Moving €2 to a C++-based Platform

John Plaice

School of Computer Science and Engineering
The University of New South Wales

UNSW SYDNEY NSW 2052, Australia
plaice@cse.unsw.edu.au

Paul Swoboda

pswoboda@cse.unsw.edu.au

Abstract

The code for the Omega Typesetting System has been substantially reorganised.
All fixed-size arrays implemented in Pascal Web have been replaced with inter-
faces to extensible C++ classes. The code for interaction with fonts and Omega
Translation Processes (OTPs) has been completely rewritten and placed in C++
libraries, whose methods are called by the typesetting engine. The Pascal Web
part of Omega no longer uses change files. The overall Omega architecture is now
much cleaner than that of previous versions.

1 Introduction

Since the first paper on Omega was presented at the
1993 Aston TUG Conference, numerous experiments
have been undertaken in the realm of multilingual
typesetting and document processing. This over-
all work has given important insights into what a
future document processing system, including high
quality typesetting, should look like. See, for ex-
ample, the articles published in the 2003 EuroTEX
and TUG conferences. Clearly, building an extensive
new system will require substantial effort and time,
both at the design and the implementation levels.
In this article, we present the interim solution for
the stabilisation of the existing Omega code base,
with a view towards preparing for the design and
implementation of a new system.

The standard web2c infrastructure, which as-
sumes that a binary is created from a single Pas-
cal Web file and a single Pascal Web change file, is
simply not well suited for the development of large
scale software, of any genre. For this reason, we
have eliminated the change files, and broken up the
Pascal Web file into chapter-sized files. All fixed-
size arrays have been reimplemented in C++ using
the Standard Template Library. Characters are now
32 bits, using the wchar_t data type, and charac-
ter set conversion is done automatically using the
routines available in the stdc++ library. The entire
Pascal Web code for fonts and OTPs, including that
of Donald Knuth, has been completely rewritten in
C++ and placed in libraries. Clean interfaces have

68

been devised for the use of C++ code from the re-
maining Pascal code.

This exercise serves two purposes. The first is
to stabilise and to simplify the existing Omega dis-
tribution. The second is to lay the groundwork for
a forthcoming, complete reimplementation of open
typesetting software.

2 Problems with Pascal Web

When we examine the difficulties in creating Omega
as a derivation of tex.web, we should understand
that there is no single source for these difficulties.

Pascal was designed so that a single-pass com-
piler could transform a monolithic program into a
running executable. Therefore, all data types must
be declared before global variables; in turn, all vari-
ables must be declared before subroutines, and the
main body of code must follow all declarations. This
choice sacrificed ease of programming for ease of
compiler development; the resulting constraints can
be felt by anyone who has attempted to seriously
modify the TEX engine.

Pascal Web attempts to alleviate this draco-
nian language vision by allowing the arbitrary use
within code blocks—called modules —of pointers
to other modules, with a call-by-name semantics.
The result is a programming environment in which
the arbitrary use of GOTOs throughout the code
is encouraged, more than ten years after Dijkstra’s
famous paper. Knuth had responded correctly to
Dijkstra’s paper, stating that the reasonable use of

PREPRINTS for the 2004 Annual Meeting



GOTOs simplifies code. However, the arbitrary use
of GOTOs across a program, implicit in the Pascal
Web methodology, restricts code scalability. Knuth
himself has stated that one of the reasons he stopped
working on TEX was his fear that he might break it.

For a skilled, attentive programmer, develop-
ing a piece of code that is not going to evolve, it
is possible to write working code, up to a certain
level of complexity. However, for a program that is
to evolve significantly, this approach is simply not
tenable, because the monolithic Pascal vision is in-
herited in the change file mechanism of Pascal Web.
Modifications to TEX are supposed to be undertaken
solely using change files; the problem with this ap-
proach is that the vision of the code maintainer is
that they are modifying functions, procedures, and
so on. However, the real structure of a Pascal Web
program is the interaction between the Pascal Web
modules, not the functions and procedures that they
define. As a result, maintaining a Pascal Web pro-
gram is a very slow process. Back in 1993, when
the first Omega work was being undertaken, “slow”
did not just mean slow in design and programming,
but also in compilation. The slightest modification
required a 48-minute recompilation.

The size limitations created by compile-time
fixed-size arrays are obvious and well known. This
was addressed publicly by Ken Thompson in the
early 1980s and has been addressed in Omega as
well as in the web2c framework, simply by changing
these sizes. However, there are other problems in
the way these arrays are used. The eqtb, str_pool,
font_info and mem arrays all have programming in-
terfaces using fixed-size arrays. Whenever these in-
terfaces are insufficient, the TEX code simply makes
direct accesses to these arrays. As a result, any at-
tempt to significantly modify these basic data struc-
tures requires the modification of the entire TEX
engine, and not simply the implementations of the
structural interfaces.

The single input buffer for all active files of
tex.web turned out to be truly problematic for im-
plementing Omega’s OTPs. Since an OTP can read
in an arbitrary amount of text before processing it, a
new input buffer had to be introduced to do this col-
lection. The resulting code is anything but elegant,
and could certainly be made more efficient.

Finally, problems arise from the web2c imple-
mentation of Pascal Web. Many of the routines
written in C to support the web2c infrastructure
make the implicit assumption that all characters are
8 bits, making it difficult to generalise to Unicode,
even though C itself has a datatype called wchar_t.

PREPRINTS for the 2004 Annual Meeting

Moving Q to a C++-based Platform

3 Suitability of C++

The advantages of the use of C++ as an implementa-
tion language for stream-oriented typesetting, over
the Pascal Web architecture, are manifold. The
chief reason for this is that the rich set of tools and
methodologies that have evolved in the twenty-five
years since the introduction of TEX includes devel-
opments not only in programming languages and en-
vironments, but in operating systems, file structure,
multiprocessing, and in the introduction of whole
new paradigms, including object-oriented software
and generic programming.

The STL offers built-in support for arbitrary
generic data structures and algorithms, including
extensible, random-access arrays. It would be fool-
ish to ignore such power when it is so readily avail-
able.

The Standard C++ library also provides built-
in wide character support, including, in the GNU
stdc++ implementation, the full iconv functionality
for character-set conversion between Unicode and
any other imaginably-used character set.

C++ is the de facto standard for object-oriented
systems development, with its capability to provide
low-level C-style access to data structures and sys-
tem resources (and, in the case of Unix-like systems,
direct access to the kernel system call API), for the
sake of efficiency.

Since C++ is fully compatible with C, one can
still take advantage of many existing libraries asso-
ciated with TEX, such as Karl Berry’s kpathsea file
searching library.

The abilities to use well-known design patterns
for generic algorithm support (plug-in paragraphers,
generic stream manipulation), as well as generic rep-
resentation of typesetting data itself, add a wealth of
possibilities to future, open typesetting implementa-
tions.

4 Organisation of the Omega 2 Code Base

Obviously, we are moving on. Our objective is to in-
clude the existing Omega functionality, to stretch it
where appropriate, leaving clean interfaces so that,
if others wish to modify the code base, they can do
so. Our current objective is not to rewrite TEX.

4.1 Pascal Web Components

The tex.web file has been split into 55 files called
01.web to 55.web. The tex.ch file has been con-
verted into 55 files, 01.ch to 55.ch. Data structure
by data structure, we have passed through the code,
throwing out the definitions of the data structures
and replacing their uses with Pascal procedure calls

69



John Plaice and Paul Swoboda

which, once passed through the web2c processor, be-
come C++ method calls. In the process, most of the
code in the change files ends up either being thrown
out, or directly integrated in the corresponding .web
files.

4.2 Characters, Strings and Files

For characters, TEX has two types, ASCII_code
and text_char, the respective internal and ex-
ternal representations of 8-bit characters. The
new Omega uses the standard C/C++ data type,
wchar_t. On most implementations, including GNU
C++, wchar_t is a 32-bit signed integer, where the
values 0x0 to Ox7fffffff are used to encode char-
acters, and the value Oxfffff££f (-1) is used to en-
code EOF. Pascal Web strings, as interpreted by the
tangle program, are each assigned a str_number,
where values 0 to 255 are reserved for the 256 8-
bit characters. We have modified tangle so that the
strings are numbered -256 downwards, rather than
256 upwards. Hence, str_number and wchar_t can
be of the same data type.

When dealing with files, there are two separate
issues, the file names, and the file content. Inter-
nally, all characters are 4-byte integers, but on most
systems, file names are stored using 8-bit encod-
ings, specified according to the user’s locale. Hence,
character-set conversion is now built into the file-
opening mechanisms, be they for reading or writing,.

The actual content of the files may come from
anywhere in the world and a single file system may
include files encoded with many different encoding
schemes. We provide the means for opening a file
with a specified encoding, as well as opening a file
with automatic character encoding detection, using
a one-line header at the beginning of the file. The
actual character set conversion is done using the
stdc++ local routines. As a result of these choices,
the vast majority of the Omega code can simply as-
sume that characters are 4-byte Unicode characters.

70

4.3 Fonts and OTPs

In terms of numbers of lines written, this is the most
significant part of the new Omega; however, because
we are using standard OO technology, it is also the
most straightforward.

With respect to fonts, significant energy ex-
pended, both in the original code as well as in previ-
ous Omega implementations, for bit packing of fields
in binary font formats, which are stored in memory
as they are on disk. By providing a simple OO inter-
face in the character-level typesetter of the Omega
engine, we have been able to greatly simplify the
code for both the typesetter, as well as the font util-
ities for conversion between formats.

Similarly, for the OTPs, filters can be imple-
mented as function objects over streams using iter-
ators, tremendously simplifying the code base.

5 Prospects

At the time we are writing, this work is not com-
pletely finished. Nevertheless, it is well advanced
and detailed documentation will be forthcoming on
the Omega website.

If we view things in the longer term, we are
clearly moving forward with two related goals, the
stabilisation of existing Omega infrastructure, and
abandonment of the TEX infrastructure for the de-
sign and implementation of a next-generation open
typesetting suite.

Such a suite should be a generic framework with
an efficient C++ core, that is universally extensible
through a number of well-known scripting interfaces,
for example, Perl, Python, and Guile. Implementa-
tion of libraries similar to the popular IXTEX suite
could then be done directly in C++, on top of the
core API, or as a linked-in C++ stream filter.

PREPRINTS for the 2004 Annual Meeting



