‘The Bull \& the Spear’ (resp. ‘The Bull & the

Spear’) if the mode is LaTeX (resp. text).
12That is, a dash as wide as the ‘n’ letter.

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

183

<inproceedings> ::=

"\bibitem{" <id> "}¶" <authors> <title> <in-eds-booktitle> [", " <volume-number-series>]

[", " <pages>] <date-etc> ["¶\newblock " <note> "."] "¶¶" ;

<authors> ::= <name-list> ".¶\newblock " ;

<editors> ::= <name-list> ", \bbled, " if |<name-list>| = 1 |

<name-list> ", \bbleds, " if |<name-list>| > 1 ;

<name-list> ::= <name> {", " <name>} [", \bbland\ " <name> | " \bbletal"] ;

<title> ::= change-case(t)(<string>) ".¶\newblock " ;

<booktitle> ::= "\emph{" <string> "}" ;

<in-eds-booktitle> ::= "\capitalize\bblin " [<editors>] <booktitle> ;

<volume-number-series> ::= "\bblvol" <tie-number><volume> " \bblof \emph{" <series> "}" |

"\bblno" <tie-number><number> " \bblin " <series> ;

<pages> ::= "\bblp" <tie-number(s)> if |<tie-number(s)>| = 1 |

"\bblpp" <tie-number(s)> if |<tie-number(s)>| > 1 ;

<tie-number(s)> ::= <non-breaking-space-character> <number(s)> if <number(s)> < 3 |

" " <number(s)> if <number(s)> ≥ 3 ;

<date-etc> ::= [", " <address> ", "] <date> [". " <org-pub>] ". " |

[". " <org-pub>] ", " <date>

<org-pub> ::= [<organisation> ", "] <publisher> ;

‘|. . .|’ is for the number of elements of a list, ‘ . . .’ for the length of a string. Cf. Table 1 about the ‘¶’ sign.

Figure 7: How to put information about a story included into an anthology.

function to another, and the use of only global vari-
ables reinforces this monolithic way of programming.
So, the best method for rewriting a style wholly is to
express it using a grammar, according to a reverse
engineering13 approach. That is, studying bst styles
in order to deduce such a grammar. Of course, such
modelling can also be done from documents giving
rules for bibliographies’ layout, such as [1, § 10] or
[2, §§ 15 & 16].

Figure 7 gives all the possible texts for refer-
ences generated by BibTEX, using a ‘plain’ style and
derived from entries being @INPROCEEDINGS type.
We do not consider cross-referencing ([22, § B.1.4],
[24, § 13.2.5]), not implemented yet in MlBibTEX.
These possible texts are expressed with a formalism
close to ebnf14, that is:

• for each non-terminal symbol, enclosed like an
xml tag, the expression following the ‘::=’ sign

13According to the terminology used in Software Engin-
nering:

• re-engineering consists of transforming a program
written using an ‘old’ language into a new program in a
more modern language: for example, deriving a C pro-
gram from source files written in fortran;

• reverse engineering is the process of analysing soft-
ware in order to recover its design of specification.

As stated in [31, Ch. 34], reverse engineering is part of soft-
ware re-engineering process, in the sense that allows better
understanding of a system.

14Extended Backus-Naur Form. Readers unfamiliar with
this formalism can refer to [4] for an introduction. dtd syntax
originate from it.

and terminated by ‘;’ states how it can be ex-
panded;
• the ‘|’ sign means an alternative, ‘[...]’ is

for an optional part, ‘{...}’ for zero or more
occurrences of its content;
• expressions enclosed by two double quote char-

acters are texts to be put: let us recall that they
are part of LATEX input.

Since this grammar does not model texts to be
parsed, but texts to be generated, we do not have
to be conformant with conditions related to pars-
ing, as that would be the case for a language to
be interpreted or compiled. In fact, most of our
non-terminal symbols are fields’ names of MlBibTEX
(e.g., <title>) or simple types (e.g., <string>).
There is some language abuse — for example, the use
of functions (e.g., change-case15)— but we think
that such a specification is precise and gives a good
overview of the texts to be generated.

So, we are given precise information about the
order in which fields’ values should be placed. As
specified in the file plain.bst, we keep the occur-
rences of the \newblock command, used when the
bibliography is to be ‘open’ —by means of the open-
bib option of the \documentclass command —that
is, each block starting on a new line [24, § 12.2.1].
On another point, some keywords, hard-wired in
this file, are replaced by multilingual commands of
LATEX. By the way, let us remark that we are able

15Analogous to the namesake function in BibTEX [25].

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

184 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

<nbst:template match="inproceedings">

<nbst:call-template name="common-pre"/>

<nbst:variable name="comma-space"

select="’, ’"/>

<nbst:apply-templates select="author"/>

<nbst:apply-templates select="title"

mode="inproc"/>

<nbst:call-template name="in-eds-booktitle"/>

<nbst:call-template

name="volume-number-series">

<nbst:with-param name="beginning"

select="$comma-space"/>

</nbst:call-template>

<nbst:variable name="pages">

<nbst:apply-templates select="pages">

<nbst:with-param name="beginning"

select="$comma-space"/>

</nbst:apply-templates>

</nbst:variable>

<nbst:call-template name="date-etc">

<nbst:with-param name="previous"

select="$pages"/>

</nbst:call-template>

<nbst:apply-templates select="note">

<nbst:with-param

name="beginning"

select="’&eol;\newblock ’"/>

<nbst:with-param name="ending"

select="’.’"/>

</nbst:apply-templates>

<nbst:call-templates name="common-post"/>

</nbst:template>

Figure 8: Building a reference from an
inproceedings element: program using nbst.

to capitalise the result of such a command when
it begins a sentence, by means of the \capitalize
command16. As far as possible, we consider that a
sign of ponctuation terminates the written form of a
field — for example, the list of authors, ended with
a period —but it is not always possible: as another
example, the specification of page numbers may be
followed by a comma if there is an address, by a
period if there is an organisation name. In such a
case, the sign of ponctuation is specified before the
non-terminal symbol it opens in Figure 7.

16This command is not predefined in LATEX, it can be de-
fined as follows:

\def\capitalize#1{%

\def\Capitalize##1{\uppercase{##1}}%

\expandafter\Capitalize#1}

cf. [21] for more details about \expandafter and the defini-
tions of TEX commands.

<nbst:template match="title" mode="inproc">

<nbst:apply-templates match=".">

<nbst:with-param name="emf"

select="false()"/>

<nbst:with-param name="retain-capitals"

select="false()"/>

</nbst:apply-templates>

</nbst:template>

Figure 9: Putting titles down.

Now the role of the two template parameters
beginning and ending, occurring in Figure 5 is
explained. Their use is systematic, as it can be
seen in Figure 8, that ‘implements’ our specifica-
tion. More generally, we can notice that writing
this template matching inproceedings elements is
direct, once we got a grammar for such references.
If we consider Figure 7, the layout for an element
(e.g., <author>) is implemented by a template with
a match attribute; if we implement a non-terminal
symbol grouping the layout of several elements (e.g.,
<in-eds-booktitle>), a named template does that.
The named template common-pre opens a reference,
by putting the \bibitem command [24, § 12.1.2],
whereas the common-post template closes it. Both
may used to insert multilingual directives, for ex-
ample, the otherlanguage environment of the babel
package [24, § 9.2.1].

Let us mention a last point about signs of ponc-
tuation: several consecutive ones may conflict. In
practice, such a case occurs when a period is to be
put after a string ending with an exclamation or
question mark, or with a period belonging to an ab-
breviation. BibTEX solves this case by means of its
function add.period$ [25], provided that the string
has not been popped yet. In xslt and nbst, a string
is output by means of the value-of element, un-
less it is processed within a template that becomes
the content of a variable. Thereby the result of this
template can be memoized and reused later. Let us
look at Figure 8: the string result of invoking the
template matching the pages element becomes the
value of the pages variable, which is passed to the
named templates date-etc.

Refining the way to process title elements,
let us remark that it depends on the entry type:
within the bibliography style plain.nbst, they are put
down using italic characters for an entry type being
type @BOOK, written using roman characters without
quotation marks if this type is @INPROCEEDINGS. In
this last case, we process such an element with a

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

185

<nbst:template match="title">

<nbst:param name="emf" select="true()"/>

<nbst:param name="quotedbf" select="false()"/>

<nbst:param name="retain-capitals" select="true()"/>

<nbst:param name="ending" select="’.&eol;\newblock’"/>

<nbst:if test="$quotedbf"><nbst:text>\begin{bblquotedtitle}</nbst:text></nbst:if>

<nbst:if test="$emf"><nbst:text>\emph{</nbst:text></nbst:if>

<nbst:variable name="title-put">

<nbst;choose>

<nbst:when test="$retain-capitals"><nbst:apply-templates/></nbst:when>

<nbst:otherwise>

<nbst:apply-templates select="node()[1]">

<nbst:with-param name="retain-capitals" select="false()"/>

<nbst:with-param name="no-left-lowercase" select="true()"/>

</nbst:apply-templates>

<nbst:apply-templates select="node()[position() > 1]">

<nbst:with-param name="retain-capitals" select="false()"/>

</nbst:apply-templates>

</nbst:otherwise>

</nbst:choose>

</nbst:variable>

<nbst:value-of select="$title-put"/>

<nbst:if test="$emf"><nbst:text>}</nbst:text></nbst:if>

<nbst:if test="$quotedbf"><nbst:text>\end{bblquotedtitle}</nbst:text></nbst:if>

<nbst:call-template name="adjoin-sign">

<nbst:with-param name="the-string" select="$title-put"/>

<nbst:with-param name="ending" select="$ending"/>

</nbst:call-template>

</nbst:template>

Figure 10: Putting titles down (continued).

mode attribute, as shown in Figure 9. The tem-
plate matching title elements without any mode —
cf. Figure 10— allows us to define parameters for
ruling the layout and give them default values used
when we display the title of a book:

• emf: if true, use italic characters;

• quotedbf: if true, use language-dependent quo-
tation marks, provided by the bblquotedtitle
environment (cf. [14, § 2]);

• retain-capitals: if false, converting the title
to lowercase except at the beginning;

• ending: the string to be put after the title. The
named template adjoin-sign prevents conflict
between the last character of the title and the
value of ending.

As shown in Figure 9, this template with the mode
attribute set to inproc only consists of passing suit-
able values to the general template of Figure 10.
Processing titles according to this inproc mode can
be redefined for the French language, using French
quotation marks, or the German language, using
italic characters, as written in Figure 11.

Core of a style

When MlBibTEX builds an xml-like tree with all the
entries to be processed, this tree is rooted by an el-
ement so-called mlbiblio. Figure 12 gives the root
element of our ‘new plain’ bibliography style and
shows how to process all the entries. Opening the
thebibliography environment [24, § 12.1.2] is done
by the named template put-preamble, which may
put additional LATEX definitions, especially those in-
cluded in BibTEX’s preambles [24, § 13.2.4]. Sym-
metrically, the putpostamble template closes the
bibliography.

We can also see how entries are sorted before
they are dispatched according to their type. Like
the namesake element of xslt, the first occurrence
specifies the primary sort key, the second occurrence
the secondary sort key, used for elements left un-
sorted, and so on. The first occurrence could have
been specified by:

select="author/name[1]/personname/last"

that is, sorting entries w.r.t. the family name of
the first author, but that would discard organisation

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

186 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

<nbst:template match="title" mode="inproc"

language="french">

<nbst:apply-templates match=".">

<nbst:with-param name="emf"

select="false()"/>

<nbst:with-param name="quotedbf"

select="true()"/>

</nbst:apply-templates>

</nbst:template>

<nbst:template match="title" mode="inproc"

language="german">

<nbst:apply-templates match=".">

<nbst:with-param

name="ending"

select="’;&eol;\newblock’"/>

</nbst:apply-templates>

</nbst:template>

Figure 11: Putting titles down w.r.t. French and
German styles.

names as authors. The solution we put in Figure 12
consists of concatenating three strings related to the
first author, two of them being always empty:

• the family name, if this name is for a person,
• the sort key of an organisation name, if given,
• the organisation name itself, if the sort key has

not been given.

For first authors that are organisation names,
only the first occurrence of the nbst:sort element
is of interest, the others do nothing. When sort-
ing entries w.r.t. names is finished, we sort w.r.t.
years, then months. This last sort order can seem
to be some hack since it uses the interface with
Scheme functions (cf. § B), but let us recall that
programming such a sort order is very difficult in
bst and unused in practice. However, we think that
our successive nbst:sort elements are clearer than
the presort, sortify and purify$ functions used
within bibliography styles written in bst.

Splitting a style into several files

As abovementioned, the bst language is not mod-
ular, and all the definitions for a particular style
must be stored in the same file, what is a drawback
since several styles share the same definitions. That
complicates the mainenance of bibliography styles
if some definitions need some enrichment. Besides,
it is difficult, when we are studying a style, to de-
termine what is specific or common to other styles.
The nbst language includes:

• an nbst:include element, to import definitions
explicitly from another nbst file;

• implicit importations, described in [14, § 3.1].

Hereafter, we show how to spread out the templates
we are writing over different files, in order to take as
much advantage as possible of implicit importations
of nbst. Let us recall that we are developing a new
version of the ‘plain’ bibliography style, that is, the
master file is plain.nbst.

• The global.nbst can be viewed as MlBibTEX’s
initial library of definitions using nbst: it in-
cludes general named templates such as:

adjoin-sign date-etc tie-number

as well as template matching the following ele-
ments:

address one-page
booktitle orgnization
ff pages
firstpage pages-verbatim
lastpage publisher
note title

Putting more templates in this file may seem
to be of interest, but let us recall that in nbst,
imported templates have the same priority than
other elements17: so ‘global’ elements cannot be
redefined18, unless adding a language or mode
attribute to the redefinition.

• Of course, the plain.nbst file — the master file
for this bibliography style —must include its
root (nbst:bst) element and the ‘main’ tem-
plate matching an mlbiblio element, given in
Figure 12. The following named templates, re-
lated to references’ labels, should be included
in this file, too:

common-post put-postamble
common-pre put-preamble

The layout of the following element depends
on the bibliography style, so the corresponding
templates have to be stored in the plain.nbst file:

author inproceedings series
editor number volume

as well as the named templates, for the same
reason:
in-eds-booktitle volume-number-series
org-pub

• The ‘French’ definition of the template match-
ing a lastpage element (cf. Figure 6) is gen-
eral for French-speaking styles, not directly re-
lated to ‘plain’ styles, so we place it onto the

17This is not the case in xslt if the xsl:import element is
used.

18More exactly, if there is conflict between templates, it is
unpredictible to know which will be run.

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

187

<nbst:bst version="1.3" id="plain" xmlns:nbst="http://lifc.univ-fcomte.fr/~hufflen/mlbibtex">

<nbst:output method="LaTeX" encoding="ISO-8859-1"/>

<!-- This encoding allows accented letters of Western European Languages [5, Table C.4]. -->

<nbst:template match="mlbiblio">

<nbst:call-template name="put-preamble">

<nbst:with-param name="longest-label" select="count(*)"/>

</nbst:call-template>

<nbst:apply-templates>

<nbst:sort select="concat(author/name[1]/personname/last,

author/name[1]/othername/@sortingkey,

author/name[1]/othername[not(@sortingkey)])"/>

<nbst:sort select="author/name[1]/personname/first"/>

<nbst:sort select="author/name[1]/personname/von"/>

<nbst:sort select="author/name[1]/personname/junior"/>

<nbst:sort select="year" data-type="number"/>

<nbst:sort select="call(month-position,month)" data-type="number"/>

</nbst:apply-templates>

<nbst:call-template name="put-postamble"/>

</nbst:template>

...

</nbst:bst>

Figure 12: Root element for a program in nbst—Organising all the entries to generate references.

-french.nbst file, that is, the file grouping the
general definitions for the French language.

• On the contrary, the French and German re-
definitions of the template matching title el-
ements in inproc mode (cf. Figure 11) belong
both to the ‘plain’ bibliography style so they
should be put into the files plain-french.nbst and
plain-german.nbst.

Conclusion

We think that when a new tool or a new program-
ming language is developed, its conceptor(s) should
provide methodology and advice about it. Often
teachers of programming languages notice that stu-
dents may program badly in a good language. Let
us go back to BibTEX, we personally missed — in
the past, a long time before we decided to develop
MlBibTEX— a didactic introduction to the bst lan-
guage like [28]. Likewise, an overview for writers
of LATEX extensions such as [24, Appendix A] was
missing for a long time.

In this article, we have not shown all the fea-
tures of MlBibTEX. For example, we have not gone
thoroughly into multilingual features — in order to
show that our approach was mostly suitable for de-
signing styles using xslt, too—and ‘new plain’ style
was implicitly supposed to be language-dependent
[13], that is, each reference is expressed using the

language’s entry. In fact, our goal was to show that
nbst allowed us to write bibliography styles in ele-
gant manner, provided that we are given a precise
specification of what to put. So we are able to build
a solid basis for a style, and people could easily en-
rich it with new language-dependent templates by
using MlBibTEX’s implicit importation.

Now we are rewriting predefined bibliography
styles of BibTEX. Most of them have already been
redesigned, but this work is not finished yet at the
time we finish writing this article. We hope that
these explanations would help people enrich these
new styles, especially in order to adapt them to other
languages.

Acknowledgements

Thanks to Volker R. W. Schaa, who proof-read the
German translation of the abstract.

A bst vs nbst

A precise comparison between bst and nbst is diffi-
cult, since these two languages belong to very differ-
ent programming paradigms. The former is based
on handling a stack (see [28] for a didactic introduc-
tion to this aspect), the latter encourages rule-based
programming. They do not belong to the same time,
either: the former has been influenced by assembly

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

188 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

bst expression “Equivalent” expression in nbst Kinda

I1 I2 > I1
♮ > I2

♮ P

I1 I2 < I1
♮ < I2

♮ P

I1 I2 = I1
♮ = I2

♮ P

S1 S2 = S1
♮ = S2

♮ P

I1 I2 + I1
♮ + I2

♮ P

I1 I2 - S1
♮ - S2

♮ P

S1 S2 * concat(S1
♮,S2

♮) P

S add.period$

<nbst:call-template name="adjoin-sign">

<nbst:with-param name="the-string" select="S♮"/>

<nbst:with-param name="ending" select="’.’"/>

</nbst:call-template>

Eb

S "t" change.case$ concat(substring(S♮,1,1),lowercase(substring(S♮,2))) Pc

S "l" change.case$ lowercase(S♮) P

S "u" change.case$ uppercase(S♮) P

S chr.to.int$ (char->integer S♮) S

cite$ @id P

L empty$ not(string(L♮)) P

I F1 F2 if$

<nbst:choose>

<nbst:when test="I♮ > 0">F1
♮</nbst:when>

<nbst:otherwise>F2
♮</nbst:otherwise>

</nbst:choose>

E

I int.to.chr$ (integer->char I♮) S

I int.to.str$ string(I♮) P

L missing$ not(L♮) P

newline$ <nbst:text>&eol;</nbst:text> or <nbst:value-of select="’&eol;’"/> E

S num.names$ count(name) if name(S♮) ∈ {author, editor} P

preamble$ @preamble P

S purify$ call(bst-purify,S♮) Pd

quote$ <nbst:text>"</nbst:text> or <nbst:value-of select="’"’"/> E

S I1 I2 substring$
substring(S♮,I1

♮,I2
♮) if I1 > 0

substring(S♮,string-length(S♮) + I1
♮ − I2

♮ + 2,I2
♮) if I1 < 0

Pc

S text.length$ string-length(S♮) P

S I text.prefix$ substring(S♮,1,I♮) Pc

type$ name() P

S warning$ <nbst:warning>S♮</nbst:warning> E

S width$ (tex-width S♮) Se

S write$ <nbst:value-of select="S♮"/> E

aQualifies the given expression in nbst: ‘E’ is for ‘element’, ‘P’ for ‘path expression’, ‘S’ for ‘Scheme expression’.
bThe adjoin-sign is included in MlBibTEX’s initial library.
cLet us recall that indexing strings is one-based in XPath and nbst, whereas it is zero-based in Scheme.
dThis Scheme function is given in Figure 13. Useless in practice (see Figure 8)!
eNot implemented yet (always returns "0").

Table 2: Translation of most bst statements given in [24, Table 13.8]

languages, the latter has taken advantage of a mod-
ern langage, suitable for handling documents and
designed for a large purpose.

Some statements of bst are not really translat-
able into nbst: for example, the assignment (‘:=’),
because nbst is like a purely functional language, in
the sense that a variable —or a parameter—can-
not be changed, once it has been given a value. On

the other hand, nbst allows recursive templates, like
in xslt, what is useful for iterative programming
(cf. Figure 5) and replaces the while$ function of
bst.

The call.type$ function of bst does not have
a direct equivalent, either: such an operation is per-
formed by pattern-matching by means of the match
attribute of suitable nbst:template elements. The

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

189

(define (bst-purify string-0)

(let thru ((index (- (string-length string-0) 1))

;; Current index, we are going backward. The second argument allows us to accumulate retained
;; characters in a list, we begin with an empty list:
(accumulator ’()))

(if (negative? index)

;; The string has been processed, we convert the list of accumulated characters into a string:
(list->string accumulator)

(thru (- index 1) (let ((current-char (string-ref string-0 index)))

;; Discarding it if it is not alphanumeric:
(if (or (char-alphabetic? current-char) (char-numeric? current-char))

(cons current-char accumulator)

accumulator))))))

Figure 13: Scheme function implementing the bst function purify$.

format.name$ function is replaced by handling path
expressions like in XPath for subtrees for authors and
editors.

Table 2 is an attempt to express the relation-
ship between bst statements and corresponding real-
isations in nbst. In fact, it emphasises which state-
ments are easily translatable, which are not. This
table does not include bst functions such as ‘:=’,
while$, call.type$, skip$. Likewise, we did not
put bst functions directly related to BibTEX’s stack
management: duplicate$, stack$, swap$, top$.

For the other bst functions, we make precise
its operands: I is for an integer, S for a string,
L for any value, F for a function. When several
operands are the same type, we use indices. We use
the ‘. . .♮’ notation to mean ‘the translation of an
operand in nbst’: for example, the if$ function of
bst pops three values from the stack, the translation
of the first should be used inside the value of a test
attribute, the others should be translated into nbst
elements put as contents of an nbst:if element.

As it can be seen in Table 2, the direct trans-
lation of some statements needs to call functions di-
rectly written in Scheme: we put them for sake of
completeness, but in practice, most of these func-
tions are useless when a style is wholly rewritten
using nbst (cf. § B). Last, let us remark that in
the path expressions given in this table — @id and
@preamble—the current node is supposed to be the
node for an entry (inproceedings, book, . . .)

B Interface with Scheme

Path expressions used within nbst include calls to
external functions written in Scheme and returning
strings. The syntax is:

call(function-name,arg1,...,argn)

where function-name is the function’s name, ap-
plied to arg1, . . . , argn (n ∈ N). Now we got some
experience in writing bibliography styles, and as far
as we know, there are three reasons for using such
functions within bibliography style files:

• functions related to TEX’s features: for exam-
ple, returning the width of a string, expressed
in TEX’s units (cf. Table 2), as another exam-
ple, searching LATEX source files: for instance,
we have to do that in order to know the docu-
ment’s language19;

• operations that would be tedious with the func-
tions of XPath’s library: an example appearing
in Table 2 is the bst-purify function;

• functions used to sort entries: e.g., the func-
tion month-position, that allows the sort of
month names according to the chronological or-
der, used in the template given in Figure 8.

In Figure 13, we give the exact equivalent for
the purify$ function of bst, in order to give some
idea about how to deal with strings in Scheme. Let
us remark that this operation — used in BibTEX to
build strings to be sorted lexicographically— is use-
less practically since it is better to use successive
nbst:sort elements as we show in Figure 12.

In addition to the bst-purify function, we give
a second example written in Scheme in Figure 14:
the month-position function, used to sort month
names, as shown in Figure 12. As abovementioned,
this way may be thought as ad hoc method, never-
theless, let us remark that such a sort is not provided
by ‘old’ BibTEX.

19See [16] for more details about this problem. MlBibTEX
also searches auxiliary (.aux) files produced by LATEX, but not
whilst a bibliography style is applied.

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

190 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

(define month-position

(let ((month-name-list

’("jan" "feb" "mar" "apr" "may" "jun" "jul" "aug" "sep" "oct" "nov" "dec")))

(lambda (string-0)

(let thru ((month-name-list-0 month-name-list)

(current-position 0))

(if (or (null? month-name-list-0)

;; This way, elements with a non-recognised or empty month name will be put after those with
;; an actual month name after the sorting operation.
(string=? (car month-name-list-0) string-0))

(number->string current-position) ; Final result as a string.
(thru (cdr month-name-list-0) (+ current-position 1)))))))

Figure 14: Scheme function used to sort month names by sorting corresponding positions.

References

[1] Judith Butcher: Copy-Editing. The Cam-
bridge Handbook for Editors, Authors, Publish-
ers. 3rd edition. Cambridge University Press.
1992.

[2] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

[3] Patrick W. Daly: Customizing Bibliographic
Style Files. Version 3.2. February 1999. Part of
BibTEX’s distribution.

[4] Lars Marius Garshol: bnf and ebnf:
What Are They and How Do They Work?
July 2003. http://www.garshol.priv.no/
download/text/bnf.html.

[5] Michel Goossens and Sebastian Rahtz,
with Eitan M. Gurari, Ross Moore and
Robert S. Sutor: The LATEX Web Compan-
ion. Addison-Wesley Longmann, Inc., Reading,
Massachusetts. May 1999.

[6] Vidar Bronken Gundersen and Zeger W.
Hendrikse: BibTEX as xml Markup. January
2003. http://bibtexml.sourceforge.net.

[7] Harald Harders: „Mehrsprachige Literatur-
verzeichnisse: Anwendung und Erweiterung des
Pakets babelbib“. Die TEXnische Komödie,
Bd. 4/2003, S. 39–63. November 2003.

[8] Erik van Herwijnen: Practical sgml. Inter-
pharm Press. December 1994.

[9] Jean-Michel Hufflen: “MlBibTEX: a New Im-
plementation of BibTEX”. In: EuroTEX 2001,
p. 74–94. Kerkrade, The Netherlands. Septem-
ber 2001.

[10] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: From xml to
MlBibTEX”. In: EuroTEX 2002, p. 46–59. Ba-
chotek, Poland. April 2002.

[11] Jean-Michel Hufflen: “Mixing Two Bibliog-
raphy Style Languages”. In: ldta 2003, Vol.
82.3 of entcs. Elsevier, Warsaw, Poland. April
2003.

[12] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. tugboat, Vol. 24,
no. 3. EuroTEX 2003, Brest, France. June 2003.

[13] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. tugboat, Vol. 24, no. 2, p. 249–262. July
2003.

[14] Jean-Michel Hufflen: “Making MlBibTEX Fit
for a Particular Language. Example of the Pol-
ish Language”. Biuletyn gust, Vol. 21, p. 14–
26. 2004.

[15] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”. Biule-
tyn gust, Vol. 20, p. 21–28. In BachoTEX 2004
conference. April 2004.

[16] Jean-Michel Hufflen: “MlBibTEX: beyond
LATEX”. In: International Conference on TEX,
xml, and Digital Typography, Vol. 3130 of
lncs, p. 203–215. Springer, Xanthi, Greece.
August 2004.

[17] Jean-Michel Hufflen: Multilingual Bibliogra-
phy Styles: nbst vs xslt. To appear in Proc.
guit conference, Pisa. October 2004.

[18] International Standard iso/iec 10179:1996(e):
dsssl. 1996.

[19] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris Han-
son, Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M.
Pitman, Guillermo J. Rozas, Guy Lewis
Steele, Jr, Gerald Jay Sussman and Mitchell

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

191

Wand: Revised5 Report on the Algorithmic
Language Scheme. February 1998. http://
www.cs.indiana.edu/scheme-repository/.

[20] Oleg Kiselyov: “A Better xml Parser through
Functional Programming”. In: 4th Inter-
national Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 of lncs.
Springer. 2002.

[21] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: the TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[22] Leslie Lamport: LATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[23] Wenzel Matiaske: Multilinguale Zitierfor-
mate. Oktober 1995. CTAN:macros/latex/
contrib/supported/mlbib/.

[24] Frank Mittelbach and Michel Goossens,
with Joannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion. 2nd
edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[25] Oren Patashnik: Designing BibTEX Styles.
February 1988. Part of BibTEX’s distribution.

[26] Oren Patashnik: BibTEXing. February 1988.
Part of BibTEX’s distribution.

[27] Chris Putnam: Bibliography Conver-
sion Utilities. February 2005. http:
//www.scripps.edu/~cdputnam/software/
bibutils/bibutils.html.

[28] Bernd Raichle: Tutorium: Einführung in die
BibTEX-Programmierung. Handouts für dante
2002. Februar 2002.

[29] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[30] John E. Simpson: XPath and XPointer.
O’Reilly & Associates, Inc. August 2002.

[31] Ian Sommerville: Software Engineering. 5th
edition. Addison-Wesley Publishing Company.
1996.

[32] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The mit
Press, McGraw-Hill Book Company. 1989.

[33] The Unicode Consortium: The Unicode
Standard Version 4.0. Addison-Wesley. August
2003.

[34] Doug Tidwell: xslt. O’Reilly & Associates,
Inc. August 2001.

[35] W3C: xml Path Language (XPath). Ver-
sion 1.0. w3c Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

[36] W3C: xsl Transformations (xslt). Ver-
sion 1.0. w3c Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

[37] W3C: Extensible Stylesheet Language (xsl).
Version 1.0. w3c Recommendation. Edited by
James Clark. October 2001. http://www.w3.
org/TR/2001/REC-xsl-20011015/.

[38] Norman Walsh and Leonard Muellner: Doc-

Book: The Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

WET02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

192 Bibliography Styles Easier with MlBibTEX

Jean-Michel Hufflen

The TEX Wrapper Structure:

a basic TEX document model

implemented in iTEXMac

Jérôme Laurens

Université de Bourgogne

February 25, 2005

1 Introduction

This presentation primarily concerns the high level user interface of the TEX typesetting system. In general,
people find it difficult to work with TEX due to the powerful syntax, numerous auxiliary files created or managed,
and the user interface that has very little in common with standard word processors. Moreover, sharing TEX
documents with colleagues is often delicate as soon as some non standard LATEX is involved or, more frequently,
there are some significant differences in the computer configurations. The purpose of this article is to lay the
foundation for the TEX Wrapper Structure, which aims to help the user solve this kind of problems.

We first explain what could be the desiderata for a TEX document object model, then we give a precise
description of the TEX Wrapper Structure, discussing the various solutions and the final choice. Finally, the
concrete implementation used by iTEXMac1 demonstrates an example of user interface.

An appendix briefly presents the latest developments concerning PDF synchronization which is a MacOS X

specific feature of great interest for the whole TEX community.

2 A TEX Document Model

2.1 De facto document model

A document model aims to describe the storage and use of a certain kind of data: a simple document model
might be a linear text, which is an ordered list of 8 bit numbers following the ASCII rules and stored in one flat
file. More complex document structures are used either to describe data contents, for example Adobe’s Portable
Document Format, or to store them, for example old MacOS operating sytemes use a hierearchical file system
with resource forks to allow file to store structured data. Regarding these two points among others, TEX is
very specific mainly because it does not pose a priori any document model, letting the end user use its own de

facto model. The question is to identify what core structure should have a TEX document model, that should
be shared by quite all documents including the ones already existing.

Actually, a self contained TEX document is a series of files gathering data as various as images, linear text,
formatted text, macro packages (LATEX style), code libraries (libjpeg...), engines (TEX, MetaPost) and their
calling options. Of course this makes really huge documents, such that common parts are naturally eliminated,
hoping that they will be available everywhere and every time one will ever need them. This results in some kind
of weak TEX document model which has proved to be efficient, except in some rare situations where the syntax
was broken by some package update, and less rare ones where engine options have been forgotten... Far-sighted
TEX users carefully keep the various log files coming from typesetting because of the versioning information they
contain. It is extremely helpful when fixing update problems, but still relies on non negligible human expertise
where one could reasonably expect full computer assistance. When a strategy is available to record version
information, it will be added to the TEX Wrapper Structure.

Generally speaking, a TEX document is composed of different kind of graphical objects, from linear text to
pictures, possibly splitted into different files. There is no real problem concerning the various graphical data

1iTEXMac, one of the open source TEX front-ends on MacOS X, was presented during EuroTEX 2003 and TUG2004. Further

information at http://itexmac.sourceforge.net

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac

Jérôme Laurens

193

formats but the same does not hold for TEX source files. Any TEX user knows that a source document is not
correct as long as it has not successfully passed TEX digestive process. More experienced users are perfectly
aware of the problems that can appear when using certain combinations of macro packages. All this makes the
data part of a TEX Document Model very difficult to define a priori in a complete and explicit description. This
design, being as open as possible, is a real advantage because it provides quite unlimited document types. But
at the same time, it does not take into account the document preparation stage and does not provide any help
to the user in his real life struggle for document elaboration.

2.2 The meta information

For that purpose, advanced TEX dedicated editors have designed their proper strategy to assist the user with
extraneous information not really necessary but missing when absent: the meta information. For example syntax
attributes highlighting (marking TEX tokens, comments and other stuff with special colors) is a clever use of
the information actually available as is in a source file. This can be improved by some syntax checking, that
could mark bad commands just like the spell checker marks the misspelled words. For this to work efficiently
in a real time context, we must collect the macros defined in the context and cache the whole dictionary list
to improve access. Similarly, parsing the document contents for sectioning commands provides the user with a
map that improves the overall sight and the navigation inside the document. All this is more or less filtering
or interpreting the existing information to make it more accessible. Moreover, editors are free to add their own
information if they think it is relevant. We can see that in fact, real TEX users may need more information that
actually available in a TEX document, and TEX does not care about this kind of meta information. The TEX
Wrapper Structure will mainly consider this point.

2.3 The document storage

As we must preserve actual TEX documents in a backward compatibility issue, we are only concerned with
the document storage, more precisely the location where the different files are stored. Some of them must be
located in definite folders, according to the TEX environment (in general following the TEX Directory Structure
rules), while the user is absolutely free to name others. For them, some weak naming rules could help in their
organization, without limiting their use. For example, people generally gather their graphic files in folders
named images, graphics, pictures or whatsoever but there is not yet a widely spread strategy to become part of
a TEX document model. Moreover, we must admit the use of different naming strategies to best fit the numerous
situations one can imagine, for example, a unique image directory is certainly not advisable when the document
is expected to contain thousands of logically organized images. Finally, the only naming rules we can safely
state concerns the meta information and will be addressed by the TEX Wrapper Structure.

3 The TEX Wrapper Structure

We define the core TEX Wrapper Structure gathering information useful to any editor or utility, then we detail
the TEX project concept and we briefly describe the concrete implementation developed in iTEXMac. This is a
weak TEX document model given through a series of compliance rules, only assuming an underlying hierarchical
file system. We also assume that all the document files but the standard macro packages are collected in one
enclosing directory, but a priori different documents can share the same directory.

3.1 The core TEX Wrapper Structure

The only purpose of the core structure is to separate the document data, which is necessary, from the meta
information, which is supplemental. Actually, the meta information is stored either in the very TEX source file
(for example the %& first line trick to code for the format, the first commented line for TEXexec, emacs local
variables to code for the string encoding, AucTEX local variables in the file trailer), or an external file (the .aux

LATEX file, the Auto/ directory where AucTEX caches its style attributes, the TEXniCenter projects) and each
tool defines its own strategy without really taking care of one another. It is not yet the point to define a unique
and complete set of meta information, but we are concerned with the storage location of the meta information.
For practical reasons, it appears that some information such like the string encoding and the language should
live near the document they are referring to, but other information including the list of project files and the
root document identifier should live in a shared data base. If we consider all the tools of the TEX typesetting

WET05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

194 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac

Jérôme Laurens

system, the simplest solution from the user point of view, is to collect the whole meta information into one
central dedicated location. That way, no more meaningful comment will pollute the TEX source thus preserving
the meta information from hazardous manipulations and preventing an innocuous TEX comment to become
suddenly active while a utility has silently put some implicit information in it.

Finally, I strongly recommend not to use TEX comments anymore for anything else that commenting, except
when conforming to a publicly available and widely accepted syntax rule.

3.2 The TEX project paradigm

With emacs’ AucTEX mode and TEXniCenter we already mentioned, the old DirectTEX pro is another example
of editor that stores meta information in an external file. We propose to collect this information in one dedicated
directory. So, a TEX project is just a directory named document.texp (“texp" stands for TEX Project) where
shared or private meta information should be stored. The possible interference with already existing TEX
documents is quite void because the texp extension is not yet used, this ensures a full backward compatibility.

To define the mapping linking projects to files, the TEX project is expected to maintain a list, either explicit
or implicit, of all the files it is meant to manage. But conversely, it is not strictly necessary for the TEX source
files to know the project they belong to (as for AucTEX) because this information can be retrieved easily if we
impose that TEX projects only manage files at the same level of below themselves in the file system hierarchy.
Then, given a file path, we just have to scan the file hierarchy up to the root for TEX projects and only keep
the appropriate ones.

The contents of the TEX project directory document.texp is described in the sequel. The user is not expected
to view nor edit this data, so the format primarily concerns the programmers. More precisely, it is a balance
between a flat XML file and an atomic directory structure, both suitable for information hierarchically organized.
The “/" character is used as path separator.

Key Class Contents

isa String Required with value: info
version Number Not yet used but reserved
files Dictionary The paths of the files involved in the

project wrapped in a files dictionary de-
scribed in table 2. It is an indirection table
suitable for file name management. Op-
tional.

properties Dictionary Attributes of the above files wrapped in a
properties dictionary described in table
3, this is were string encoding and spelling
key are recorded. Optional.

main String The fileKey of the main file, if relevant,
where fileKey is one of the keys of the
files dictionary. The main file is the one
to be typeset or processed. Optional.

Table 1: info dictionary description where the TEX project maintains the list of known files, their properties
and the main file identifier.

• document.texp/Info.plist is an XML property list for a general purpose meta information wrapped in
an info dictionary described in table 1 and subsequent tables. This is optional.

We make use of the XML property list data format storage as publicly available at

http://www.apple.com/DTDs/PropertyList-1.0.dtd

It is indeed MacOS X centric but two PERL modules are available on CPAN to parse such XML files: Mac-

PropertyList2 andMac-PropertyListFilter3. Moreover, this can be changed in forthcoming versions without
causing any harm from the user point of view.

2http://search.cpan.org/~bdfoy/Mac-PropertyList-0.9/
3http://search.cpan.org/~jgoff/Mac-PropertyListFilter-0.02/

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac

Jérôme Laurens

195

Key Class Contents

fileKey String The path of the file identified by the string
fileKey, relative to the directory containing
the TEX project. Each file key is unique.
While the file name is subject to changes,
the file key will never change: the latter is a
strongly reliable file identifier. In general,
no two different keys should correspond to
the same path.

Table 2: files dictionary description: an indirection table particularly suitable for file name management.

Key Class Contents

fileKey Dictionary Language, encoding, spelling informa-
tion and other attributes wrapped in an
attributes dictionary described in table
4. fileKey is one of the keys of the files

dictionary.

Table 3: properties dictionary description: to each key identifying a file is associated a dictionary of attributes.

Key Class Contents
isa String Required with value: attributes
version Number Not yet used but reserved
language String According to latest ISO 639. Optional.
codeset String According to ISO 3166 and the IANA As-

signed Character Set Names. If absent
the standard C++ locale library module
is used to retrieve the codeset from the
language. Optional.

eol String When non void and consistent, the string
used as end of line marker. Optional.

spelling String One of the spellingKeys meaning
that the property list at document.

texp/spellingKeys.spelling contains the
list of known words of the present file
wrapped in a spelling dictionary described
in table 5. Optional.

Table 4: attributes dictionary description

Key Class Contents

isa String Required with value: spelling
version Number Not yet used but reserved
words Array The array of known words

Table 5: spelling dictionary description for the list of known words.

• document.texp/frontends A directory dedicated to front-ends where they store private meta information.

• document.texp/frontends/name A private file or directory dedicated to the front-end identified by name.
The further contents definition is left under the front-end responsibility. The directory at

document.texp/frontends/iTeXMac

WET05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

196 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac

Jérôme Laurens

is reserved for iTEXMac private use, maybe AucTEX can move its Auto/ directory into

document.texp/frontends/AucTeX

and TEXniCenter can use

document.texp/frontends/TeXniCenter.

This cooperative design is based on a strong separation of private meta informations from each other
front-end, it prevents corruption and allows better recovery in case of error. Moreover, synchronization
problems that may appear when two different utilities access the same flat file do not occur.

• document.texp/users is a directory dedicated to users and should not contain any front-end specific data.
This is optional and reserved for further user.

• document.texp/users/name is a directory dedicated to the user identified by name (not its login name).
Not yet defined, but private and preferably crypted.

• document.texp/spellingKey.spelling is an XML property list for lists of known words wrapped in a
spelling dictionary defined in table 5 and uniquely identified by spellingKey. This format is stronger
than a simple comma separated list of words. This is optional.

We assume that a text document is multilingual and can have different spelling contexts, all of them being
defined by a language with a dictionary and a list of known words. At this time, MacOS X programming
interface does not allow to have more than one spelling context per open file, and the same might hold for
other operating systems. So, each file is expected to have only one spelling context defined by a language
and a spelling key, both defined in the properties dictionary (see the description in table 3). Then, a
multilingual document will be splitted into files according to the language and the list of known words.

Notice that there is no pre definite correlation between a language and a list of known words. And this
design is certainly not the best we can elaborate, but it appears to be sufficiently efficient.

3.3 The TEX Wrapper Structure implemented in iTEXMac

The graphical user interface developed in iTEXMac takes benefit of the TEX Wrapper Structure. Private in-
formations are cached to improve the user experience: window size and positions recording are the classical
examples. Also, meta information about the engine and options used to typeset the document are stored, they
are used to launch the appropriate utility with appropriate arguments assuming a teTEX like distribution is
available. This should be shared once the latest TEX live is well established.

Technically, iTEXMac uses a set of private, built-in shell scripts to typeset documents. If this is not suitable,
customized ones are used instead, possibly on a per document basis, but no warning is given then. No security
problem has been reported yet, most certainly because such documents are not shared.

Notice that iTEXMac declares both texp and texd as document wrapper extensions to MacOS X, which
means that document.texp and document.texd folders are seen by other applications just like other single file
documents, their contents being hidden at first glance. Using another file extension for the TEX document will
prevent this MacOS X feature without losing the benefit of the TEX Wrapper Structure and its TEX project.

4 Appendix: The pdfsync Feature

During the document preparation using the TEX typesetting system, the correspondence between the output
and the original description code in the input is of frequent use, unfortunately it is not straightforward. Some
commercial TEX frontends (Visual TEX4 and TEXtures5) introduced a workaround. Then LATEX users could
access the same features with a less-efficient implementation through the use of srcltx.sty, which added
source specials in the DVI file. The command line option -src-specials now delegates that task to the TEX
typesetting engine.

iTEXMac fully supports this synchronization allowing to jump from the DVI file to the .tex source and
back. Moreover, Piero d’Ancona and the author have extended this feature from the .tex to the .pdf output.

4http://www.micropress-inc.com/
5http://www.bluesky.com/

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac

Jérôme Laurens

197

While typesetting a document.tex file with LATEX for example, the pdfsync package writes extra geometry
information in an auxiliary file named document.pdfsync, subsequently used by the front ends to link line
numbers in source documents with locations in pages of output PDF documents. iTEXMac, TEXShop6 and
TEXniscope7 both support pdfsync.

The official pdfsync web site where file specifications and more complete explanations will be found at:

http://iTeXMac.sourceforge.net/pdfsync.html

Unfortunately, the various pdfsync files for Plain, LATEX or ConTEXt are not completely safe. Some compatibility
problems with existing macro packages may occur. Moreover, sometimes pdfsync actually influences the final
layout; in a case like that, it should only be used in the document preparation stage.

Notice that the pdfsync approach is different from Heiko Oberdiek’s vpe.sty.

6http://www.uoregon.edu/~koch/texshop
7http://docenti.ing.unipi.it/~d9615/homepage/mac.html

WET05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

198 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac

Jérôme Laurens

The bigfoot bundle for critical editions∗

David Kastrup†

February 27, 2005

Abstract

The LATEX package bigfoot and supporting packages
solve many of today’s problems occurring in the con-
texts of single and multiple blocks of footnotes, and
more. The main application is with philological works
and publications, but simpler problems can be solved
painlessly as well without exercising all of the pack-
age’s complexities. For other problems not yet tackled
in this area, a solid framework is provided.

1 Introduction

Footnotes in TEX are a problematic area. One reason
is that TEX’s insertion mechanism is far too basic to
cope with more complicated usage patterns. Insertions
are not subjected to the usual optimization methods of
TEX, but instead are fitted on the page with a greedy
algorithm at the time they are encountered. At that
time, they may also be split or floated to the next page.
A split does not take into account any mandatory fol-
lowing material on the vertical list: infinite values of
\widowpenalty coupled with footnotes anchored in the
next to last line will not be split at the correct point,
and thus will have to get moved over to the next page.

Another deficiency is that when splitting a footnote,
shrinkability is considered by TEX while doing the split,
fitting more material on the page. However, at the time
of the page break decision, the information about the
shrinkability used for the insertion split gets lost, and
consequently the page can appear overfull.

Since TEX does not even get the cases right for which
it was designed, more complicated footnote schemes
like those for critical editions have to be implemented
mostly manually.

The bigfoot addresses a number of deficiencies and
replaces the normal footnote mechanism.

2 Features

So what are the features that bigfoot provides?

∗and a lot of other footnote applications
†dak@gnu.org

• Multiple footnote apparatus1 are possible.2

• Footnotes can be nested.3

• Footnotes are numbered in the order they appear
on the page, and numbering may start from 1†

on each page. In each apparatus, the footnotes
are arranged in numerical order identical to page
order. This does not sound exciting at all until
you consider the implications of footnotes being
nested: if the main text has some footnote4 and
then the publisher comments the main text with a
footnote,a the logical order of footnotes (in which
they appear in the source text) would have been
to let footnote e appear before footnote a. The
footnotes instead will be reordered to page order.5

• Footnotes may contain \verbatim commands6

and similar, and they will just work as expected.
This is achieved in a manner similar to the
\footnote command of plain TEX.

• Footnotes can be broken across pages.7

1 An apparatus is one block of contiguous footnotes forming
a logical and physical unit. Separate apparatusb can be inde-
pendently broken to the next page.

2 Actually, manyfoot already provides this functionalityc but
it fails to address a number of intricacies inherent to this sort of
setup, a few of which follow.

3 You can anchor footnotes for some apparatus in the main
textd.

† or whatever the first footnote symbol happened to be
4 such as shown in this example footnotee
5 The style file perpage has been extended with additional

functionality for reordering such numbers.
6 even stuff like \verb-\iffalse-
7 While this does not sound like something excitingly new, it

must be noted that TEX does not do a satisfactory job at split-
ting insertions, the underlying mechanism for split footnotes. In
particular, TEX only manages to find a split when no mater-
ial whatsoever is added to the page after the occurence of the
split footnote. This might include another footnote in a differ-
ent apparatus, or simply a line tied to the current line with an
infinite penalty, for example because of a respective setting of
\widowpenalty. In contrast, bigfoot breaks footnotes properly
in such circumstances, and it uses a backtracking algorithm (with

a This is a subsequent comment to the main text. b Yes,
this is the correct plural form. c and is loaded by bigfoot

d or any apparatus preceding it on the page
e which happens to have a comment attached to it. Notice

that bigfoot will prefer to leave this smaller footnote block in-
tact, as breaking it will not help fitting the above footnote block
on the page.

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET07

The Bigfoot Bundle for Critical Editions

David Kastrup

199

• When footnotes are broken across pages, the color
stack is maintained properly. Color is handled in
LATEX with the help of specials that switch the
color (and, in the case of dvips, restoring it after-
wards with the help of a color stack). Restarting
the footnote on the next page with the proper color
is something that has never worked in LATEX. Now
it simply does.

• Footnotes may be set in a compact form in one
running paragraph.8

• Split footnotes will not get jumbled in the presence
of floats. bigfoot is not afflicted by this bug in
LATEX’s output routine since it does not delegate
the task of splitting footnotes to TEX in the first
place. While the faulty output routine of LATEX
may still jumble the order of footnotes in that par-

early pruning of branches that can’t beat the current optimum)
for finding the best split positions for several footnote appara-
tus in parallel. The fill level of the page is taken into account as
well as the costs of the individual splits. A split footnote is pe-
nalized with a penalty of 10000 (which is pretty similar to what
TEX itself does when dealing with footnotes), so that in gen-
eral TEX will tend to avoid splitting more than a single footnote
whenever possible. One complication is that if the parts broken
to the next page contain footnotes themselves, those have to be
moved to the next page completely and adapted to the number-
ing of footnotes therea. This rather intricate and complicated
mechanism leads to results that look simple and natural.

8 While manyfoot and fnpara also offer this arrangement,
bigfoot offers a superior solution in several respects:

• The line breaking can be chosen much more flexibly: with
appropriate customization, it is possible to fine-tune quite
well when and where stuff will be placed in the same line,
and when starting a new line will be preferred.

• In-paragraph footnotes can be broken across pages auto-
matically, just like normal footnotes. They will only be
broken after the last footnote in the block has started.

• Pages will not become over- or underfull because of mis-
estimating of the size of in-paragraph footnotes. Also the
total width of such footnotes is not restricted to \maxdimen

(which sounds generous at something like 6m or 19 ft, un-
til you realize that a few pages of text suffice to burst that
limit, and a few pages of text are reached easily with longer
variants of the main text). While TEX will accumulate
boxes exceeding this size without problem, it panics at its
own audacity if you actually ask about the total width of
the acquired material. While one may still not have mater-
ial exceeding a total vertical size of \maxdimen accumulate
in one footnote block, one would usually need a few dozen
pages for that, and so this limitation is much less noisome
than the corresponding restriction on the horizontal size.

• The decision of whether to make a footnote in-paragraph or
standalone can be changed for each footnote apparatus at
any time, including on mid-page. In fact, you can make this
decision for each footnote separately. Since display math
requires vertical mode footnotes, this is convenient.

• bigfoot will make a good-faith effort to adapt the normal
footnote layout provided by the document class with the
\@makefnmark and \@makefntext macros to in-paragraph
footnotes.

a which can be completely different!

ticular case (when one footnote gets held over as
an insertion ‘floated’ at infinite cost), bigfoot will
sort the jumbled footnotes back into order before
processing them.

• Each footnote apparatus can have its own private
variant of \@makefntext and a few other macros
and parameters responsible for formatting a foot-
note block. The default is to use what the class
provides, but special versions can be defined, for
example,

\FootnoteSpecific{variants}%

\long\def\@makefntext#1{...

for the footnote block called “variants”.

3 Drawbacks

What about current drawbacks?

• ε-TEX is used throughout. After it became clear
that the implementation of the package would not
be possible without using some of ε-TEX’s features,
its features were extensively employed: rewriting
the package to get along without ε-TEX would be
very hard, even if you came up with ideas for
those cases where I could find no other solution.
Free TEX distributions have come with ε-TEX for
a long time by now (in fact, ε-TEX is now the rec-
ommended engine for LATEX, and actually used as
the default in the latest TEX Live), but proprietary
variants may lack ε-TEX support. The same holds
for quite a few Ω versions.

• The licence is not the LPPL, but the GPL. In my
book, I consider this an advantage: the functional-
ity of the package is quite important, and it is in its
infancy yet. I would not like to encourage a market
of proprietary offsprings directly competing with
it. While with sufficient financial incentive I might
feel confident enough to have the means to reim-
plement whatever noteworthy extension somebody
else might come up with, at the current time I pre-
fer this way of ensuring that the free development
does not fall behind and that there is no incen-
tive to turn to developers with no qualms about
creating proprietary versions.

• bigfoot requires twice as many box registers9 as
manyfoot: one set in the form of an insertion for
each footnote apparatus, one set as mere boxes.

• It can’t handle more footnotes in a single block
per page than the group nesting limit of TEX, and

9 Since ε-TEX has an ample supply of box registers (32767
instead of 256), this is not really much of an additional limitation.

WET07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

200 The Bigfoot Bundle for Critical Editions

David Kastrup

that is usually hardwired at 255.†

• Since it meddles considerably with the output rou-
tine’s workings, interoperation with other pack-
ages doing the same might be problematic. Con-
siderable effort has been spent on minimizing pos-
sibly bad interactions, but the results might not
always be satisfactory and, at the very least, might
depend on the load order of packages.

• It slows things down. This is not much of a con-
cern, and usually the package is astonishingly fast.

• The complexity of the package makes it more likely
for things to go wrong in new ways.10

4 Additional new packages

The bundle provides some more packages: perpage is
used for the sort of renumbering games mentioned be-
fore, and suffix is used for defining augmented com-
mands.

As an example of use for those packages we had pre-
viously a few examples where numbers like 7‡ and 255§

were given footnotes, and in order not to confuse this
with powers as the following 66611 is in danger of, we
have switched to per-page numbering of footnotes with
symbols for that purpose. The source code simply uses

like~7\footnote’{a lucky number}

namely a variant footnote command. How is that
achieved? Just with

\newcounter{footalt}

\def\thefootalt{\fnsymbol{footalt}}

\MakeSortedPerPage[2]{footalt}

\WithSuffix\def\footnotedefault’{%

\refstepcounter{footalt}%

\Footnote{\thefootalt}}

A new counter is created, its printed representation is
set to footnote symbols, the counter is made to start
from 2 on each page (since symbol 1¶ is a bit ugly), and
then a variant of \footnotedefault is defined which
will step the given counter and use it as a footnote
mark.12

If you find yourself running out of insertions, etex offers the
\reserveinserts command.

† This limit seems sufficient at first glance, but one could
use the various mechanisms available in connection with in-para-
graph footnotes to make sure that a footnote will be broken
across the page at a point closely related to the main text’s break-
point (for example, if you are doing an interlinear translation in
a footnote). In that case, this limit might become problematic.

10 Most of those problems should arise under requirements
that could not possibly be met without the package, so this would
be reason for improving rather than not using the package.

‡ a lucky number § well, almost as lucky
11 strange, yes? ¶ which is ∗
12 manyfoot defines a two-argument command \Footnote that

That’s all. One can define several suffixes, the result-
ing commands are robust13, and one can use arguments
and other stuff. For example,

\WithSuffix\long\def\footnotedefault

[#1]{#2}{...

would augment the macro \footnotedefault by a
variant accepting an optional argument.

5 Some internals

5.1 Basic operation

The package uses most of the interfaces of manyfoot

for its operation. While it uses TEX’s insertions for
managing the page content, the material collected in
those insertions is in a pretty raw state and its size is
always overestimated.14 The actual material that goes
onto the finished page is generated from the insertions
at \output time.

Material that is put into insertions is prewrapped
into boxes without intervening glue.15 The box dimen-
sions are also somewhat special: while the total height
(height+depth) corresponds to the actual size of the
footnote, the depth contains a unique id that identifies
the last footnote in each box (of which there usually is
just one, unless we are dealing with the remnants of an
in-paragraph footnote apparatus broken across pages).
The width is set to a sort key that is used for rearrang-
ing the various footnotes into an order corresponding
to their order of appearance on the page.

The boxes are sorted by unvboxing them and then
calling the comparatively simple sorting routine (a
straight insertion sort):

\def\FN@sortlist{{%

\setbox\z@\lastbox

\ifvoid\z@ \else

\FN@sortlist \FN@sortlistii

\fi}}

\def\FN@sortlistii{%

\setbox\tw@\lastbox

\ifvoid\tw@\else

\ifdim\wd\tw@<\wd\z@

{\FN@sortlistii}%

\fi

\nointerlineskip \box\tw@

\fi

\nointerlineskip \box\z@}

takes a footnote mark and corresponding footnote text.
13 as long as their suffixes are so as well
14 bigfoot simply sets each footnote, even those that should

be typeset with others in one block, separately in its own para-
graph for estimating its size, which should be a safe upper limit
for the size a footnote can take when set in a paragraph with
others.

15 That way, there is never a legal breakpoint in an insertion.

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET07

The Bigfoot Bundle for Critical Editions

David Kastrup

201

and then all consecutive runs of hboxes are joined into
vboxes. The desirability of breaking between two in-
paragraph footnotes depends on their respective size,
on whether this would save lines when typesetting, on
whether a footnote apparatus can be shrunk by more
than a certain factor in this manner, and whether the
ratio of allowable joints between footnotes16 to the
number of footnotes exceeds a certain ratio.17 The cri-
teria are configurable per apparatus or globally.

There are some footnotes where a vertical arrange-
ment is mandatory,18 and the footnote must not be set
into a hbox to start with. This is the case, for exam-
ple, for footnotes containing display math. Placing a
+ sign before the opening brace of the footnote text
will achieve that, and similarly a - sign can be used for
switching in an otherwise vertically arranged footnote
apparatus to horizontal arrangement.
bigfoot hooks into the output routine and does its

accounting work before the main output routine gets
a chance to get called. This work involves sorting the
various contributions to a single insertion, joining to-
gether all in-paragraph footnotes into a single para-
graph, measuring the resulting boxes, and gathering
more material from the page in case that this produces
an underfull box. Since the insertions bigfoot uses
are unsplittable, this will often lead to an overfull box.
In that case, the various footnote blocks get split to an
optimum size before the real output routine gets called,
and if this results in an underfull box again, more ma-
terial gets called in again.

5.2 Dissecting \@makefntext

The footnote layout of document classes is given by
\@makefntext. This macro receives one argument,
the body of the footnote. We’ll now discuss several
problems we want to tackle in the context of using
\@makefntext for implementing the layout prescribed
by the class file.

5.2.1 Robust footnotes

One problem with LATEX’s footnotes is that they scan
their arguments prematurely. We want them to be-
have more like those of plain TEX, to forestall com-
plaints when \verb and its catcode mongering cousins
fail to work in footnotes. The trick is to have the

16 where both footnotes around the breakpoint are considered
potentially horizontal material

17 A footnote apparatus in which there are just few horizon-
tally arranged footnotes would appear inconsistent.

18 like footnotes containing

• list environments

• display math like

∞∑

n=1

(−1)n

n
= log

1

2

macro argument of the \footnote macro not really
be a macro argument, but the content of an \hbox or
\vbox command, and have subsequent code do its work
with \aftergroup, once the command finishes.

This means that we have to cut \@makefntext into
parts before and after its argument. It turns out that
cutting the part before it starts processing its argument
is rather easy:

\@makefntext \iffalse \fi

will do that. It executes and expands \@makefntext

until it comes to the point where it would process its
argument, which happens to be \iffalse, and then
kills the rest of \@makefntext. At least as long as the
argument #1 does not happen to be in itself inside of
a conditional, in which case bad things will happen.
Very bad things. But a pretty thorough sampling of
\@makefntext variants on TEX Live did not turn up
such code.

Much more problematic is getting hold of the second
part of \@makefntext. It turns out that about 95% of
the variations out there in different class files will work
with

\expandafter \iffalse \@makefntext \fi

which looks rather similar to the above. Unfortu-
nately, it is not quite equivalent, since in the upper
code, \@makefntext is cut into two once it has been
expanded up to its macro parameter, whereas in the
lower version it is cut into two before any parts of it
get expanded. If any of the closing braces that follow
#1 in the definition of \@makefntext happen to belong
to the argument of a macro starting before #1, they
will cause spurious closing groups.

Getting the closing part at the end of the footnote
without any remaining macro braces is more tricky, in-
efficient and error prone. One possibility is starting
another instance of \@makefntext inside of a box to
be discarded later. Then as its macro argument you
use code that will repeatedly be closing opened groups
until the outer group level is reached again and the
box can be discarded. ε-TEX’s grouping status macros
(\currentgrouplevel and \currentgrouptype) make
it possible to know how to close the current group and
whether it is the last involved one. After everything
that has been opened has been discarded again, the re-
maining tokens in the input stream should form a per-
fect complement to the tokens that the initial \iffalse
trick has discarded at the start of the footnote.

One other mechanism probably worth playing with
is the use of alignment templates, since they provide a
natural way of having TEX switch input contexts across
groups. The best approach in that regard would seem
to parse the content of the footnote within a \noalign

group of a \valign, but that still suffers from the prob-
lem that no automatic discretionaries are generated for
explicit hyphens.

WET07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

202 The Bigfoot Bundle for Critical Editions

David Kastrup

But since most of the the \@makefntext variants out
in the field are covered with the simple variant (basi-
cally, this is the case for all definitions that do not
use #1 within a macro argument itself), bigfoot for
now has not added any of the more complicated ver-
sions. The group discarding trick might perhaps be
made available with a separate package option at a later
time, if there is sufficient demand for it.

But it may be easier in most cases simply to re-
write the culprits: after all, \@makefntext is rarely
complicated. Most notably, the \@makefntext of the
ltugboat class is so ridiculously contorted that the au-
tomated analysis of it fails. (It has been replaced with
an equivalent for this article.)

5.2.2 \@makefntext in ‘para’ footnotes

is really a bit out of place: the ‘para’ footnote style
sets all footnotes within one continuous running para-
graph, a manner of operation quite different from the
original intent of \@makefntext. Single footnotes are
first collected in horizontal mode, and at \output time
the relevant footnotes making it to the current page
are pasted together. This has several problems: for
one, \@makefntext will set paragraph breaking para-
meters. We need these at the time that we assemble
the footnotes into one paragraph. But \@makefntext

also generates the footnote mark, so we need to call it
for each footnote.

So even when we set \@thefnmark19 equal to an
empty string at footnote assembly time, the assembled
footnote mark will likely take up some additional space.
This is not the end of our worries: while the format-
ting will be right for standard footnotes, it does not
cater for ‘para’ footnotes. If we want to have a reason-
ably looking turnout, here are the conditions we have
to meet:

1. At the beginning of the footnote block, or if a foot-
note starts right after a line break, the specified
formatting should be used.

2. Within the line, we shall keep the spacing between
footnote mark and footnote text correct. How-
ever, most styles right-justify the footnote mark
within a box of fixed size. If we keep this sort of
formatting, we will end up with a large space be-
fore short footnote marks, and a small one before
longer marks. Since the amount of whitespace in-
side of a line should not be so large as to cause
unsightly white holes, nor so small to make the
footnote mark confused to be a part of the preced-
ing footnote, we want a fixed spacing before the
footnote mark.

The solution to these problems is to do a few measure-
ments: we measure the width that an empty footnote

19 the mark as displayed in the footnote

mark would cause in the footnote box (and start our
assembled footnotes with a negative space compensat-
ing that), and we typeset the footnote mark once on
its own with \@makefntext, fishing with \unskip and
\lastbox for the footnote mark box and resetting it
to its natural size (which will kill the particular jus-
tification prevalent in the majority of class files doing
justification). The difference in box size gets recorded
separately until the time that the footnote gets set, and
then the interfootnote glue is calculated accordingly.20

5.2.3 Maintaining the color stack

is not nice.21

What is the color stack, anyway? LATEX’s color

package provides color selection commands that will
change the current text color until the end of the group,
where it will be restored.

The involved macros are

\color@begin@group is called at the start of each
‘movable’ box: material that does not necessarily
appear right away. Without color support loaded,
this does nothing. With color support loaded, it
is usually equal to \begingroup.

\color@end@group is the corresponding macro at the
end of ‘movable’ boxen. Any color restoration ini-
tiated with \aftergroup in the box will happen
right here, still within the scope of the box, instead
of outside where it would not move with the box.

\set@color will be called for setting the current color.
It will also use \aftergroup in order to insert a
call to \reset@color when the group ends.

\reset@color will restore the current color to what it
was before the current group.

How will the color be restored? We have two different
models:

dvips restores colors by making use of a color stack:
dvips can ‘push’ a new color onto the stack,
and pop the previous color back. Consequently,
\reset@color inserts a special that tells dvips to
pop the stack once.

pdftex instead restores colors by reinstating the
color stored in \current@color after closing the
group.22

It is clear that the pdftex model is insufficient to even
keep the color of the main text across page breaks,

20 A few classes work with \parshape or \hangindent, either
directly or with a list environment, and this is also taken into
consideration as far as possible.

21 The main philosophy for work on the color stack has been
summarized well by David Carlisle: “It’s not my fault.”

22 Of course this means that if we are at the end of a movable

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET07

The Bigfoot Bundle for Critical Editions

David Kastrup

203

since on the next page there is no special after the page
break that could switch back to the text color after the
page footer23 from the last page and headers from the
current page have been placed with a default color.24

But in the context of footnotes, the problem is
severely exacerbated: a footnote can be broken right
in the middle of a sequence of color changes. The tech-
nically sound solution would be to switch to a different
color stack for each footnote block. Since dvips does not
offer multiple color stacks (and pdftex does not even of-
fer a single one), we have to revert to trickery.

At each color change, the complete state of the color
stack gets recorded in a mark. When the footnote is
broken, we use the information in the mark in order
to unwind the color stack to the state on the page be-
fore the footnote was entered. When the footnote is
continued on the next page, the unwound color stack
is reinstated again. Whenever \color@begin@group is
called, the whole recording and restoration business is
stopped (since a new context has been started), the
record of the color stack essentially restored to empty,
and only resumed when the corresponding group has
ended.

In order to keep these proceedings fit for consump-
tion by the general public, the reader is referred to the
actual code for further details.

6 Outlook

At the time this article was written, quite a few tasks
remained to be done. Further improvements in the
footnote breaking decisions and their scoring metrics
are needed. Flushing footnotes out in the middle of the
page for short successive works would be nice. Amend-
ing footnotes with marginals (including line numbers)
in a manner consistent with the main text would seem
desirable. Additional footnote arrangements apart
from the existing basic two styles should be easily im-
plementable on top of the general scoring and breaking
mechanisms.

7 Conclusion

It is hoped and expected that this bundle will become
a basic building block for critical typesetting applica-
tions. While there are other packages available for that
purpose, bigfoot (with its companions) offers the fol-
lowing important features:

• It is completely layout-neutral: while most solu-
tions for critical typesetting are provided in the

box, the restored color will be that at the time the box was
assembled, not at the time it was used.

23 and footnotes
24 Heiko Oberdiek’s pdfcolmk package tries to deal with that

particular problem.

form of document classes, bigfoot does not make
layout decisions but instead just uses the layout
provided by a base class.

• Footnote arrangement and balancing is vastly su-
perior to and more flexible than any of the avail-
able solutions.

• Color works.

• The interfaces for creating new functionality fo-
cused around footnotes are reasonably simple.

At the time this article was written, not all interfaces
have yet been cast into stone. However, bigfoot can
be mostly used as an upwards-compatible drop-in re-
placement of manyfoot.

One can define a plain footnote style in the manner
of manyfoot, and then the default footnotes will get
replaced by this footnote style. In fact, if one does not
redefine the plain style, bigfoot will do so itself. Thus
just loading it without any further action on behalf of
the user will cater for the most common problems in
connection with footnotes.

At the current point of time, still problems remain to
be tackled: the accounting of page space and page splits
was modeled after TEX’s insertion mechanism and suf-
fers from the same problem with regard to shrinkability,
so in this paper, shrinkability has been removed from
footnotes, a bad temporary hack. Page breaks cur-
rently are calculated by looping inside of the output
routine instead of restarting it. In consequence, the
headlines are not correct when material gets pushed to
the next page. In a similar vein, floats like tables and
figures might appear too soon. This will get solved
with the next iteration of the package, after which a
regular release should be possible.

It is not entirely clear how to deal satisfactorily with
floats: if the first page size calculation results in a float
being moved to the next page, and then it is determined
that enough space on the current page is available for
placing the float, doing so will significantly reduce the
available space for the main text.

References

[1] http://sarovar.org/projects/bigfoot

(developer site and CVS instructions)

[2] CTAN:macros/latex/contrib/bigfoot

(released packages)

WET07 Proceedings EuroTEX2005 – Pont-à-Mousson, France

204 The Bigfoot Bundle for Critical Editions

David Kastrup

Proceedings EuroTEX2005 – Pont-à-Mousson, France List of Authors

List of Authors

Bella, Gábor 99

Bezos, Javier 92

Detig, Christine 1

Dierker, Andre 33

Feuerstack, Thomas 78

Fine, Jonathan 140

Gundlach, Patrick 71

Hagen, Hans 150

Haralambous, Yannis 99

Hefferon, Jim 117

Hoekwater, Taco 25

Höppner, Klaus 78

Hufflen, Jean-Michel 179

Jackowski, Bogusław 172

Jans, Arne 33

Kastrup, David 111, 199

Knuth, Donald 76

Küster, Johannes 165

Laurens, Jérôme 193

Lehmke, Stephan 33

Lejay, Antoine 81

Mittelbach, Frank 50

Neugebauer, Gerd 67

Nowacki, Janusz M. 172

Rahtz, Sebastian 38

Roegel, Denis 5

Rowley, Chris 1, 50

Schäfer, Frank-René 86

Schrod, Joachim 1

Szabó, Péter 120

Thế Thành, Hàn 92

Twardoch, Adam 55

Zapf, Hermann 76

List of Authors 205

Participants List

— A —

Jacques André

IRISA/INRIA-Rennes
ae dr iuc .r rs eq s fAn i@J .a

Campus de Bealieu
F-35042 Rennes cedex
France

— B —

Benjamin Bayart

ndy dr b@ de rar f.f .a tba g

10 rue du Croissant
F-75002 Paris
France

Kaveh Bazargan

River Valley Technologies
mr valvv ey- ch@ oee .i lka r

9 Browns Court, Kennford
Exeter, EX6 7XY
United Kingdom

Nelson H. F. Beebe

University of Utah Department of
Mathematics, 110 LCB

uh e uae h.tb m .ae @ dtbe

155 S 1400 E RM 233
Salt Lake City, 84112-0090
USA

Gábor Bella

ENST Bretagne
elbb nesa t ae t ge .n - rlr fr@. bag o

CS 83818
F-29238 Brest
France

André Bellaïche

Université Paris 7
.ia sac h u@l isl re t f. uejba m

2, rue Pierre et Marie Curie
F-75005 Paris
France

Javier Bezos

Typesetter and Consultant
a sodna@wo os .ezj eb

C. Aldeanueva de la Vera, 15, 7-F
E-28044 Madrid
Spain

Thierry Bouche

Cellule MathDoc
l-i u@ fn erje o of.r e g rb .bh euy ct rh

B.P. 74
F-38402 Saint Martin d’Hères Cedex
France

Johannes Laurens Braams

TEXniek
noh a scnea i lb .mn s r na@ .r tjo s

Kersengaarde 33
NL-2723 BP Zoetermeer
The Netherlands

Klaus Braune

Universität Karlsruhe – Rechenzentrum
u .s ze dr rB .u i .aa @ nu - a e ern urk hslK l

Zirkel 2 / Postfach 6980
D-76128 Karlsruhe
Germany

Gyöngyi Bujdosó

Faculty of Computer Science,
University of Debrecen

od . be uj i@ .nuo i hns dub f

P.O. Box 12
H-4010 Debrecen
Hungary

— C —

Matteo Centonza

Società Italiana di Fisica
fo is@tt t.ima e

Via Saragozza 12
I-40123 Bologna
Italy

Marie-Louise Chaix

EDP Sciences
.c rec np iai se oed sc gx@ml h

17 av. du Hoggar
F-91940 Les Ulis
France

Hervé Choplin

Université de Tours
UFR Sciences et Techniques

syl u. o ri ip t un s.h vd -o l hp p@ i . nh ec

rf

Parc de Grandmond
F-37200 Tours
France

Jean-Louis Colot

Université Libre de Bruxelles, cp 238
Calcul Symbolique sur Ordinateur

.o @ ea bo l . cl t u bj cl

Boulevard du Triomphe
B-1050 Bruxelles
Belgium

— D —

Andreas Dafferner

Heidelberger Akademie der
Wissenschaften

. @nd a rsa rff rd zr e .e ua en

d l ergie eh b-i e.un d

Karlstr. 4
D-69117 Heidelberg
Germany

Bernard Déchanez

@ cneuz ih nd lb he .a wceb.

Route de Chany 90
CH-1564 Domdidier
Switzerland

Christine Detig

J. Schrod Net & Publication
Consultance GmbH

.i i r@s gi gtn ot edrh ec

Kranichweg 1
D-63322 Rödermark
Germany

Andre Dierker

QuinScape GmbH
.i@ nSk cr u aD Q dd r. pe re e eeiAn

Thomasstr. 1
D-44135 Dortmund
Germany

Luzia Dietsche

me hct .x ege d@id s

Kissinger Str. 59
D-70372 Stuttgart
Germany

Michael Doob

Department of Mathematics
University of Manitoba

b tuo . i cc u n@ ab .oao acdm m

342 Machray Hall
Winnipeg, R3T 2N2
Canada

Participants List Proceedings EuroTEX2005 – Pont-à-Mousson, France

206 Participants List

Karin Dornacher

DANTE e.V.
.nai dedf c @ etf eo

Postfach 101840
D-69008 Heidelberg
Germany

— E —

Martin Etter

gn t x e@ mre d.e.rt tm ia

Bergstraße 5
D-70806 Kornwestheim
Germany

Christoph Eyrich

c a .i @ ht - nt br ed. ilh reue my

Skalitzer Straße 74a
D-10997 Berlin
Germany

— F —

Robin Fairbairns

. uc ac .@ l c. kmf ar

30 Mill End Road
Cambridge, CB1 9JP
United Kingdom

Hong Feng

RON’s Datacom Co., Ltd.
ia tn@ rm on .ce e n. sl .dfr

Suite 3-3, WuZhong Str. 200, Don
District
430040 Wuhan
China

Thomas Feuerstack

FernUniversität in Hagen
Universitätsrechenzentrum

s h eeu ct ro easm ife .u nr k. gn -@ nF a aTh

de

Universitätstr. 21
D-58084 Hagen
Germany

Jonathan Fine

The Open University
nn .po kuai e@ e c..j f

Walton Hall
Milton Keynes, MK7 6AA
United Kingdom

Robert Fischer

.r thr xmi e @ ncf gse ed

Am Krümmelweg 8
D-54311 Trierweiler
Germany

Daniel Flipo

U.S.T.L.
.f il e rei @. 1i -n po v ln fl lila ud

Cité scientifique
F-59655 Villeneuve d’Ascq Cedex
France

David Fuchs

cf y oo@ co .s au mhdr h

1775 Newell Rd.
Palo Alto, California, 94303
USA

— G —

Ralf Gärtner

mteg .s- st r el y mt csf ea @r o. nar

Ötztalerstr. 5b
D-81373 München
Germany

Falk Gerwig

d2 .k gm eak x@lf

Im Schlehbusch 9
D-75397 Simmozheim
Germany

Michel Goossens

CERN
.h @ hr .cs sc eo sl ceg o n neim

Departement IT
CH-1211 Geneve 23
Switzerland

Steve Grathwohl

Duke University Press
k du . uea dth@g er

905 W Main Street Suite 18B
Durham, NC, 27701
USA

Holger Grothe

TU Darmstadt,
Fachbereich Mathematik

lehot a@ degd .rg u

Kittlerstraße 38
D-64289 Darmstadt
Germany

Patrick Gundlach

acit u ln hdk cr .gp @a

Universitätsstraße 71
D-44789 Bochum
Germany

Michael Guravage

Literate Solutions
@ r t nge sir a . me ua slv at oo oie clu tg

Mijndensedijk 11a
NL-3632NT Loenen aan de Vecht
The Netherlands

— H —

Hans Hagen

PRAGMA
Advanced Document Engineering

@w . lga s nm xapr

Ridderstraat 27
NL-8061GH Hasselt
The Netherlands

Thê Thành Hàn

University of Education
in Ho Chi Minh City

x thh nthe nm en at @ .ha g

280 An Duong Vuong
Ho Chi Minh
Vietnam

Yannis Haralambous

ENST Bretagne
us sr bni @a alh m. anya o

fs nt ret- eg rb a .en

CS 83818
F-29238 Brest
France

Jim Hefferon

St Michael’s College
m i gp aa on @ ct .. grtut nft

Box 285
Colchester, VT, 05439
USA

Laure Heïgéas

France

Oliver Heins

i .op grs s o@ ollo

Auf dem Brinke 1
D-30453 Hannover
Germany

Proceedings EuroTEX2005 – Pont-à-Mousson, France Participants List

Participants List 207

Hartmut Henkel

_ l etr .hm e @t gmxu k dn eha

In den Auwiesen 6
D-68723 Oftersheim
Germany

Taco Hoekwater

Elvenkind BV
@ ne c.e kc lv di oo nt ma

Spuiboulevard 269
NL-3311 GP Dordrecht
The Netherlands

Morten Høgholm

le @onet g .m er h al x ctet oh p jo r-.om

rgo

Persillehaven 40, 1215
DK-2730 Herlev
Denmark

Klaus Höppner

DANTE e.V.
es .a d@ antedlk u

Postfach 101840
D-69008 Heidelberg
Germany

Karel Horàk

Mathematical Institute,
Academy of Sciences

t ck acm hk@ a zsr ..aoh

Zitna 25
CZ-115 67 Praha 1
Czech Republik

Sophie Hosotte

EDP Sciences
. re s oice@ est do c gt ps no eh

17 av. du Hoggar - BP 112 -
Courtaboeuf
F-91944 Les Ulis Cedex A
France

Jean-Michel Hufflen

LIFC - Université de Franche-Comté
i cn f e-ll .ie n . rmv off fc@ tuhu f

16, route de Gray
F-25031 Besancon CEDEX
France

— J —

Bogusław Jackowski

BOP
c @ .o t la os .ij k pk gs rw u_ gb

Bora-Komorowskiego 24
PL-80-377 Gdańsk
Poland

Jean-Paul Jorda

EDP Sciences
a s sci r.p ge n@rd d ce eoj o

17 av du hoggar
F-91940 Les Ulis
France

— K —

David Kastrup

u og gk@ . rnda

Kriemhildstr. 15
D-44793 Bochum
Germany

Jörg Knappen

pn dw e@ bpea enjk .

Dieselstraße 13
D-66123 Saarbrücken
Germany

Donald E. Knuth

USA

Thomas Koch

Dante e.V.
tdm na . es eao @th d

Tempelstraße 20
D-50679 Köln
Germany

Harald König

xln .ie e@ nu dio gk

Königsberger Str. 90
D-72336 Balingen
Germany

Reinhard Kotucha

a h wkhn e dbo eu @i r a. t .cder

Marschnerstr. 25
D-30167 Hannover
Germany

Johannes Küster

typoma
yt .mo moaof @ cpin

Karl-Stieler-Str. 4
D-83607 Holzkirchen
Germany

— L —

Klaus Lagally

Universität Stuttgart
lg oa@ ck m ga r.ya ll

Universitätsstraße 38
D-70569 Stuttgart
Germany

Joachim Lammarsch

Rechenzentrum der
Universität Heidelberg

mi @l h.h m rzr ua sa a .ccoj m

- i bei l .e e dd gh eu rn

Im Neuenheimer Feld 293
D-69120 Heidelberg
Germany

Marion Lammarsch

Psychologisches Institut der
Universität Heidelberg

.s goln a lrm y. er s@h hma c ii c ooam p

e e .l di rbe- d gi eu hn

Hauptstraße 47-51
D-69117 Heidelberg
Germany

Dag Langmyhr

University of Oslo
. .i nu og f o@ i iad

PO box 1080 Blindern
N-0316 Oslo
Norway

Maurice Laugier

GUTenberg
fea ci 2e er .r i l@umu e.g rtal

La Haute Tourronde
F-05000 Gap
France

Jérôme Laurens

Département de Mathématiques,
Université de Bourgogne

e r .- f@r m n rurae oo g gu b u. s eo le nj

9, avenue Alain Savary
F-21034 Dijon cedex
France

Participants List Proceedings EuroTEX2005 – Pont-à-Mousson, France

208 Participants List

Matthieu Laverne

Black Media
t.nya r@ fe sts e erin

43, rue du Commerce
F-75015 Paris
France

Stephan Lehmke

QuinScape GmbH
che nk epL SQ aimp .a uen eh @e dS .t

Thomasstraße 1
D-44135 Dortmund
Germany

Martin Wilhelm Leidig

Lr ot ee@ge. nd .i eli i n oi mn dhMa

Centgrafenweg 9
D-69181 Leimen
Germany

Antoine Lejay

INRIA Lorraine
t a e re y@ cLo n a.i n-e .cjni ny u fn .A

BP 239
F-54506 Vandoeuvre-les-Nancy CEDEX
France

Knut Lickert

Obertorstr. 61
D-73728 Esslingen
Germany

Manfred Lotz

n@ t en da .df er dam e

Sindlinger Str. 8
D-60326 Frankfurt
Germany

Thomas Lotze

a ep oj@l. rl tze ra c-m xo t t gs .oet oh

Ziegelmühlenweg 3
D-07743 Jena
Germany

Jerzy Ludwichowski

Polish TEX Users Group - GUST
i pt. ls .nLy oh k ui nz rr ud @ .owu iwe cJ

Plac Rapackiego 1
PL-87-100 Toruń
Poland

— M —

Lars Madsen

Department of Mathematical Sciences
University of Aarhus Denmark

i kf .l f ue i@ .a da md

Tousvej 97, 2.TV
DK-8230 Aabyhoej
Denmark

Gisela Mannigel

ise at o .m@ dln eimg

Auenweg 2A
D-82407 Wielenbach
Germany

Lionel Marcouire

Dauphine
. oo am ec roul re @n ciil m

25 rue de la Libération
F-92500 Rueil-Malmaison
France

Wendy McKay

Control and Dynamical Systems
California Institute of Technology

t cs h..c l ude@ am d cg ew

M/C 107-81 (1200 E California Blvd)
Pasadena, 91125-8100
USA

Frank Mittelbach

LATEX3 Project
t l - eci jrham topn .cla xb @ta . e tkrf e

org

Zedernweg 62
D-55128 Mainz
Germany

Mikael Möller

TEX-Försäljning AB
k sa .imia eb lsf@et x

Kampementsgatan 34
S-11538 Stockholm
Sweden

— N —

Gerd Neugebauer

ande e@e uu rr .en g dg- ebe eg

Im Lerchelsböhl 5
D-64521 Groß-Gerau
Germany

Richard WD Nickalls

Department of Anæsthesia,
City Hospital, Nottingham

i cel sc rpn @ca mk euk .om oc lsdi v

Hucknall Road
Nottingham, NG5-1PB
United Kingdom

Michael Niedermair

m. dg n .@g exm.

Am Malerwinkel 16
D-85778 Haimhausen
Germany

Janusz Nowacki

FOTO-ALFA
u pi ga ko c s o lg.w tn r@. .j

Al. 23 Stycznia 54D
PL-86-300 Grudziądz
Poland

— O —

Cezary Obczyński

Faculty of Mathematics, University Łódż
laa m oa i zu d. .c n plth@ .z zc

Banacha 22
PL-90-238 Łódż
Poland

Heiko Oberdiek

n b rr@ ike i di ege fur u .edo -b

Kärntner Weg 3
D-79111 Freiburg
Germany

— P —

Gilles Pérez-Lambert

Université Paul-Valéry, Montpellier III
s pil n f-n. o@e rvre 3P u me tl .iG z

Route de Mende
F-34199 Montpellier Cédex 5
France

Éric Picheral

i fc e ec fi elp h rr@a .. rre

16 rue du docteur Ferrand
F-35200 Rennes
France

Proceedings EuroTEX2005 – Pont-à-Mousson, France Participants List

Participants List 209

Karel Piska

Institute of Physics,
Academy of Sciences
s u@a .k zf cpi z

Na Slovance 2
CZ-18221 Prague
Czech Republik

Fabrice Popineau

Supélec
i l@b sp.c re e co up fi pe .uar n efa

2 rue E. Belin
F-57070 Metz
France

Christophe Pythoud

ABCIS Sarl
coud@ s hb i .cahytp

22, rue du Pont
CH-1003 Lausanne
Switzerland

— R —

Sebastian Rahtz

Oxford University
n csb i h .liaga t.r ma oa @t mse z

13 Banbury Road
Oxford, OX2 7BG
United Kingdom

Bernd Raichle

DANTE e.V.
ecir dd x.n gha emlr @ .be

Kissinger Str. 59
D-70372 Stuttgart
Germany

Henri Rasolofomasoandro

ft usr rls be@li. a fyo rf .ohe r

54 Chemin d’Arvillard
F-74160 Archamps
France

Thomas Ratajczak

bt . ea dej @a wc kr za

Wredestr. 10
D-97082 Würzburg
Germany

Arthur Reutenauer

École normale supérieure
t n @r erae n .tu e. uR su rfeA hr

45 rue d’Ulm
F-75005 Paris
France

Denis Roegel

LORIA – University of Nancy 2
o .al ie e @ r flg ror

LORIA – BP 239
F-54506 Vandoeuvre les Nancy cedex
France

Christian Rossi

@ . ri 2 3niss pr fo

168 cours Lafayette
F-69003 Lyon
France

Chris Rowley

Open University / LATEX3
. up .@ e .ero cw kaa nylc o.

1-11 Hawley Crescent
London, NW1 8NP
United Kingdom

Erich Ruff

u_ .- ei nl eh f @ nTfR O dirE c

Kruckenburgstr. 21
D-81375 München
Germany

— S —

Volker RW Schaa

DANTE e.V.
rk .ane t el de@o dv

Landwehrstraße 33
D-64293 Darmstadt
Germany

Frank-René Schäfer

Germany

Walter Schmidt

.c d ei.s m nx@a h gt m.w t

Nürnberger Straße 76
D-91052 Erlangen
Germany

Joachim Schrod

J. Schrod Net & Publication
Consultance GmbH

o oc@ rm.r d ghcj as

Kranichweg 1
D-63322 Rödermark
Germany

Martin Schröder

.dori srt n o e@ ineam

Crüsemannallee 3
D- Bremen
Germany

Torsten Schütze

Siemens AG, CT IC 3
ee oms h sr n u t ce .. ezs sct n@ meot i

Otto-Hahn-Ring 6
D-81739 München
Germany

Peter Seitz

i non us@ c een lust dek .tes i-i z rp g.

Kleinreuther Weg 53
D-90408 Nürnberg
Germany

Martin Sievers

.S esr .sup ere ei et cn nv h@ h dS ai yMa

Im Treff 8
D-54296 Trier
Germany

Karel Skoupẏ

ETH Zürich
f t zeino . h h.up @yk cs

Manegg Promenade 136
CH-8041 Zürich
Switzerland

Petr Sojka

Masaryk University in Brno
Faculty of Informatics

fa zk mj .@ cii .nos u

Botanicka 68a
CZ-60200 Brno
Czech Republik

Tobias Sterzl

DANTE e.V.
s @ mb ge xzra .dei st.to l

Häldenstraße 30
D-75236 Kämpfelbach
Germany

Thierry Stoehr

AFUL - Formats-Ouverts.org
go .f@h a lue orrst

34 rue de l’écluse
F-77000 Melun
France

Participants List Proceedings EuroTEX2005 – Pont-à-Mousson, France

210 Participants List

Péter Szabó

BUTE Department of Computer Science
and Information Theory
s . .hn@ uf mebitp

Mũegyetem rakpart 3–9
H-1111 Budapest
Hungary

Jolanta Szelatyńska

Nicolaus Copernicus University,
IT Centre

n uiunezt n rasla . .a y ol @ nt pt .k laJ So

Plac Rapackiego 1
PL-87-100 Toruń
Poland

— T —

Adam Twardoch

.o@t aw moam hr cd cad

Logenstr. 2/301
D-15230 Frankfurt (Oder)
Germany

— V —

Erik Van Eynde

LUDIT — Katholieke Universiteit Leuven
ecy nle e .d auc.k bcnV E va k u@i n e ..Er

De Croyelaan 52a
B-3001 Heverlee
Belgium

Ulrik Vieth

it emik. o .iv lnsetr i ah de@ul

Vaihinger Straße 69
D-70567 Stuttgart
Germany

— W —

Zofia Walczak

Department of Mathematics,
University of Łódż

n . da u lh o pf wa t ll m@ .i . ziz ao

Banacha 22
PL-90-238 Łódż
Poland

Sebastian Waschik

eia s dx.w h m@n ca ktb gi.as se

Kätnerweg 13f
D-22393 Hamburg
Germany

Stanisław Wawrykiewicz

GUST
gw .@ p.ua otg s lrts

Broniewskiego 2/2
PL-81-837 Sopot
Poland

Olaf Weber

lxi .a r ln o 4f@f lno as .vol e

Boulevard Heuvelink 1-11
NL-6828KG Arnhem
The Netherlands

Gerben Wierda

@ .b r nr ln eW. andairGe e

The Netherlands

— Z —

Hermann Zapf

Seitersweg 35
D-64287 Darmstadt
Germany

Proceedings EuroTEX2005 – Pont-à-Mousson, France Participants List

Participants List 211

EuroTEX 2006: A Hungarian TEX Rhapsody

Announcement and Call for Papers

The 16th EuroTEX meeting, “A Hungarian TEX Rhapsody”, will be held in Debrecen, Hungary,
between July 5 and 8, 2006. MaTEX (the Hungarian TEX User Group) together with the University
of Debrecen have committed to undertake the conference affairs, and now announce the call for
papers. This will be the first international TEX conference held in Hungary.

For more information about EuroTEX 2006, please visit http://www.matexhu.org.

Dates

March 1, 2006 —Deadline for abstracts of presentations;
e-mail: eurotex2006@matexhu.org.

June 1, 2006— Deadline for preprints of papers, for distribution at the conference.

July 5–8, 2006— Conference.

July 25, 2006— Deadline for final versions of papers; the proceedings will be published
as an issue of TUGboat.

Topics

Topics include but are not limited to: TEX and so many friends, for automated typesetting
Typography (digital or otherwise) Font design and technologies
Publishing (electronic or otherwise) (Re)discovery of the European book tradition

Location

The place of the conference is Debrecen, Hungary. Debrecen is a town of universities known as the
Calvinist Rome. It is near the biggest Hungarian National Park, Hortobágy, and a famous spa in
Hajdúszoboszló.

There will be also free time to give you the opportunity to taste the many types of Hungarian
wines, and get to know the tasty special Hungarian dishes. Hungary is a sunny country during
summer, an ideal place for making excursions. There are several cultural programs in both Debrecen
and Budapest, including jazz and classical music festivals, exhibitions and performances. And we
especially invite you to bring your musical instruments to create our own festival!

