
TEX forever!

Jonathan Fine
Learning and Teaching Solutions

The Open University

Milton Keynes

United Kingdom

J.Fine@open.ac.uk

http://www.pytex.org

Abstract

This paper explores new ways of doing input to and output from TEX. These
new ways bypass our current habits, and provide fresh opportunities.

Usually, TEX is run as a batch program. But when run as a daemon, TEX
can be part of an interactive program. Daemons often that run forever, or at
least for a long time. Hence the title of this paper.

Usually, parsing and transformation of the input data is done by TEX macros,
with little outside help. Often, this results in input documents that only TEX
can understand. Also, TEX macros can be hard to write. We demonstrate the
replacement of TEX macros by an external program. This is done in real time.

Usually, TEX’s principal output is a dvi representation of typeset pages, for
processing by a printer driver. However, TEX’s log file or console can be used to
allow TEX to output the boxes it holds internally. (Alternatively, an extension of
TEX could write this data out in a binary form.) Shipping out boxes rather than
dvi allows an external program to do the page makeup.

Don Knuth’s original conception was that TEX would be “just a typesetting
language”. In some sense he “put in many of TEX’s programming features only
after kicking and screaming”. The developments described above reduce our
dependence on TEX macros, and so bring our use of TEX closer to Knuth’s original
conception. Doing this will greatly improve its usefulness.

Long live TEX!

Introduction

In 1990, Don Knuth told us [8, p.572] that his work
on developing TEX had come to an end. He went on
to say:

Of course I do not claim to have found the
best solution to every problem. I simply
claim that it is a great advantage to have a
fixed point as a building block. Improved
macro packages can be added on the input
side; improved device drivers can be added
on the output side.

In this paper, the author tries to follow this
advice. There are imperfections in TEX, and the lack
of proper support for Unicode fonts and filenames is
a major weakness. However, TEX also has enormous
strengths. It is archival. It carefully uses integer
arithmetic to ensure that it gets the same line and
page breaks, regardless of the machine it is running

on. Its algorithm for breaking a paragraph into lines
is reliable, adaptable and efficient. TEX is without
rival for complex mathematical typesetting.

Often, TEX is used with LATEX as the macro
package front end, and with dvips as the device
driver. Sometimes, the word ‘TEX’ is used to refer
to the whole system. However, in this paper we
mean by ‘TEX’ the typesetting program written by
Don Knuth. And so LATEX and dvips are tools for
use with TEX.

This paper is concerned with making improv-
ments on the input and output sides of TEX, both
areas of work where there is an enormous amount
still to do. However, our proposals are not exactly
macro packages and device drivers.

A note to the reader: This paper has been writ-
ten for a general audience, and in particular for those
who are not TEX experts. At the same time, discus-
sion of technical details is at times either unavoid-

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

140 TEX Forever!
Jonathan Fine



1 ¶ textfile → marked up text and math
2 † text + transform → horizontal primitives
3 * horizontal primitives → hlist
4 † math + transform → math primitives
5 * math primitives + parameters → hlist
6 * hlist + parameters → vlist
7 † vlists + page make up → page boxes
8 * page boxes → sequential dvi file
9 ¶ sequential dvi file → random access dvi file
10¶ random access dvi file → rendered page

Table 1: How TEX works, in 10 stages
† usually done using TEX macros.
* usually done using TEX’s built in procedures.
¶ file input and output matters.

able or helpful. Therefore, I hope that the experts
will forgive my stating the obvious, and that the
others forgive my discussing the difficult.

References: Many of the articles cited here
have been reprinted in the collection Digital Typog-
raphy [13]. Page numbers in citations refer to [13],
and not to the original publication.

How TEX works

Table 1 gives a concise description as to how TEX
works. On the input side we propose that an exter-
nal program perform the transformation in steps 2
and 4.

On the output side we have two proposals. The
first is that (8) be replaced by:

8′. page boxes → stream of dvi pages

The second, which is more ambitious, is that
(7) be replaced by:

7′. vlist → external program

followed by page makeup in that external program.
Thus we continue to use TEX’s excellent type-

setting, but reduce the use of its macros.

TEX—just a typesetting language

TEX is a typesetting program, written by Don
Knuth, that is particular good at mathematical and
technical typesetting. TEX is reliable and stable,
and is very widely used by academic mathematicians
and physicists.

TEX has a macro programming language,
which allows features to be added. The best known
and most widely used TEX macro package is LATEX.
(This is not quite accurate. Although originally
LATEX used TEX, since 2003 it by default uses
e-TEX, which is an extension of TEX. So it is no
longer purely a TEX macro package. This has no
bearing on our discussion.)

In 1996 Don Knuth, describing his intentions
when he started to develop TEX, said [11, p.648]:

I’m not going to design a programming
language; I want to have just a typesetting
language.

and at the same time he said (loc. cit.):

In some sense I put in many of TEX’s pro-
gramming features only after kicking and
screaming. [ . . . ] In the 70s, I had a negative
reaction to software that tries to be all
things to all people. Every system had its
own universal Turing machine built into it
somehow, and everybody’s machine was a
little different from everybody else’s.

But the need for more features caused the program-
ming constructs to grow (see Table 2 below). See
also [16] for a ‘wish-list’ of future developments.

Therefore, by removing commands from TEX,
we can come closer to Don’s original conception of
TEX. However, for this to succeed in practice, some
other means of adding new features is required. In-
deed, one of the major problems TEX users have now
is that the existing programming constructs barely
support the demand for new features. This we dis-
cuss later.

In this section we outline how to cut TEX down
to the bare minimum. To be specific, in this sec-
tion we ask: What commands are required in order
to access TEX’s algorithm for breaking a paragraph
into lines?

To create a paragraph one needs to be able to
load fonts, change fonts, and set a character in the
current font. One also needs commands for append-
ing glue, kerns and the like to the paragraph.

To break the paragraph into lines, one needs
the \par primitive (also known as \endgraf) and a
means of assigning values to the line-breaking pa-
rameters, such as \hsize.

In other words, the basic operations are to add
an item to the current horizontal list, and to form
a paragraph out of the current horizontal list. (For
mathematics and table typesetting there are similar
basic operations.)

It should at this point be clear that certain
primitive TEX commands are not required in or-
der to do typesetting. These commands include
all the \def commands (such as \def, \chardef,
\xdef), \let, \begingroup and \endgroup. Once
category codes have been set up, there is no further
need for \catcode. And there is certainly no need
for commands such as \expandafter, \noexpand,
\aftergroup and \futurelet. All these are not

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

141



Control sequence Date added

\if 21 Jun 1978

\pausing 16 Mar 1978

\uppercase 25 Nov 1978

\xdef 28 Nov 1978

\ifmmode 23 July 1978

active characters 25 Jan 1980

\let 25 Mar 1980

\ifx 13 July 1981

\catcode July 1982

\expandafter, \openin 12 Sep 1982

\string 12 Sep 1982

\immediate 12 Oct 1982

\csname, \endcsname, \fi 13 Nov 1982

\everymath, \everydisplay, 2 Dec 1982

\futurelet

\endinput 7 Dec 1982

\jobname 25 Dec 1982

\globaldefs 20 Jan 1983

\iffalse, \iftrue 3 Feb 1983

\everyvbox, \everyhbox 6 Mar 1983

\everyjob 18 Mar 1983

\advance, \multiply, \divide 25 May 1983

\noexpand, \meaning

\afterassignment 27 May 1983

\escapechar, \endlinechar 4 Jul 1983

\errhelp 11 Jul 1983

\aftergroup, \newlinechar 16 Jul 1983

\ifhbox, \ifvbox 27 Aug 1983

\holdinginserts 30 Sep 1989

Table 2: Some TEX control sequences not needed
for typesetting (after [7])

typesetting commands, and exist only to allow fea-
tures to be added to TEX.

Moreover, these commands cause difficulty for
both TEX users and programmers. Their introduc-
tion is perhaps a sign that things were starting to
go in the wrong direction.

In [7] Knuth published, in edited form, the log
books he kept while he was developing TEX. In
these, we can see the introduction of features. (See
Table 2.)

Suppose all programming commands are dis-
abled by \let-ting them be undefined, like so:

\let \afterassignment = \undefined

Provided we remove enough commands, we will
have, as Don wanted TEX to be in the first place,
“just a typesetting language”. A language without
features, and without the capability of adding
features (which is itself a feature).

Comparison with PostScript and with machine
code is instructive. Most PostScript is generated by
programs that translate from a higher-level language

down to PostScript. Similarly, much machine code
is generated by compiling ‘C’ source files.

Many of us write input files for (LA)TEX, using a
text editor. We won’t do that for a featureless TEX.
It’s too much hard work, and anyway we want to
write in a higher-level language. We are suggesting
that an external program perform the text trans-
formation that is traditionally performed by a TEX
macro package.

Improved macros — input transformation

This section could also be titled:

\let \def = \undefined

Don suggested that we add improved macro
packages on the input side. Now, a macro package
has two main purposes. One is issuing typesetting
instructions to TEX. This will create a galley (or
page of unlimited depth). The second purpose is
the output (or page makeup) routine, which breaks
the galley into pages of a suitable size.

In this section we consider the creation of a gal-
ley. Marked-up text, such as

\section{Improved macros}

is translated (by LATEX in this case) into a large
number of low-level instructions. The title

Improved macros

is scarcely translated. Each character sets itself,
and space characters produce default interword glue.
(Later, we present an example of this.)

It is \section{} that does most of the work.
Here are some of the technical details. It selects the
font to be used, and the paragraph parameters for
the title (in case it is wider than the measure). It
also places glue and penalties before and after the ti-
tle on the galley. It might also add a section number,
and record information for the table of contents.

High-level commands are being translated into
low-level typesetting instructions. This translation
need not be done by LATEX (or indeed by any other
TEX macro package). For example, in the WEB sys-
tem of literate programming, much of the work is
done using external programs. Similarly, XSLT tem-
plates are often used to transform text, prior to it
being passed to TEX to typesetting.

For over 10 years the LATEX3 project has been
working to enhance LATEX by providing [15, p.1]

a flexible interface for typographic designers
to easily specify the formatting of a class of
documents.

Such an interface might, for example, be simi-
lar to Cascading Style Sheets (CSS) for HTML. We
have seen that Don Knuth only reluctantly added

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

142 TEX Forever!
Jonathan Fine



programming features to TEX. The author believes
that TEX macros are not a suitable language for cre-
ating the above interface, and that the long delay in
its delivery is evidence for this.

This interface could instead be written as an
external program. In a later section we describe
QATEX, which is a wrapper around TEX that ef-
fectively allows TEX to interact with external pro-
grams.

Improved macros — output routines

This section could also be titled:

\let \output = \undefined

One of the most interesting and best parts of
TEX is the algorithm it uses for breaking a para-
graph into lines. The algorithm for breaking the
galley into pages is not so good, although for simple
technical material it is more than adequate.

In this paper we do not suggest improved out-
put algorithms (we have discussed this elsewhere
[4]). Instead, we describe a solution to a related
problem. The TEX macro language is not a suit-
able environment for the writing of complicated page
makeup algorithms. Here we describe a means of
moving the problem to another domain.

The galley produced by TEX consists of a ver-
tical list. This vertical list consists of boxes, glue,
penalties, and so forth (see The TEXbook, page 110
for a complete list). The \showlists command
prints a detailed description of the content of this
vertical list.

The output of \showlists can parsed by an
external program, and used to reconstruct within
that program the vertical list created by TEX. If
the external program can also send low-level type-
setting instructions to TEX, then TEX in effect has
become a callable function available to the external
program. (As in QATEX, the interactive console or
more exactly stdin and stdout can be used for this
communication.)

This is not a completely new idea. In 1996, Jǐŕı
Veselý asked [10, pp620–621]:

Once I was asked about the possibility to
make a list of all hyphenated words in the
book. I was not able to find a way in your
book to do this.

To this, Don replied (loc. cit.):

This would be easy to do now in a module
specially written for TEX. I would say that
right now, in fact, you could get almost
exactly what you want by writing a filter
that says to TEX “Turn on all the tracing
options that cause it to list the page con-

tents.” Then a little filter program would
take the trace information through a UNIX
pipe and it would give you the hypenated
words. It would take an afternoon to write
this program; well, maybe two afternoons . . .
and a morning.

We develop this idea later in the paper.

Instant Preview and TEX as a daemon

This section could also be titled:

\let \end = \undefined

Interactive programs typically require a re-
sponse time of less than a tenth of a second, while
a response in a hundreth of a second is seen as
instantaneous.

On my current 800 MHz PC, the command

$ tex story \\end

takes about 0.137 seconds, while

$ tex \\end

takes 0.133 seconds. The first command typesets
a small page of material; the second does nothing
but start TEX and then exit. Thus, typesetting the
small page takes about 0.004 seconds.

It follows from this that typesetting material for
Instant Preview is tolerable if the start-up time is
included, while it will be perceived as instantaneous
if TEX is run as a daemon.

Running TEX as a daemon is an example of
TEX forever. We wish for TEX to start up when the
computer boots, and to remain running indefinitely.
Moreover, we might prefer that there were only a
single instance of the TEX daemon running.

Documents and macro packages may have to
be adapted, to make the most of Instant Preview.
The key concept seem to be this: That the source
file be partitioned into regions by markers, which we
call ‘belays’, and that the macro package be able to
typeset each region independently. In other words,
that the macro package support random access type-
setting. This is, again, an example of TEX being en-
hanced by an improved macro package on the front
end.

The author has already written [5] about
Instant Preview. At the conference he hopes to
demonstrate the latest progress.

Decorating dvi files

TEX has no built-in notion of colour, or of graphics
inclusion. However, the \special command allows
device drivers to produce special effects. By decora-
tion we mean the application of colour, change bars
and the like to the rendered page.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

143



In the domestic setting, decoration of a room
or a house does not move the walls or make other
structural alterations. In typesetting, adding deco-
ration should not affect typesetting decisions, such
as the line breaks and the placement of items on
the page. (This is not to say that the typographic
design should not take into account the subsequent
application of decoration.)

The current practice regarding decoration is to
use a fairly simple dvi processor, and to have the
(LA)TEX macro package place appropriate \special

commands into the dvi file. From the point of view
of a device-driving dvi processor, this is probably
correct. It seems that, historically, low-level capa-
bilities were added to device drivers. Then macro
packages were written to access these new features.

From the point of view of the macro package,
this approach is probably wrong. As already noted,
decoration should not affect typesetting decisions.
This is an important property, whose fulfilment
should be central to the approach taken.

Suppose, for example, that some text is to be
printed in a spot colour. Placing a \special at the
start or end of a word does not affect its hyphen-
ation. Therefore something like

% usage: \color{red}{Text to go in red}

\def\color#1#2{%

\special{push #1}%

#2%

\special{pop}%

}

will suffice, at least in the simplest cases.
However, a page boundary might break the red

text. This places a burden on the dvi processor,
to keep track of this information. Typical dvi pro-
cessors allow random access to the pages in the dvi

file. Having to look at previous page(s) breaks this
random access.

The solution we suggest is to write a dvi-to-dvi
filter that resolves these random access problems.
Such a filter is not, of course, a device driver, but it
can be used with any device driver. Its purpose is to
translate high-level specials into low-level specials.

TEX is being held back by the weakness of tools
for decorating text. For example, a common require-
ment is to place a background rectangle behind a
paragraph of text. If the paragraph is broken over
two pages, the background rectangle should be sim-
ilarly broken.

In 1987 Don Knuth and Pierre MacKay dis-
cussed a similar problem, namely implementing
bi-directional typesetting without extending TEX.
They wrote [14, p159]:

How can we get TEX to do this? The best ap-
proach is probably to extend the driver pro-
grams that produce printed output from the
dvi files that TEX writes, instead of trying to
do tricky things with TEX macros.

In the same article [13, p161] they then produced a
“much more reliable and robust scheme by building
a specially extended version of TEX”.

QATEX— or ask a friend a question

TEX is a typesetting language, with limited text-
processing and other capabilities. Things that are
easy to do in other languages are hard to do in TEX.
Examples are to find the dimensions of an EPS or
other graphics file, or to calculate the sine and cosine
of an angle, so that space can be left for rotated text.

Traditionally, such questions have been an-
swered by writing TEX macros. The author finds
that TEX macros are not a suitable language for
such text manipulation tasks.

Here is an extract from the \Gread@eps macro
in the LATEX file graphics.sty.

\immediate\openin\@inputcheck#1 %

\ifeof\@inputcheck

\@latex@error{File ‘#1’ not found}%

\@ehc

\else

\Gread@true

\let\@tempb\Gread@false

\loop

\read\@inputcheck to\@tempa

\ifeof\@inputcheck

\Gread@false

\else

\expandafter\Gread@find@bb

\@tempa:.\\%

\fi

\ifGread@

\repeat

\immediate\closein\@inputcheck

\fi

The author has developed QATEX, which allows
the TEX macro programmer to ask another process
to answer questions. Such as: What is the bounding
box of myfile.eps?

QATEX (pronounced ‘kwa-tech’) provides a dif-
ferent route. Questions and answers are the essence
of QATEX. When QATEX is used, lines such as:

!Q=qatexlib.eps.bbox(myfile.eps)

!A=0,0,0 0 35 97

appear in the TEX’s log file.
The first line is a question, produced using a

\write command. The second line is the answer.

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

144 TEX Forever!
Jonathan Fine



The characters !A= are a prompt, produced using a
\message command.

The remainder of that line is the answer to the
question. The prefix 0,0, tells TEX that the ques-
tion was successfully posed and answered. There
follows the information asked for. This information
is supplied by a process external to TEX.

TEX uses \read -1 to \temp to read this in-
formation from its stdin stream. So far as TEX is
concerned, this data might have come from the user.
In fact, it has come from a program, namely QATEX.

QATEX works as follows. It is a wrapper progam
that invokes TEX, and takes control of its standard
input and output. When it sees a question line, fol-
lowed by the answer prompt, it parses and answers
the question, then sends the answer to TEX, using
TEX’s standard input. However, QATEX does not
answer the question itself. It imports a module — in
the example above the eps module —to answer the
question for it.

Here is the definition, in Python, of a function
that returns the bounding box of an EPS file, as a
string. If not found, it raises an exception. It took
me less than 10 minutes to write. It would be part
of a eps module for use with QATEX.

# File: qatexlib/eps.py

_bb_prefix = '%%BoundingBox: '

def qa_bbox(filename):

f = open(filename)

for line in f:

if line.startswith(_bb_prefix):

sizes = line.split()[1:]

return ' '.join(sizes)

msg = "File '%s' has no bounding box"

raise Exception, msg % filename

Alternatives and complements to QATEX

In this section we compare QATEX to shell escape,
eval4tex, PerlTEX, sTeXme and Pymacs. Each of
these has some similarity with QATEX.

Shell escape. Modern implementations allow TEX
to issue shell commands, as if they had been typed
at a command prompt. This allows, for example, a
command such as makeindex to be run after TEX
has processed the body of a document, but before
setting the back matter.

However, it also allows other commands to
be run, such as the deletion of files. And TEX
documents can execute arbitary TEX commands.
(Strictly speaking, this is not true. For example, in
Active TEX [3] all characters are active. This allows
a macro package to prevent execution directly from
a document of all but specified commands.)

Often, TEX documents are distributed in source
form. If shell escape is enabled, the typesetting a
document could result is a shell escape command be-
ing run, that finds and deletes all your files. Clearly,
shell escape is a security risk. For this reason, shell
escape is disabled by default, and is rarely used.

Even without shell escape, TEX macros and
therefore documents can overwrite existing files.
(TEX has no inbuilt ability to delete files. But it
can destroy their contents.) Therefore, modern
implementations of TEX refuse to open for writing
files that are not in or beneath the current directory,
or a similarly specified area.

This restriction is not applied to the reading of
files. Therefore, it is possible for a TEX document,
when typeset, to include in it other files. These other
files might be confidential.

Therefore, in line with the theme of TEX being
“just a typesetting system”, it might be sensible to:

\let \openout = \undefined

\let \openin = \undefined

\let \input = \undefined

and have another program take responsibility for se-
curity. The security monitor could then send mate-
rial to be typeset to TEX’s standard input stream.

eval4TEX (by Dorai Sitaram) is a two-pass process
that allows TEX to send expressions to Scheme for
evaluation [1]. It provides a \eval macro, that is
used as below. (The example is Sitaram’s, and my
exposition follows his).

\eval{(display (acos -1))} % gives pi

On the first pass, the Scheme code

(display (acos -1))

is written to an auxiliary file, together with some
indexing information.

Before the second pass, a helper program
eval4tex runs Scheme on the auxiliary file, to cre-
ate a second auxiliary file. On the second pass, the
\eval command picks up values from the second
auxiliary file, and refreshes the data in the first.

As Sitaram writes:

This strategy is quite common in the TEX
world. The popular TEX-support programs
BibTeX and MakeIndex, which generate bib-
liographies and indices respectively, both op-
erate this way.

sTeXme (by Oleg Paraschenko) is another ap-
proach to integrating TEX with Scheme [19]. Here
is his summary of the goals of the project.

The (LA)TEX macro language was a great de-
velopment when it appeared, but now it is

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

145



too out-of-date. Programming in TEX is a
fun, but more often it is a pain.

As it seems for me, only very few people
can write (LA)TEX macros, but a lot of people
would like doing it (like me, for example).
This is the problem.

One of the solutions is to provide another
scripting language for TEX. That’s what is
the goal of the sTeXme project. It should
provide the Scheme programming language
as a TEX scripting language.

This project has two parts, namely an extension
to TEX, that allows it to interpret Scheme code, and
an extension to Scheme that allow it access TEX
internals. We say more on this later.

PerlTEX (by Scott Pakin) uses standard Perl and
TEX without extensions [17]. Here is his summary
of the goals of the project.

TEX is a professional-quality typesetting
system. However, its programming language
is rather hard to use for anything but the
most simple forms of text substitution.
Even LATEX, the most popular macro pack-
age for TEX, does little to simplify TEX
programming.

Perl is a general-purpose programming lan-
guage whose forte is in text manipulation.
However, it has no support whatsoever for
typesetting.

PerlTEX’s goal is to bridge these two
worlds. It enables the construction of
documents that are primarily LATEX-based
but contain a modicum of Perl. PerlTEX
seamlessly integrates Perl code into a LATEX
document, enabling the user to define macros
whose bodies consist of Perl code instead of
TEX and LATEX code.

Here is Scott Pakin’s equivalent to \eval:

\perlnewcommand{\reversewords}[1]

{join " ", reverse split " ", $_[0]}

\reversewords{TeX forever!}

PerlTEX, like QATEX, invokes TEX under the
control of a separate process. Unlike QATEX, it does
not take control of TEX’s standard input and out-
put. Invoking \reversewords causes TEX to write
material to a specially named file. This file corre-
sponds to the question in QATEX. The controlling
Perl process then computes the answer to the ques-
tion, and writes it to another specially named file.
Meanwhile, the TEX process goes into a loop, to poll
for the existence of the answer file. Once found, it
is \input by TEX.

PerlTEX seems to have a performance problem.
On my 800 Mhz PC, the following example:

\documentclass{article}

\usepackage{perltex}

\perlnewcommand{\nothing}{}

\begin{document}

% I’ve got plenty of nothing ...

\nothing\nothing\nothing

\nothing\nothing\nothing

\nothing\nothing\nothing

\nothing % 10 nothings

% We’re busy doing nothing ...

\end{document}

takes about 3.0 seconds to execute. This includes
startup time. (On the same machine, it takes QATEX
about 1/3000 seconds to do nothing once.)

Here is at least a partial explanation. Instru-
menting the code for PerlTEX shows that in compil-
ing the above document, TEX polls for the existence
of the helper file approximately 5,000 times. The
exact number varies. Adding:

\input nothing % input an empty file

to the polling loop reduces the time taken to about
1.8 seconds, and reduces the number of pollings to
about 500. The UNIX nice command could also
help here.

Pymacs (by François Pinard) is not a way of using
Python with TEX. It is a way of using Python with
the Emacs editor [18]. To quote its author:

Pymacs is a powerful tool which, once started
from Emacs, allows both-way communication
between Emacs Lisp and Python. Pymacs
aims Python as an extension language for
Emacs rather than the other way around, and
this asymmetry is reflected in some design
choices. Within Emacs Lisp code, one may
load and use Python modules. Python func-
tions may themselves use Emacs services, and
handle Emacs Lisp objects kept in Emacs
Lisp space.

Pymacs is mentioned because is was higly in-
fluential on the author’s approach to the integration
of TEX with a scripting language. (At that time,
Python had not been chosen.)

Different approaches compared

In the previous two sections we looked at QATEX,
shell escape, eval4tex, sTeXme and PerlTEX. In
this section we make some comparisions.

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

146 TEX Forever!
Jonathan Fine



Philosophy QATEX is like shell escape, in that sim-
ple queries are sent to another process. The other
approaches assume that complex code will be writ-
ten within, or otherwise produced by, TEX macros.
This code is then evaluated by another program.

For example, in QATEX the problem of revers-
ing words might result in the following conversation
between TEX and the external process:

!Q=qatexlib.string.reverse(TeX forever!)

!A=0,0,forever! TeX

The question sent to QATEX could not be along
the lines of: “What is the result of evaluating this
complex Perl or Scheme expression?” However, such
is not the expected use. Rather, it is expected that
TEX will send a short and simple query. If the an-
swer is long, it could be placed in an external file.
Once that is done, TEX can be told, as the answer,
that the file is ready to be \input (assuming \input

is still defined).

Architecture The architecture of the implementa-
tion of PerlTEX is closer to that of eval4tex than
that of sTeXme. Perl code is placed in the body of
TEX macros, and this code is sent out to Perl for
evaluation. Unlike sTeXme, and like eval4tex, it
does not require either an extension to TEX or a
special version of the command interpreter for the
extension language.

PerlTEX is similar to QATEX in that TEX is run
under the control of an external program. However,
QATEX uses standard input and output for commu-
nication, whereas PerlTEX polls named files.

QATEX provides an efficient and portable low-
level interface between TEX and an external process.
PerlTEX is a higher-level package. There is no rea-
son why the QATEX interface, or something similar
to it, should not be used by PerlTEX, so as to im-
prove performance. The same applies to eval4tex,
where using this interface would remove the need for
a second run. It would also provide better interac-
tion.

Security Any process that evaluates code supplied
by a document will expose a security problem, un-
less the code evaluator is already secure (as in Java,
for example). PerlTEX provides security by using
a secure Perl sandbox. QATEX provides security by
having TEX (and thus the document) supply only
data.

Of course, any program that evaluates un-
trusted data as if it were trusted code has a security
issue. If it is necessary to evaluate safely untrusted
code, then a secure sandbox is required. This is
the key security issue. QATEX is a small interface

application, which does not attempt to solve this
problem. There is no reason why QATEX should not
be used with such a secure sandbox. But that is a
matter for the developer who builds upon QATEX.

Integration and extension Of all the projects
considered in this section, sTeXme is the most
ambitious. It involves making major extensions to
TEX, to produce a new program, called sTeXme.

The new name is necessary. TEX experts will
already know that Don Knuth does not object to
the sources of TEX the program being used as the
basis for creating a superior program. However, he
is most insistent that programs that are not TEX
must not be called TEX. More exactly, in [8, p572]
he wrote:

That is all I ask, after devoting a substan-
tial portion of my life to the creation of these
systems and making them available to every-
body in the world. I sincerely hope that the
members of TUG will help me to enforce these
wishes, by putting severe pressure on any per-
son or group who produces any incompati-
ble system and calls it TEX or Metafont or
Computer Modern — no matter how slight
the incompatibility might seem.

This insistence on the stability and consistency
of TEX is, in this author’s view, a significant contri-
bution to its longevity. Users know what to expect,
and get what they expect, when they use TEX.

Regarding the scope of his new program
sTeXme, Oleg Paraschenko reports:

[. . . ] Scheme code can be executed from
TeX and that Scheme code can access TeX
internals (getting a string from the TeX
string pool, getting a macro definition as the
Scheme list).

The source file stexmelib.c on the Source-
Forge repository indicates that Paraschenko is
building a C-coded Scheme extension, in which
equivalents to TEX boxes and the like can be stored.
This indicates that there are many points of contact
between his project and the next section.

PyTEX

The goal of the PyTEX project is to combine Python
programming with TEX typesetting. To understand
this, think of Tcl/Tk: Tcl is a scripting language
and Tk is a toolkit for building GUI programs. Perl
and Python also have interfaces to Tk, allowing
them to use Tk when building GUI programs.

Now think of LATEX as LA/TEX. LA is a front end
to the TEX typesetting program written in TEX’s

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

147



macro language. PyTEX, or Py/TEX if you prefer, is
to be a front end to TEX written in Python.

PyTEX replaces the part of TEX that Don
Knuth said he did not want to write, namely the
TEX macro programming language, with something
more widely used. Our aim is to provide an alter-
native means of programming typesetting decisions
and logic. This will make TEX easier to use.

Here is an example of the interface. We are in
Python, and wish to typeset a paragraph of text,
namely

The cat sat on the mat.

to a measure of 6 picas, which is about one inch
(or 25 millimetres). This is a toy example. After
typesetting the paragraph, we wish to bring it into
Python for page makeup.

To see how this is done, issue the command

$ cat cat_sat.tex | tex | grep ’^[.\]’

where the source stream is

% cat_sat.tex

\tracingonline 1

\showboxbreadth \maxdimen

\showboxdepth \maxdimen

\scrollmode

\setbox0\vbox{%

\hsize 6pc

The cat sat on the mat.\par

\showlists

}

The annotated output of the grep is:

# This is an annotation.

# Start of the first line of paragraph.

\hbox(6.94444+0.0)x72.0, glue set 0.58331

# indentation box, 20pt wide

.\hbox(0.0+0.0)x20.0

# The word "The".

.\tenrm T

.\tenrm h

.\tenrm e

# normal interword glue

.\glue 3.33333 plus 1.66666 minus 1.11111

# The word "cat".

.\tenrm c

.\tenrm a

.\tenrm t

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm s

.\tenrm a

.\tenrm t

# Zero width line filling glue.

.\glue(\rightskip) 0.0

# Penalty for breaking page at this point.

\penalty 300

# Interline glue.

\glue(\baselineskip) 5.05556

# Start of second line of paragraph.

\hbox(6.94444+0.0)x72.0, glue set 20.88878fil

.\tenrm o

.\tenrm n

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm t

.\tenrm h

.\tenrm e

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm m

.\tenrm a

.\tenrm t

.\tenrm .

# Inserted by TeX, for internal reasons.

.\penalty 10000

# Allow the last line of para to be short.

.\glue(\parfillskip) 0.0 plus 1.0fil

.\glue(\rightskip) 0.0

This is a complete description of the paragraph
formed by TEX’s line breaking algorithm.

This is the essence of the interface between
Python and TEX. Material is sent to TEX to be
typeset, say using stdin. The \showlists command
is used to write the results to stdout, from which
they are picked up by Python.

On the input side, Python is responsible for
parsing the input stream, and placing appropriate
items on the horizontal list. It is also responsible
for ensuring that nothing inappropriate is placed on
the list. The whole process should not generate TEX
errors (although warnings about overfull boxes and
so forth are welcome).

On the output side, Python parses the output
stream, and from it reconstitutes the boxes that TEX
has formed, thus forming a Python object.

In Python code, our example might look like

hlist = Hlist() % new horizontal list

text = "The cat sat on the mat."

hlist.extend(text)

vlist = hlist.linebreak(hsize=6*pica)

where hidden in the call to the linebreak() method
there is a sending of data to TEX, and a reconstruc-
tion in Python of the boxes that TEX built. From
here on, the output or page-makeup routine can be
written in Python. Note that cat_sat.tex invokes
no TEX macros.

Conclusions

In the 15 years since TEX has been frozen, very few
deficiencies have been found in the algorithms it
uses for breaking a paragraph into lines, for type-
setting mathematics, and for setting tables. Since
1990 there has been little (but valuable) progress in

MOT10 Proceedings EuroTEX2005 – Pont-à-Mousson, France

148 TEX Forever!
Jonathan Fine



the area of Unicode fonts, for which an extension
of TEX genuinely is needed. TEX was written to
be archival, and it is holding up well after its first
quarter-century or so.

There are many problems in our use of TEX.
This paper has discussed several:

• coloured text and other decorations,

• interactive use of TEX,

• input transformation,

• programming page makeup.

All of these arise not out of TEX itself, but out of
the way in which we use TEX.

There is an irony in our use of TEX macros.
Recall that when Don was looking at the design of
TEX he found that: [11, p.648]:

Every system I looked at had its own uni-
versal Turing machine built into it somehow,
and everybody’s machine was a little differ-
ent from everybody else’s.

He then went on to say:

I was tired of having to learn yet another
almost-the-same programming language for
every system I looked at; I was going to try
to avoid that.

What we have now with TEX macros is a Turing
machine very different from any other. This is just
what he wished to avoid. However, QATEX provides
a powerful complement to existing TEX macro pack-
ages, and PyTEX will use TEX as “just a typesetting
language”, which is what Don wanted it to be in the
first place.

In 1996, Piet van Oostrum asked Don Knuth
about TEX’s macro programming language [11,
p648–9]:

I don’t know if you have ever looked into the
LATEX code inside, but if you look into that,
you get the impression that TEX is not the
most appropriate programming language to
design such a large system. Did you ever
think of TEX being used to program such
large systems and if not, would you think of
giving it a better programming language?

In response to this, Don Knuth said (loc. cit.):

It would be nice if there were a well-
understood standard for an interpretive
programming language inside an arbitary
application. Take regular expressions— I
define UNIX as “30 definitions of regular
expressions living under one roof.” [laughter ]
Every part of UNIX has a slightly different
regular expression. Now, if there were a

universal simple interpretive language that
was common to other systems, naturally I
would have latched onto that right away.

The theme of this paper is TEX typesetting with
fewer macros. We use instead a “simple interpretive
language”, namely Python. If we learn to use TEX
in new ways, and take good care of it, TEX will be
good for its second quarter-century.

Long live TEX!

References

[1] eval4tex, http://www.ccs.neu.edu/home/

dorai/tex2page/eval4tex-doc.html

[2] Jonathan Fine, Editing .dvi files, or Visual
TEX, TUGboat, 17 (1996), 255–259

[3] , Active TEX and the DOT input syntax,
TUGboat, 20 (1999), 248–254

[4] , Line breaking and page breaking, TUG-
boat, 21 (2000), 210–221

[5] , Instant Preview and the TEX daemon,
EuroTEX 2001 Conference Proceedings, 49–58

[6] , TEX as a callable function, EuroTEX 2002
Conference Proceedings, 26–35

[7] Donald E. Knuth, The Errors of TEX, Soft-
ware—Practice and Experience, 19 (1989), 607–
685. (Reprinted in [9])

[8] , The Future of TEX and Metafont,
TUGboat, 11 (1990), 489 (Reprinted in [13])

[9] , Literate Programming, CSLI (1992)

[10] , Questions and Answers II, TUGboat, bf
17 (1996), 355-367 (Reprinted in [13])

[11] , Questions and Answers III, MAPS
(Minutes and APpendiceS), 16 1996, 38–49
(Reprinted in [13])

[12] , The future of TEX and METAFONT,
TUGboat, 11 (1990), 489 (reprinted in [13])

[13] , Digital Typography, CSLI (1999)

[14] Donald E. Knuth & Pierre MacKay, Mixing
Right-to-Left Texts with Left-to-Right Texts,
TUGboat, 8, (1987), 14–25. (Reprinted in [13])

[15] Frank Mittelbach & Chris Rowley, The
LATEX3 Project, http://www.latex-project.

org/guides/ltx3info.pdf

[16] NTG TEX future working group, TEX in 2003:
Part I Propositions and Conjectures on the Fu-
ture of TEX, MAPS (Minutes and APpendiceS),
21 1998, 13–19

[17] PerlTEX, http://www.ctan.org/

tex-archive/macros/latex/contrib/

perltex

[18] Pymacs, http://pymacs.progiciels-bpi.ca

[19] sTeXme, http://stexme.sourceforge.net

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

149


