Creating Type 1 Fonts from METAFONT Sources:
Comparison of Tools, Techniques and Results

Karel Piska

Institute of Physics, Academy of Sciences
182 21 Prague

Czech Republic

piska@fzu.cz

http://www-hep.fzu.cz/ piska/

Abstract

This paper summarizes experiences in converting METAFONT fonts to PostScript
fonts with TEXtrace and mftrace, based on programs of autotracing bitmaps (Auto-
Trace and potrace), and with systems using analytic conversion (MetaFog and
MetaTypel, using METAPOST output or METAPOST itself). A development
process is demonstrated with public Indic fonts (Devanagari, Malayalam). Ex-
amples from the Computer Modern fonts have been also included to illustrate
common problems of conversion. Features, advantages and disadvantages of var-
ious techniques are discussed. Postprocessing— corrections, optimization and
(auto)hinting— or even preprocessing may be necessary, before even a primary
contour approximation is achieved. To do fully automatic conversion of a perfect
METAFONT glyph definition into perfect Type 1 outline curves is very difficult at
best, perhaps impossible.

KEYWORDS: font conversion, bitmap fonts, METAFONT, METAPOST, outline

fonts, PostScript, Type 1 fonts, approximation, Bézier curves.

1 Introduction

In recent years, several free programs for creating
PostScript outline fonts from METAFONT sources
have been developed. The aim of this paper is to
give a short comparison of these programs, with ref-
erences to original sources and documentation, and
to provide a brief description of their use. We will
discuss advantages and drawbacks, and demonstrate
numerous examples to compare important features
and to illustrate significant problems. We omit tech-
nical details described in the original documentation
and concentrate our attention on the quality of the
output, including hinting issues.

The programs TEXtrace and mftrace read origi-
nal METAFONT sources, generate high-resolution pk
bitmaps, call autotracing programs (AutoTrace or
potrace) and finally generate the files in the Type 1
format (pfb or pfa).

MetaTypel creates Type 1 output from METR-
POST sources. Therefore it requires rewriting font
definitions from METAFONT into METAPOST.

Similarly, MetaFog converts the PostScript files
generated by METAPOST to other PostScript files
containing only outlines, that can be subsequently
assembled into Type 1 fonts. MetaFog is not a new

54

product, but its excellent results remain, in our com-
parisons, unsurpassed.

Additionally, we may need adequate encoding
files. If none are available, a TEX encoding (e.g.,
the standard TEX T1 encoding) is usually used as
the default.

2 Autotracing Bitmaps
2.1 TgXtrace with AutoTrace

Péter Szabd developed TpXtrace [18]. It is a col-
lection of Unix scripts. It reads the original META-
FONT sources, rendering the font bitmaps into Post-
Script (via dvips). For converting the resulting bit-
maps to outlines, it calls (in the version of 2001) the
AutoTrace program [21] created by Martin Weber,
and, finally, composites the final files in the Type 1
format. TpXtrace works fully automatically and can
be invoked by a command like this:
bash traceall.sh mfname psname psnumber
where mfname.mf is the name of the METAFONT
font, psname.pfb is the name of the Type 1 font
file, and psnumber denotes a Type 1 UniqueID [1].
The Adobe Type 1 Font Format documentation
[1, pp. 29-33] recommends observing certain Type I

PREPRINTS for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

Figure 1: TgXtrace: “” in cmr10.

conventions: 1) points at extremes; 2) tangent con-
tinuity; 3) conciseness; and 4) consistency.

The outline results from TpXtrace (that is, from
AutoTrace) are relatively faithful to the original bit-
maps. Some artifacts exist, but they are invisible
in usual font sizes and magnifications and for prac-
tical purposes may be negligible. Nonetheless, they
spoil our attempts to automatically produce perfect,
hinted, outline fonts.

The underlying reason is that the information
about the control points in the original METARFONT
is lost, and the Type 1 conventions are not satisfied,
as exemplified in figure 1. The endpoints (double
squares) are not placed at extremes (rule 1), most
of the horizontal and vertical points of extrema are
missing. On the other hand, the outline definition
is not concise (rule 3) —due to the large numbers of
control points in the glyph definitions, the font files
generated by TpXtrace are huge. Furthermore, the
two identical periods in the dieresis glyph “™” are
approximated by different point sets (rule 4).

The following examples show the results of con-
version of Indic fonts submitted to TUG India 2002
[16], devanagari (dvng10) and Malayalam (mm10).
Typical irregularities produced by conversion with
TeXtrace are bumps and holes. Figure 2 demon-
strates bumps caused by the envelope being stroked
along a path with a rapid change of curvature, and
by cases of transition from a straight line to a sig-
nificantly small arc. The second clipped part of the
letter “pha” shows a hole.

I tried to remove those bumps and holes, and
(partially) other irregularities at the Type 1 level
with a set of special programs manually marking
places to be changed in a “raw” text, translated
by tidisasm and by tlasm back after modifications
(both programs are from the tlutils package [13]),
which achieves a better outline approximation, as
shown in figure 3. The postprocessing consisted of:

PREPRINTS for the 2004 Annual Meeting

Dl

24 j .
i
gy

¥

Figure 2: Results of TpXtrace (AutoTrace):
bumps and a hole (h).

Figure 3: Improved results achieved with
postprocessing.

55

Karel Piska

Figure 4: TpXtrace (AutoTrace) first without and

then with postprocessing for the Malayalam “a”,
showing undetected corners.

inserting missing extrema points, changing the first
nodes of contour paths (if desirable), and the opti-
mization of merging pairs (or sequences) of Bézier
segments together, and joining nodes in horizon-
tal or vertical straight parts to eliminate redundant
nodes.

However, when this process was applied to the
Malayalam fonts, we meet another problem: unde-
tected corners in Figure 4. Instead of attempting
to correct them, I stopped my postprocessing at-
tempts, and switched to experiments with analytic
methods of conversion.

2.1.1 Examples of CM-super

Type 1 fonts [20] generated by Vladimir Volovich
(first announced in 2001) inherit typical bugs pro-
duced by tracing bitmaps by AutoTrace (as invoked
by TeXtrace) such as bumps and holes, improper se-
lection of starting points of contour paths, and prob-
lems in distinguishing sharp corners and small arcs.
We illustrate them in several following figures, in
order to demonstrate that fixing such irregularities
automatically is difficult.

In the period “.” from the sfrm1000 font (its
source is the original cmr10), an optimization cannot
exclude the redundant node (fig. 5) (it is still the
starting point of the path).

The minus “—” derived from cmri10 contains a
bump, and minus from cmtt10 two bumps (fig. 6).
Moreover, these bumps have been hinted and have
their own hints (probably as results of autohinting).

In the letter “M” from cmtt10, we observe miss-
ing dishes, a hole and a bad approximation of an arc

56

Figure 5: CM-super: period in sfrm1000 and
sfsi1000, with redundant node.

So——
' =
1

||

4
L

i

Figure 6: CM-super: minus in sfrm1000 and
sftt1000, with bumps.

o
| @«/ 4@4
ﬁ
Figure 7: CM-super: “M” in sfrm1000 and “i” in
s£s11000.

PREPRINTS for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

Figure 8: TpXtrace (using potrace), with different
corners.

@
1

(fig. 7). On the contrary, in the corners are not
detected properly, we also have a hinted bump.

2.2 TgXtrace with potrace

The 2003 version of TpXtrace supports alternative
bitmap tracing with potrace [17], developed by Pe-
ter Selinger. In this version, the real corners are
detected or at least detected better than with Auto-
Trace (see fig. 8). Thus, bumps and holes have been
suppressed, but smooth connections have often been
changed to sharp corners (not present originally).
While the bumps demonstrated violation of consis-
tency and may produce invalid hinting zone coor-
dinates (fig. 6), the unwanted sharp corners mean
loss of tangent continuity (the middle clip in fig. 8).
Unfortunately, the approximation does not preserve
horizontal and vertical directions (the right clip), the
stem edges are oblique — the difference between the
two arrows on the left edge is 2 units in the glyph
coordinate space.

2.3 mftrace

Han-Wen Nienhuys created mftrace [15, 3], a Python
script which calls AutoTrace or potrace (as with TEX-
trace) to convert glyph bitmap images to outlines.
The results of tracing are thus expected to be very
similar to those of TEXtrace. In fact, for the ana-
lyzed Indic fonts, they are identical, as we can see in
the first image in figure 9 (compare with TEXtrace re-
sults in fig. 4). With the --simplify option, mftrace
calls FontForge [22] (previously named PfaEdit) to
execute postprocessing simplification; this helps to
exclude redundant nodes from outline contours, as
in the second image in figure 9.

PREPRINTS for the 2004 Annual Meeting

Figure 9: mftrace without and with --simplify.

3 Analytic Conversions
3.1 MetaTypel

MetaTypel [8, 9] is a programmable system for au-
diting, enhancing and generating Type 1 fonts from
METAPOST sources. MetaTypel was designed by
Bogustaw Jackowski, Janusz M. Nowacki and Piotr
Strzelczyk. The MetaTypel package is available
from ftp://bop.eps.gda.pl/pub/metatypel [10].

This “auditing and enhancing” is a process of
converting the Type 1 font into MetaTypel (text)
files, generating proof sheets, analysis, making cor-
rections and regenerating modified Type 1 fonts. It
is an important tool for checking, verifying and im-
proving existing Type 1 fonts.

MetaTypel works with the METAPOST lan-
guage. Therefore the METAFONT font sources must
be converted/rewritten into METAPOST. Macro
package extensions of METAPOST and other mis-
cellaneous programs provide generation of proper
structure of the Type 1 format, evaluate hints (not
only the basic outline curves), and create pfb and
also afm and pfm files.

During the rewriting process, users define sev-
eral parameters of the Type 1 font, including the
PostScript font encoding — PostScript glyph names
and their codes—because METAFONT sources do
not contain this data in a form directly usable for
Type 1 encoding vectors. METAFONT output com-
mands have to be changed to their METAPQOST al-
ternatives. Similarly, it is necessary to substitute
METAFONT commands not available in METAPQOST,
to define METAPOST variants of pen definitions and
pen stroking, etc.

Alternative METAPOST commands are defined
in the MetaTypel files fontbase.mp, plain_ex.mp,

57

Karel Piska

Figure 10: MetaTypel — primary outlines and
overlap removal.

et al. Other (new) commands may be defined by
the user. Correspondence between METAFONT and
METAPOST is approximately as shown in the fol-
lowing table (of course, the details may vary from
font to font):

METAFONT METAPOST
£i11 path; Fill path;
draw path; pen_stroke () (path) (glyph) ;
Fill glyph;
penlabels(1,2); | justlabels(1,2);
beginchar(... beginglyph(...
endchar; endglyph;

Many METAFONT commands have no counter-
part in METAPOST [6]. For example, operations
with bitmap pictures: in METAPOST, font data is
represented as PostScript curves, not bitmaps. As a

result, writing METAPOST code that would produce
equivalent results as original METAFONT code using
these or other such features would be very difficult.

After the basic conversion, the next step is re-
moving overlaps (if any are present) using the Meta-
Typel command find outlines. Figure 10 shows
the results before and after overlap removal for the
Malayalam vowel a (font mm10 using pen stroking
with a circular pen). This operation is not neces-
sary in METAFONT, since it generates bitmaps. In
the METAPOST environment of PostScript outlines,
however, we need to reduce overlapping curves to
single or pairs of paths.

MetaTypel also allows insertion of commands
for automatic computation of horizontal and vertical
hints (FixHStems, FixVStems). The Type 1 font
can be visualized in a proof sheet form containing
the control point labels (numbers) and hinting zones
(figure 11).

So far, so good. But there are two crucial prob-
lems. First, the METAFONT Malayalam fonts de-
signed by Jeroen Hellingman [5], use the command

currenttransform := currenttransform
shifted (.5rm, 0);

So all the glyphs should be shifted to the right.
METAFONT saves the transformation command and
does this operation automatically. By contrast, in
METAPOST we need to insert the shift commands
explicitly in all glyph programs. Also the labels
must be shifted! In my experiments, I did this shift
operation later, before final assembly of the Type 1
fonts.

The second problem is that in MetaTypel (I
used MetaTypel version 0.40 of 2003) a regular pen
stroking algorithm is not available, only a simpli-
fied method of connecting the points ‘parallel’ to the

Figure 11. MetaTypel — proof sheet.

58

PREPRINTS for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

Figure 12: MetaTypel —bad pen stroking.

nodes on the path. Therefore the approximation of
the envelope is not correct. For example, in Fig-
ure 12 it should be asymmetric, but it is symmetric.
Inserting additional nodes cannot help, because the
bisection results will again be asymmetric. The fig-
ure shows the outline curves do not correspond to
the real pen in two midpoint locations. The enve-
lope there looks narrow and it is in fact narrower
than it should be. I hope that this problem could
be solved in a future release, at least for pen stroking
with a circular pen.

Even more serious is a situation with the ro-
tated elliptic pen used in the Devanagari fonts de-
signed by Frans Velthuis [19] (and also other In-
dic fonts derived from dvng). Absence of a regular
pen stroking in MetaTypel makes it impractical for
such complicated fonts. MetaTypel approximates
the pen statically in path nodes, tries to connect
their static end points, and ignores complicated dy-
namic correlations between the path, the pen and
the envelope. Unfortunately, in this case the results
of the envelope approximation are not correct and
cannot be used (figure 13).

3.2 MetaFog

Two programs using analytic conversion were pre-
sented in 1995. Basil K. Malyshev created his Ba-
KoMa collection [14] and Richard J. Kinch devel-
oped MetaFog [11]. BaKoMa is a PostScript and
TrueType version of the Computer Modern fonts.
Malyshev’s paper discusses some problems of con-
version, especially regarding hinting, but his pro-
grams and detailed information about the conver-
sion algorithm are not available.

R. Kinch created MetaFog along with weeder,
which supports interactive processing of outlines,

PREPRINTS for the 2004 Annual Meeting

[1553) [19504

Figure 13: MetaTypel —Devanagari “i”, “a

and a package for making final fonts from out-
lines generated by MetaFog in TrueType, Type 1
and other formats. MetaFog itself (I used an
evaluation version graciously donated by Richard)
reads the METAPOST output from the command:
mpost ’&mfplain options;’ input fontname.mf
Thus, the conversion (from METAFONT sources) is
limited to fonts that can be processed by META-
POST, that is, do not contain METAFONT-specific
definitions and commands. MetaFog generates an-
other PostScript file consisting only of the outline
structures. A conversion process is described also in
the paper written by Taco Hoekwater [7].

MetaFog evaluates outline contours and pre-
cisely computes envelopes of an elliptical pen strok-
ing along a Bézier curve. We must notice that the
envelopes in general are not cubic Bézier curves and
their representation in a Type 1 font must be an ap-
proximation. The results for a circular pen, on the
other hand, can be considered perfect. Figures 14
and 15 show an example of the Malayalam letter
“a” (font mm10): the initial and final contours and
the final Type 1 font with control points (stroked

59

Karel Piska

Figure 14: MetaFog—initial input contour and
final result.

Figure 15: MetaFog—final Type 1 font.

version) and its visual comparison with METAPOST
output embedded in a Type 3 font, respectively.

3.2.1 Problems with Complex Pen-stroking

A more complicated situation is the conversion of
fonts using pen stroking with a rotated elliptical pen,
such as the Devanagari font. Figure 16 illustrates
this case. The initial input contour and final result
contour (ttal) look good —in the first image we can
see the projections of the pen in nodes correspond-
ing to METAFONT source. But exact comparison
with the original METAPOST output embedded in
a Type 3 font (tta2) and primary MetaFog conver-
sion displayed together with the METAPOST source
(tta3) shows that this approximation is not correct.
Because these elements are very common in shapes

60

ttal

tta2

ttad

ttad

Figure 16: MetaFog contours, METAPOST
output, primary and secondary conversion on the
METAPOST background.

of all but the simplest Devanagari glyphs, correc-
tions are necessary.

I therefore applied a simple pen-dependent pre-
processing step before the MetaFog conversion, thus
adapting the METAPOST output as a modified form
of bisection, as discussed in a paper by R. Kinch
[11]. The preprocessing scans curves, searching for
points where the path direction and the direction of
main axis of the pen coincide (namely 135°) and in-
serts these points as additional path nodes. In our
case, the transformation matrix is cos 0x[1,1, =1, 1],
so we solve only a quadratic equation and can find
0, 1 or 2 (at most) of these points. This technique
corrects the MetaFog approximation of all such oc-
currences in the dvng font. The result of this sec-
ondary MetaFog conversion with METAPOST source
is shown in the last panel of Figure 16 (tta4).

Similar improvements for the Devanagari let-
ters “a” and “pha” are shown in figure 17. For
“pha”, the first 135 degree node was already present

PREPRINTS for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

al
7
phal
s
a2

pha2

Figure 17: MetaFog output before and after
modification of METAPOST source.

in the path defined by the METAFONT source (first
panel, phal); on the contrary, the second occurrence
of a 135 degree point was absent, and therefore it
was inserted in the METAPOST output (last panel,
pha2).

Of course, this improvement is not universal, it
only solves a special problem with a special pen for
a special font.

Figure 18 illustrates movement of a rotated el-
liptical pen stepping along a “nice” path (panel 1).
However, correlations with the pen are not trivial:
changes of curvature of the outer wingtip curve do
not have simple monotonic behavior, and the in-
ner wingtip curve (panel 2) is even more compli-
cated. This means that the pen-stroked wingtip
curves along a single Bézier curve cannot be approx-
imated by single Bézier curves (compare with the
starting fig. 16, panel ttal), i.e., an envelope edge of
a pen along a simple path is not simple.

PREPRINTS for the 2004 Annual Meeting

Figure 19: MetaFog converted to Type 1—
before and after postprocessing.

3.2.2 Automatic Conversion Problems

A “dark side” of improving the curve approxima-
tion is a fragmentation of an envelope curve into
many segments (often more than 10, and up to 16 in
Devanagari!). We achieve a faithful approximation
(limited only by numerical accuracy) at the expense
of conciseness. To make up for this, postprocess-
ing is needed. The original MetaFog output and a

61

Karel Piska

\u« yidg
7y

’ A ‘yju

Figure 20: MetaFog— problems with automatic
conversion.

result of my (preliminary) optimization assembled
into Type 1 fonts is shown in Figure 19.

Unfortunately, even a small computational in-
accuracy can make automatic conversion and opti-
mization impossible, and even make it very difficult
to design postprocessing algorithms. In Figure 20,
we demonstrate problems with the primary approxi-
mation of an envelope stroked by a rotated elliptical
pen, and also difficulties with automatic optimiza-
tion of the Devanagari ligature “d+g+1”.

In the first panel of fig. 20, we observe an ar-
tifact produced by MetaFog due to a complicated
correlation of the pen and the path. Fortunately,
those cases are very rare (less than 1% of glyphs in
Devanagari).

In the second panel, the path and subsequently
the corresponding envelope edges are not absolutely
horizontal, thus (probably) MetaFog cannot prop-
erly find intersection points and join reconstructed
outline components. Those defects are present in

62

more than 12% of the Devanagari glyphs. In all
cases, they have been successfully solved manually
by the interactive weeder program.

In the last two details in fig. 20 (the lower end-
ing part of the left stem) we can see that both nodes
of the left segment are outside the filled area bound-
ary defined by the METAPOST curve. The outer
wingtip edge is split there into many segments, some
being straight lines—and they should not be, e.g.,
the first and the third segment marked by 2 ar-
rows in the clip—their curvatures are for us unde-
fined. Additionally, we cannot detect the last seg-
ment (magnified in the figure) as horizontal because
its angle is “greater than some £”.

Thus, neither node coordinates, nor segment
directions, nor curvatures are reliable. It gives a
visual comparison of the METAPOST output with
its outline approximation. Therefore, my (first and
“simple”) idea cannot succeed. This was to clas-
sify the behavior of directions and curvatures of all
the segments automatically, and then to divide seg-
ments into groups according to directions and cur-
vatures, then automatically merging the groups to
single Bézier segments. As demonstrated, this opti-
mization may fail or produce incorrect results and,
unfortunately, human assistance is needed.

4 Summary

Here we summarize the most important features of
the conversion programs found in our experiments.

4.1 Approximate Conversions: TgXtrace,
mftrace

Advantages:

e approximation covers original METAFONT fonts
and correspondence to pk bitmaps is (reason-
ably) close

e simple invocation, robust solution

e fully automatic processing can generate com-
plete, final Type 1 fonts

Disadvantages:

e approximate conversions give only approximate
outlines

e lost information about nodes and other control
points

e final fonts do not satisfy the Type 1 conventions

e AutoTrace: problems with recognizing corners,
generation of unwanted bumps and holes

e potrace: sharp connections, thus loss of tangent
continuity, violation of horizontal or vertical di-
rections

e automatic and correct (auto)hinting may yield
poor results due to these irregularities

PREPRINTS for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

4.2 MetaTypel
Advantages:

e complete support for Type 1 font generation

e manual insertion of hinting information possible
via simple hinting commands

e font file compression via subroutines

Disadvantages:

e conversion of METAFONT to METAPOST often
requires manual rewriting, possibly non-trivial
and time-consuming

e bad pen stroking algorithm; in particular, re-
sults for complicated fonts using rotated ellip-
tical pens are unusable

e difficulties with removing overlaps in tangential
cases

4.3 MetaFog
Advantages:

e fully automatic conversion of METAPOST out-
put to outlines

e “typical” fonts usually achieve perfect results

e even for very complex fonts (again, with rotated
elliptical pens), adaptations of METAPOST out-
put and manual editing with weeder make it
plausible to obtain perfect outlines

e results fulfill the Type 1 conventions in most
cases (except for those very complex fonts)

Disadvantages:

e MetaFog reads METAPOST output, thus cannot
process METAFONT-specific definitions

e complex fonts may still need manual reduction
with weeder or subsequent optimization of out-
lines to reach conciseness

e processing is slow

4.4 Final Font Processing and Common
Problems

The conversion systems discussed here, with the ex-
ception of MetaTypel, do not include internal hint-
ing subsystems. To insert hints, we can use font
editors, for example FontForge [22]. For success-
ful automatic hinting, however, the font outlines
must fulfill certain conditions. Irregularities— ab-
sence of nodes at extrema or presence of bumps
and holes—are not compatible with autohinting,
because extrema points correspond to hinting zones
while bumps or holes do not fit them, thus caus-
ing outliers. The resulting difference of +1 unit in
the integer glyph coordinate system, after rounding
to integers, is not acceptable for high-quality fonts.
Problems may also be caused by other “rounding to

PREPRINTS for the 2004 Annual Meeting

integer” effects, and by the presence of close dou-
blets or triplets.

In my view, these experiments show that the
quality of primary outline approximation is crucial
to achieve perfect final Type 1 fonts. It is virtually
impossible to recreate discarded METAFONT infor-
mation, or to find exact conditions for a secondary
fit that corrects primary contours that were created
with irregularities or artifacts. Starting with high-
resolution bitmaps is problematic, as too much infor-
mation has been lost, making subsequent processes
of improvement, optimization and hinting difficult
at best, not possible to automate and usually not
successful.

5 Acknowledgements

I would like to thank all the authors of the free
conversion programs, Richard Kinch for donating
his MetaFog and weeder, the authors of the pub-
lic METAFONT fonts for Indic languages and other
sources used in the contribution, and Karl Berry for
help with editing of this article.

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1990.

[2] Alfred V. Aho, Brian W. Kernighan, and Peter
J. Weinberger, The AWK Programming Lan-
guage, Addison-Wesley, 1988.

[3] Karl Berry. “Making outline fonts from bitmap
images.” TUGboat, 22(4), pp. 281285, 2001.

[4] Free Software Foundation. GNU awk, http://
www.gnu.org/software/gawk.

[5] Jeroen Hellingman. Malayalam fonts, CTAN:
language/malayalam.

[6] John D. Hobby. A User’s Manual for META-
POST. AT&T Bell Laboratories, Computing
Science Technical Report 162, 1994.

[7] Taco Hoekwater. “Generating Type 1 Fonts
from METAFONT Sources”, TUGboat, 19(3),
pp- 256-266, 1998.

[8] Bogustaw Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. “MetaTypel: A METAPOST-based
Engine for Generating Type 1 Fonts”, Pro-
ceedings of the XII EuroTgX 2001 conference,
pp- 111-119, Kerkrade, the Netherlands, 23-27
September 2001.

[9] Bogustaw Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. “Programming PostScript Type 1
Fonts Using MetaTypel: Auditing, Enhancing,
Creating. Preprints of the XIV EuroTgX 2003

63

Karel Piska

64

conference, pp. 151-157, Brest, France, 24-27
June 2003 (to appear in TUGboat).
MetaTypeldistribution: ftp://bop.eps.gda.
pl/pub/metatypel.

Richard J. Kinch. “MetaFog: Converting
METAFONT Shapes to Contours”, TUGboat,
16(3), pp. 233-243, 1995.

Donald E. Knuth. The METAFONTboOk.
Addison-Wesley, 1986. Volume C of Computers
and Typesetting.

Eddie Kohler. tlutils (Type 1 tools), http://
freshmeat.net/projects/tlutils.

Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 17,
TUGboat, 16(1), pp. 60-68, 1995.

Han-Wen Nienhuys. mftrace, http://www.cs.
uu.nl/~hanwen/mftrace.

Karel Pigka. “A conversion of public Indic fonts
from METAFONT into Type 1 format with TEX-
trace.” TUGboat, 23(1), pp. 70-73, 2002.

[17]

[18]

Peter Selinger. http://potrace.

sourceforge.net.

Péter Szabd. “Conversion of TEX fonts into
Type 1 format”, Proceedings of the XII FEuro-
TEX 2001 conference, pp. 192-206, Kerkrade,
the Netherlands, 23-27 September 2001.
http://www.inf.bme.hu/~pts/textrace;
http://textrace.sourceforge.net.

Frans J. Velthuis. Devanagari fonts, CTAN:
language/devanagari.

Vladimir Volovich: CM-super fonts:
fonts/ps-typel/cm-super.

Martin Weber. AutoTrace, http://autotrace.
sourceforge.net.

potrace,

CTAN:

George Williams. FontForge: A PostScript Font
Editor, http://fontforge.sourceforge.net.

PREPRINTS for the 2004 Annual Meeting

