
Creating Type 1 Fonts from METAFONT Sources:
Comparison of Tools, Techniques and Results

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
182 21 Prague
Czech Republic
piska@fzu.cz

http://www-hep.fzu.cz/~piska/

Abstract

This paper summarizes experiences in converting METAFONT fonts to PostScript
fonts with TEXtrace and mftrace, based on programs of autotracing bitmaps (Auto-
Trace and potrace), and with systems using analytic conversion (MetaFog and
MetaType1, using METAPOST output or METAPOST itself). A development
process is demonstrated with public Indic fonts (Devanagari, Malayalam). Ex-
amples from the Computer Modern fonts have been also included to illustrate
common problems of conversion. Features, advantages and disadvantages of var-
ious techniques are discussed. Postprocessing — corrections, optimization and
(auto)hinting — or even preprocessing may be necessary, before even a primary
contour approximation is achieved. To do fully automatic conversion of a perfect
METAFONT glyph definition into perfect Type 1 outline curves is very difficult at
best, perhaps impossible.
Keywords: font conversion, bitmap fonts, METAFONT, METAPOST, outline
fonts, PostScript, Type 1 fonts, approximation, Bézier curves.

1 Introduction

In recent years, several free programs for creating
PostScript outline fonts from METAFONT sources
have been developed. The aim of this paper is to
give a short comparison of these programs, with ref-
erences to original sources and documentation, and
to provide a brief description of their use. We will
discuss advantages and drawbacks, and demonstrate
numerous examples to compare important features
and to illustrate significant problems. We omit tech-
nical details described in the original documentation
and concentrate our attention on the quality of the
output, including hinting issues.

The programs TEXtrace and mftrace read origi-
nal METAFONT sources, generate high-resolution pk
bitmaps, call autotracing programs (AutoTrace or
potrace) and finally generate the files in the Type 1
format (pfb or pfa).

MetaType1 creates Type 1 output from META-
POST sources. Therefore it requires rewriting font
definitions from METAFONT into METAPOST.

Similarly, MetaFog converts the PostScript files
generated by METAPOST to other PostScript files
containing only outlines, that can be subsequently
assembled into Type 1 fonts. MetaFog is not a new

product, but its excellent results remain, in our com-
parisons, unsurpassed.

Additionally, we may need adequate encoding
files. If none are available, a TEX encoding (e.g.,
the standard TEX T1 encoding) is usually used as
the default.

2 Autotracing Bitmaps

2.1 TEXtrace with AutoTrace

Péter Szabó developed TEXtrace [18]. It is a col-
lection of Unix scripts. It reads the original META-
FONT sources, rendering the font bitmaps into Post-
Script (via dvips). For converting the resulting bit-
maps to outlines, it calls (in the version of 2001) the
AutoTrace program [21] created by Martin Weber,
and, finally, composites the final files in the Type 1
format. TEXtrace works fully automatically and can
be invoked by a command like this:
bash traceall.sh mfname psname psnumber

where mfname.mf is the name of the METAFONT

font, psname.pfb is the name of the Type 1 font
file, and psnumber denotes a Type 1 UniqueID [1].

The Adobe Type 1 Font Format documentation
[1, pp. 29–33] recommends observing certain Type 1

54 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

¨¨
Figure 1: TEXtrace: “¨” in cmr10.

conventions: 1) points at extremes; 2) tangent con-
tinuity; 3) conciseness; and 4) consistency.

The outline results from TEXtrace (that is, from
AutoTrace) are relatively faithful to the original bit-
maps. Some artifacts exist, but they are invisible
in usual font sizes and magnifications and for prac-
tical purposes may be negligible. Nonetheless, they
spoil our attempts to automatically produce perfect,
hinted, outline fonts.

The underlying reason is that the information
about the control points in the original METAFONT

is lost, and the Type 1 conventions are not satisfied,
as exemplified in figure 1. The endpoints (double
squares) are not placed at extremes (rule 1), most
of the horizontal and vertical points of extrema are
missing. On the other hand, the outline definition
is not concise (rule 3) — due to the large numbers of
control points in the glyph definitions, the font files
generated by TEXtrace are huge. Furthermore, the
two identical periods in the dieresis glyph “¨” are
approximated by different point sets (rule 4).

The following examples show the results of con-
version of Indic fonts submitted to TUG India 2002
[16], devanagari (dvng10) and Malayalam (mm10).
Typical irregularities produced by conversion with
TEXtrace are bumps and holes. Figure 2 demon-
strates bumps caused by the envelope being stroked
along a path with a rapid change of curvature, and
by cases of transition from a straight line to a sig-
nificantly small arc. The second clipped part of the
letter “pha” shows a hole.

I tried to remove those bumps and holes, and
(partially) other irregularities at the Type 1 level
with a set of special programs manually marking
places to be changed in a “raw” text, translated
by t1disasm and by t1asm back after modifications
(both programs are from the t1utils package [13]),
which achieves a better outline approximation, as
shown in figure 3. The postprocessing consisted of:

tta

a

dVVVVa

a

b

d

c

bAAAAAA
pha

b

b b
bhPPPPPPka

g

ckkkkFigure 2: Results of TEXtrace (AutoTrace):
bumps and a hole (h).

tta

aVVVVa

a

bAAAAAApha
b

bPPPPPPka

gkkkkFigure 3: Improved results achieved with
postprocessing.

Preprints for the 2004 Annual Meeting 55

Karel Ṕı̌ska

˝̋
˝̋

Figure 4: TEXtrace (AutoTrace) first without and
then with postprocessing for the Malayalam “a”,
showing undetected corners.

inserting missing extrema points, changing the first
nodes of contour paths (if desirable), and the opti-
mization of merging pairs (or sequences) of Bézier
segments together, and joining nodes in horizon-
tal or vertical straight parts to eliminate redundant
nodes.

However, when this process was applied to the
Malayalam fonts, we meet another problem: unde-
tected corners in Figure 4. Instead of attempting
to correct them, I stopped my postprocessing at-
tempts, and switched to experiments with analytic
methods of conversion.

2.1.1 Examples of CM-super

Type 1 fonts [20] generated by Vladimir Volovich
(first announced in 2001) inherit typical bugs pro-
duced by tracing bitmaps by AutoTrace (as invoked
by TEXtrace) such as bumps and holes, improper se-
lection of starting points of contour paths, and prob-
lems in distinguishing sharp corners and small arcs.
We illustrate them in several following figures, in
order to demonstrate that fixing such irregularities
automatically is difficult.

In the period “.” from the sfrm1000 font (its
source is the original cmr10), an optimization cannot
exclude the redundant node (fig. 5) (it is still the
starting point of the path).

The minus “−” derived from cmr10 contains a
bump, and minus from cmtt10 two bumps (fig. 6).
Moreover, these bumps have been hinted and have
their own hints (probably as results of autohinting).

In the letter “M” from cmtt10, we observe miss-
ing dishes, a hole and a bad approximation of an arc

d....a....
Figure 5: CM-super: period in sfrm1000 and
sfsi1000, with redundant node.

d−−−−d−−−−Figure 6: CM-super: minus in sfrm1000 and
sftt1000, with bumps.

a

f

MMMMMMa

ciiiiiiiiFigure 7: CM-super: “M” in sfrm1000 and “i” in
sfsi1000.

56 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

d

b

b˝̋

˝̋̋̋
˝̋Figure 8: TEXtrace (using potrace), with different

corners.

(fig. 7). On the contrary, in “i” the corners are not
detected properly, we also have a hinted bump.

2.2 TEXtrace with potrace

The 2003 version of TEXtrace supports alternative
bitmap tracing with potrace [17], developed by Pe-
ter Selinger. In this version, the real corners are
detected or at least detected better than with Auto-
Trace (see fig. 8). Thus, bumps and holes have been
suppressed, but smooth connections have often been
changed to sharp corners (not present originally).
While the bumps demonstrated violation of consis-
tency and may produce invalid hinting zone coor-
dinates (fig. 6), the unwanted sharp corners mean
loss of tangent continuity (the middle clip in fig. 8).
Unfortunately, the approximation does not preserve
horizontal and vertical directions (the right clip), the
stem edges are oblique — the difference between the
two arrows on the left edge is 2 units in the glyph
coordinate space.

2.3 mftrace

Han-Wen Nienhuys created mftrace [15, 3], a Python
script which calls AutoTrace or potrace (as with TEX-
trace) to convert glyph bitmap images to outlines.
The results of tracing are thus expected to be very
similar to those of TEXtrace. In fact, for the ana-
lyzed Indic fonts, they are identical, as we can see in
the first image in figure 9 (compare with TEXtrace re-
sults in fig. 4). With the --simplify option, mftrace
calls FontForge [22] (previously named PfaEdit) to
execute postprocessing simplification; this helps to
exclude redundant nodes from outline contours, as
in the second image in figure 9.

˝
˝

Figure 9: mftrace without and with --simplify.

3 Analytic Conversions

3.1 MetaType1

MetaType1 [8, 9] is a programmable system for au-
diting, enhancing and generating Type 1 fonts from
METAPOST sources. MetaType1 was designed by
Bogus law Jackowski, Janusz M. Nowacki and Piotr
Strzelczyk. The MetaType1 package is available
from ftp://bop.eps.gda.pl/pub/metatype1 [10].

This “auditing and enhancing” is a process of
converting the Type 1 font into MetaType1 (text)
files, generating proof sheets, analysis, making cor-
rections and regenerating modified Type 1 fonts. It
is an important tool for checking, verifying and im-
proving existing Type 1 fonts.

MetaType1 works with the METAPOST lan-
guage. Therefore the METAFONT font sources must
be converted/rewritten into METAPOST. Macro
package extensions of METAPOST and other mis-
cellaneous programs provide generation of proper
structure of the Type 1 format, evaluate hints (not
only the basic outline curves), and create pfb and
also afm and pfm files.

During the rewriting process, users define sev-
eral parameters of the Type 1 font, including the
PostScript font encoding — PostScript glyph names
and their codes — because METAFONT sources do
not contain this data in a form directly usable for
Type 1 encoding vectors. METAFONT output com-
mands have to be changed to their METAPOST al-
ternatives. Similarly, it is necessary to substitute
METAFONT commands not available in METAPOST,
to define METAPOST variants of pen definitions and
pen stroking, etc.

Alternative METAPOST commands are defined
in the MetaType1 files fontbase.mp, plain ex.mp,

Preprints for the 2004 Annual Meeting 57

Karel Ṕı̌ska

a
a

Figure 10: MetaType1 — primary outlines and
overlap removal.

et al. Other (new) commands may be defined by
the user. Correspondence between METAFONT and
METAPOST is approximately as shown in the fol-
lowing table (of course, the details may vary from
font to font):

METAFONT METAPOST

fill path; Fill path;
draw path; pen stroke()(path)(glyph);

Fill glyph;
penlabels(1,2); justlabels(1,2);
beginchar(. . . beginglyph(. . .
endchar; endglyph;

Many METAFONT commands have no counter-
part in METAPOST [6]. For example, operations
with bitmap pictures: in METAPOST, font data is
represented as PostScript curves, not bitmaps. As a

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

2 MM102 19:01 30 XII 2003

Figure 11. MetaType1 — proof sheet.

result, writing METAPOST code that would produce
equivalent results as original METAFONT code using
these or other such features would be very difficult.

After the basic conversion, the next step is re-
moving overlaps (if any are present) using the Meta-
Type1 command find outlines. Figure 10 shows
the results before and after overlap removal for the
Malayalam vowel a (font mm10 using pen stroking
with a circular pen). This operation is not neces-
sary in METAFONT, since it generates bitmaps. In
the METAPOST environment of PostScript outlines,
however, we need to reduce overlapping curves to
single or pairs of paths.

MetaType1 also allows insertion of commands
for automatic computation of horizontal and vertical
hints (FixHStems, FixVStems). The Type 1 font
can be visualized in a proof sheet form containing
the control point labels (numbers) and hinting zones
(figure 11).

So far, so good. But there are two crucial prob-
lems. First, the METAFONT Malayalam fonts de-
signed by Jeroen Hellingman [5], use the command
currenttransform := currenttransform

shifted (.5rm, 0);

So all the glyphs should be shifted to the right.
METAFONT saves the transformation command and
does this operation automatically. By contrast, in
METAPOST we need to insert the shift commands
explicitly in all glyph programs. Also the labels
must be shifted! In my experiments, I did this shift
operation later, before final assembly of the Type 1
fonts.

The second problem is that in MetaType1 (I
used MetaType1 version 0.40 of 2003) a regular pen
stroking algorithm is not available, only a simpli-
fied method of connecting the points ‘parallel’ to the

58 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

���
Figure 12: MetaType1 — bad pen stroking.

nodes on the path. Therefore the approximation of
the envelope is not correct. For example, in Fig-
ure 12 it should be asymmetric, but it is symmetric.
Inserting additional nodes cannot help, because the
bisection results will again be asymmetric. The fig-
ure shows the outline curves do not correspond to
the real pen in two midpoint locations. The enve-
lope there looks narrow and it is in fact narrower
than it should be. I hope that this problem could
be solved in a future release, at least for pen stroking
with a circular pen.

Even more serious is a situation with the ro-
tated elliptic pen used in the Devanagari fonts de-
signed by Frans Velthuis [19] (and also other In-
dic fonts derived from dvng). Absence of a regular
pen stroking in MetaType1 makes it impractical for
such complicated fonts. MetaType1 approximates
the pen statically in path nodes, tries to connect
their static end points, and ignores complicated dy-
namic correlations between the path, the pen and
the envelope. Unfortunately, in this case the results
of the envelope approximation are not correct and
cannot be used (figure 13).

3.2 MetaFog

Two programs using analytic conversion were pre-
sented in 1995. Basil K. Malyshev created his Ba-
KoMa collection [14] and Richard J. Kinch devel-
oped MetaFog [11]. BaKoMa is a PostScript and
TrueType version of the Computer Modern fonts.
Malyshev’s paper discusses some problems of con-
version, especially regarding hinting, but his pro-
grams and detailed information about the conver-
sion algorithm are not available.

R. Kinch created MetaFog along with weeder,
which supports interactive processing of outlines,

Figure 13: MetaType1 — Devanagari “i”, “a”.

and a package for making final fonts from out-
lines generated by MetaFog in TrueType, Type 1
and other formats. MetaFog itself (I used an
evaluation version graciously donated by Richard)
reads the METAPOST output from the command:

mpost ’&mfplain options;’ input fontname.mf

Thus, the conversion (from METAFONT sources) is
limited to fonts that can be processed by META-
POST, that is, do not contain METAFONT-specific
definitions and commands. MetaFog generates an-
other PostScript file consisting only of the outline
structures. A conversion process is described also in
the paper written by Taco Hoekwater [7].

MetaFog evaluates outline contours and pre-
cisely computes envelopes of an elliptical pen strok-
ing along a Bézier curve. We must notice that the
envelopes in general are not cubic Bézier curves and
their representation in a Type 1 font must be an ap-
proximation. The results for a circular pen, on the
other hand, can be considered perfect. Figures 14
and 15 show an example of the Malayalam letter
“a” (font mm10): the initial and final contours and
the final Type 1 font with control points (stroked

Preprints for the 2004 Annual Meeting 59

Karel Ṕı̌ska

g

bk

h

bl

i

j

k

l

g

m

n

o

p

q

r

m

s

t

u

v

w

x

s

y

z

ba

bb

bc

bd

y

be

bf

bgbh

bi

bj be

bu

bv

bw bx

by

bzbu ca

cb

cc

cd

ce

cf

ca

cg

ch

ci

cj

ck

cl

cg

cm

cn

co

cp

cq

cr

cm

cs

ct

cu

cv

cw

cx

cs

cy

cz

da

db

dc

dd

cy

de

df

dg

dh

di

dj

de

dr

ds

dt

du

dv

dw

dr

dx

dy

dz

ea

eb

ec

dx

ed

ee

ef

eg

eh

ei

ed

ej

ek

el

em

en

eo

ej

ep

eq

er

es

et

eu

ep

ev

ew

ex

ey

fb

ez

fc
fa

ev

bsu

bsv

bsw

bsx

bsy

bsz

bta
btb

btc

btd

bte

btf

btg

bth

bti

btj

btk

btl

btm

btn

bto

btp

btr

bts

btt

btu

btv

btw

btx

bty

btz

bsu

bua

bub

buc

bud

bua

bue

buf

bugbuh

bue

bui buj

buk

bul

bui

Figure 14: MetaFog — initial input contour and
final result.

�
�
Figure 15: MetaFog — final Type 1 font.

version) and its visual comparison with METAPOST

output embedded in a Type 3 font, respectively.

3.2.1 Problems with Complex Pen-stroking

A more complicated situation is the conversion of
fonts using pen stroking with a rotated elliptical pen,
such as the Devanagari font. Figure 16 illustrates
this case. The initial input contour and final result
contour (tta1) look good — in the first image we can
see the projections of the pen in nodes correspond-
ing to METAFONT source. But exact comparison
with the original METAPOST output embedded in
a Type 3 font (tta2) and primary MetaFog conver-
sion displayed together with the METAPOST source
(tta3) shows that this approximation is not correct.
Because these elements are very common in shapes

tta1

g

oi
p

h

qj
r

g

c

e d

fc

k

sm
t

l

un
v

kbc

bkbe
bl

bd

bmbf
bn

bc

y

ba

z

bb

y

bg

bobi
bp

bh

bqbj
br

bgca

dgcc
dh

cb

dicd
dj

ca

bw

by

bx

bz

bw

ce

dkcg
dl

cf

dmch
dn

cecm

doco
dp

cn

dqcp
dr

cm

ci

ck

cj

cl

ci

cq

dscs
dt

cr

duct
dv

cqcy

dwda
dx

cz

dydb
dz

cy

cu

cw

cv

cx

cu

dc

eade
eb

dd

ecdf
ed

dc

sk

sl sm

sn

so

sp

sqss
st

su

svswsx

sy

sz

tatb
tc

td tetf
tg

th

titjtk
tl

sk

tta2
g

tta3
g

sk

sl sm

sn

so

sp

sqss
st

su

svswsx

sy

sz

tatb
tc

td tetf
tg

th

titjtk
tl

sk

sk

sl sm

sn

so

sp

sqss
st

su

svswsx

sy

sz

tatb
tc

td tetf
tg

th

titjtk
tl

sk

tta4
g

cnf

cng cnh

cni

cnj

cnk

cnl

cnm

cnn

cno

cnp

cnq

cnr

cns

cnt

cnu

cnv

cnw

cnxcnz
coa

cob

coccodcoe

cof

cog

coh
coicoj

cok

colcom
con

coo copcoq
cor

cos

cotcoucov
cow

cnf

cnf

cng cnh

cni

cnj

cnk

cnl

cnm

cnn

cno

cnp

cnq

cnr

cns

cnt

cnu

cnv

cnw

cnxcnz
coa

cob

coccodcoe

cof

cog

coh
coicoj

cok

colcom
con

coo copcoq
cor

cos

cotcoucov
cow

cnf

Figure 16: MetaFog contours, METAPOST

output, primary and secondary conversion on the
METAPOST background.

of all but the simplest Devanagari glyphs, correc-
tions are necessary.

I therefore applied a simple pen-dependent pre-
processing step before the MetaFog conversion, thus
adapting the METAPOST output as a modified form
of bisection, as discussed in a paper by R. Kinch
[11]. The preprocessing scans curves, searching for
points where the path direction and the direction of
main axis of the pen coincide (namely 135◦) and in-
serts these points as additional path nodes. In our
case, the transformation matrix is cos θ∗ [1, 1,−1, 1],
so we solve only a quadratic equation and can find
0, 1 or 2 (at most) of these points. This technique
corrects the MetaFog approximation of all such oc-
currences in the dvng font. The result of this sec-
ondary MetaFog conversion with METAPOST source
is shown in the last panel of Figure 16 (tta4).

Similar improvements for the Devanagari let-
ters “a” and “pha” are shown in figure 17. For
“pha”, the first 135 degree node was already present

60 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

a1

d efn

efo efp

efq

efr

efs

eft

efu

efv

efwefx
efyefz

ega

egbegc
egd

ege

egfeggegh

egi

egjegkegl

egm

egnegoegp
egq

egr

egs egt

egu egv

egwegxegy
egz

eha
ehb

ehc

ehd

ehe

ehf

ehg

ehhehi
ehj

ehkehl

ehm

ehn

eho

ehp

ehq

ehr

ehseht
ehu

ehy ehzeia
eib

eic

eideieeif
eig

efn

efn

efo efp

efq

efr

efs

eft

efu

efv

efwefx
efyefz

ega

egbegc
egd

ege

egfeggegh

egi

egjegkegl

egm

egnegoegp
egq

egr

egs egt

egu egv

egwegxegy
egz

eha
ehb

ehc

ehd

ehe

ehf

ehg

ehhehi
ehj

ehkehl

ehm

ehn

eho

ehp

ehq

ehr

ehseht
ehu

ehy ehzeia
eib

eic

eideieeif
eig

efn

pha1

g

ewg

ewh

ewi

ewj

ewk

ewl

ewm

ewn

ewo

ewp

ewq

ewr

ews

ewt

ewu

ewveww

ewx

ewy

ewz

exa

exbexc
exd

exe

exf exg exh

exi

exj

exk

exlexn

exo

expexqexs

ext

exu

exv

exw exxexy
exz

eya

eybeyceyd
eye

ewg

eyf

eyg

eyh

eyi eyj

eyk

eyl

eyf

ewg

ewh

ewi

ewj

ewk

ewl

ewm

ewn

ewo

ewp

ewq

ewr

ews

ewt

ewu

ewveww

ewx

ewy

ewz

exa

exbexc
exd

exe

exf exg exh

exi

exj

exk

exlexn

exo

expexqexs

ext

exu

exv

exw exxexy
exz

eya

eybeyceyd
eye

ewg

eyf

eyg

eyh

eyi eyj

eyk

eyl

eyf

a2

d oqe

oqf oqg

oqh

oqi

oqj

oqk

oql

oqm

oqn

oqo

oqp

oqq

oqr

oqs

oqt

oqu

oqv

oqw

oqx

oqy

oqz

ora

orborc
ord

ore

orforgorh

ori

orjorkorl

orm

ornoroorp
orq

orr

ors ort

oru

orvorworx

ory

orz

osaosb

osc
osd

ose

osf

osgosh
osi

osjosk

osl

osm

osn

oso

osp

osq

osr

oss

ost

osu

osv

oswosx
osy

otc otdote
otf

otg

othotiotj
otk

oqe

oqe

oqf oqg

oqh

oqi

oqj

oqk

oql

oqm

oqn

oqo

oqp

oqq

oqr

oqs

oqt

oqu

oqv

oqw

oqx

oqy

oqz

ora

orborc
ord

ore

orforgorh

ori

orjorkorl

orm

ornoroorp
orq

orr

ors ort

oru

orvorworx

ory

orz

osaosb

osc
osd

ose

osf

osgosh
osi

osjosk

osl

osm

osn

oso

osp

osq

osr

oss

ost

osu

osv

oswosx
osy

otc otdote
otf

otg

othotiotj
otk

oqe

pha2

g

lgt

lgu

lgv

lgw

lgx

lgy
lgz

lha

lhb

lhc

lhd

lhe

lhf

lhg

lhh

lhi

lhjlhk

lhl

lhm

lhn

lho

lhplhq
lhr

lhs

lht

lhu

lhv

lhwlhy

lhz

lialiblid

lie

liflig

lih

lii

lij

lik

lil

lim

lin

lio

lip

liq

lir

lis

lit

liu livliw
lix

liy

lizljaljb
ljc

lgt

ljd

lje

ljf

ljg ljh

lji

ljj

ljd

lgt

lgu

lgv

lgw

lgx

lgy
lgz

lha

lhb

lhc

lhd

lhe

lhf

lhg

lhh

lhi

lhjlhk

lhl

lhm

lhn

lho

lhplhq
lhr

lhs

lht

lhu

lhv

lhwlhy

lhz

lialiblid

lie

liflig

lih

lii

lij

lik

lil

lim

lin

lio

lip

liq

lir

lis

lit

liu livliw
lix

liy

lizljaljb
ljc

lgt

ljd

lje

ljf

ljg ljh

lji

ljj

ljd

Figure 17: MetaFog output before and after
modification of METAPOST source.

in the path defined by the METAFONT source (first
panel, pha1); on the contrary, the second occurrence
of a 135 degree point was absent, and therefore it
was inserted in the METAPOST output (last panel,
pha2).

Of course, this improvement is not universal, it
only solves a special problem with a special pen for
a special font.

Figure 18 illustrates movement of a rotated el-
liptical pen stepping along a “nice” path (panel 1).
However, correlations with the pen are not trivial:
changes of curvature of the outer wingtip curve do
not have simple monotonic behavior, and the in-
ner wingtip curve (panel 2) is even more compli-
cated. This means that the pen-stroked wingtip
curves along a single Bézier curve cannot be approx-
imated by single Bézier curves (compare with the
starting fig. 16, panel tta1), i.e., an envelope edge of
a pen along a simple path is not simple.

1
g

2
g

Figure 18: Wingtip curves in METAPOST source.

����
Figure 19: MetaFog converted to Type 1 —
before and after postprocessing.

3.2.2 Automatic Conversion Problems

A “dark side” of improving the curve approxima-
tion is a fragmentation of an envelope curve into
many segments (often more than 10, and up to 16 in
Devanagari!). We achieve a faithful approximation
(limited only by numerical accuracy) at the expense
of conciseness. To make up for this, postprocess-
ing is needed. The original MetaFog output and a

Preprints for the 2004 Annual Meeting 61

Karel Ṕı̌ska

b

g

a

yhv

yhw yhx

yhy
yhz

yia

yibyic
yid

yie yifyig
yih

yii

yijyikyil
im

yhv

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

yiy

yiz

yja

yjb

yjc

yjd

yje

yjf

yjg

yjh

yji

yjj
yjk

yjlyjmyjnyjo

yjp

yjq

yjryjs
yjt

yju

yjv

yjw

yjx

yjy

yjz
yka

ykb ykc

ykd

yke

ykf

ykg

ykh yki

ykj

ykk
ykl

ykm

ykp

ykq

ykr

ykv

ykw

ykx

yky

ykz

yla

ylb

ylc

yld

yle

ylf
ylg
ylhyli

ylj

ylkyll
yiv

yhv

yhw yhx

yhy
yhz

yia

yibyic
yid

yie yifyig
yih

yii

yijyikyil
im

yhv

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

yiy

yiz

yja

yjb

yjc

yjd

yje

yjf

yjg

yjh

yji

yjj
yjk

yjlyjmyjnyjo

yjp

yjq

yjryjs
yjt

yju

yjv

yjw

yjx

yjy

yjz
yka

ykb ykc

ykd

yke

ykf

ykg

ykh yki

ykj

ykk
ykl

ykm

ykp

ykq

ykr

ykv

ykw

ykx

yky

ykz

yla

ylb

ylc

yld

yle

ylf
ylg
ylhyli

ylj

ylkyll
yiv

yhv

yhw yhx

yhy
yhz

yia

yibyic
yid

yie yifyig
yih

yii

yijyikyil
im

yhv

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

yiy

yiz

yja

yjb

yjc

yjd

yje

yjf

yjg

yjh

yji

yjj
yjk

yjlyjmyjnyjo

yjp

yjq

yjryjs
yjt

yju

yjv

yjw

yjx

yjy

yjz
yka

ykb ykc

ykd

yke

ykf

ykg

ykh yki

ykj

ykk
ykl

ykm

ykp

ykq

ykr

ykv

ykw

ykx

yky

ykz

yla

ylb

ylc

yld

yle

ylf
ylg
ylhyli

ylj

ylkyll
yiv

g

g

yhv

yhw yhx

yhy
yhz

yia

yibyic
yid

yie yifyig
yih

yii

yijyikyil
im

yhv

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

yiy

yiz

yja

yjb

yjc

yjd

yje

yjf

yjg

yjh

yji

yjj
yjk

yjlyjmyjnyjo

yjp

yjq

yjryjs
yjt

yju

yjv

yjw

yjx

yjy

yjz
yka

ykb ykc

ykd

yke

ykf

ykg

ykh yki

ykj

ykk
ykl

ykm

ykp

ykq

ykr

ykv

ykw

ykx

yky

ykz

yla

ylb

ylc

yld

yle

ylf
ylg
ylhyli

ylj

ylkyll
yiv

yhv

yhw yhx

yhy
yhz

yia

yibyic
yid

yie yifyig
yih

yii

yijyikyil
im

yhv

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

yiy

yiz

yja

yjb

yjc

yjd

yje

yjf

yjg

yjh

yji

yjj
yjk

yjlyjmyjnyjo

yjp

yjq

yjryjs
yjt

yju

yjv

yjw

yjx

yjy

yjz
yka

ykb ykc

ykd

yke

ykf

ykg

ykh yki

ykj

ykk
ykl

ykm

ykp

ykq

ykr

ykv

ykw

ykx

yky

ykz

yla

ylb

ylc

yld

yle

ylf
ylg
ylhyli

ylj

ylkyll
yiv

Figure 20: MetaFog — problems with automatic
conversion.

result of my (preliminary) optimization assembled
into Type 1 fonts is shown in Figure 19.

Unfortunately, even a small computational in-
accuracy can make automatic conversion and opti-
mization impossible, and even make it very difficult
to design postprocessing algorithms. In Figure 20,
we demonstrate problems with the primary approxi-
mation of an envelope stroked by a rotated elliptical
pen, and also difficulties with automatic optimiza-
tion of the Devanagari ligature “d+g+r”.

In the first panel of fig. 20, we observe an ar-
tifact produced by MetaFog due to a complicated
correlation of the pen and the path. Fortunately,
those cases are very rare (less than 1 % of glyphs in
Devanagari).

In the second panel, the path and subsequently
the corresponding envelope edges are not absolutely
horizontal, thus (probably) MetaFog cannot prop-
erly find intersection points and join reconstructed
outline components. Those defects are present in

more than 12 % of the Devanagari glyphs. In all
cases, they have been successfully solved manually
by the interactive weeder program.

In the last two details in fig. 20 (the lower end-
ing part of the left stem) we can see that both nodes
of the left segment are outside the filled area bound-
ary defined by the METAPOST curve. The outer
wingtip edge is split there into many segments, some
being straight lines — and they should not be, e.g.,
the first and the third segment marked by 2 ar-
rows in the clip — their curvatures are for us unde-
fined. Additionally, we cannot detect the last seg-
ment (magnified in the figure) as horizontal because
its angle is “greater than some ε”.

Thus, neither node coordinates, nor segment
directions, nor curvatures are reliable. It gives a
visual comparison of the METAPOST output with
its outline approximation. Therefore, my (first and
“simple”) idea cannot succeed. This was to clas-
sify the behavior of directions and curvatures of all
the segments automatically, and then to divide seg-
ments into groups according to directions and cur-
vatures, then automatically merging the groups to
single Bézier segments. As demonstrated, this opti-
mization may fail or produce incorrect results and,
unfortunately, human assistance is needed.

4 Summary

Here we summarize the most important features of
the conversion programs found in our experiments.

4.1 Approximate Conversions: TEXtrace,
mftrace

Advantages:
• approximation covers original METAFONT fonts

and correspondence to pk bitmaps is (reason-
ably) close

• simple invocation, robust solution
• fully automatic processing can generate com-

plete, final Type 1 fonts
Disadvantages:
• approximate conversions give only approximate

outlines
• lost information about nodes and other control

points
• final fonts do not satisfy the Type 1 conventions
• AutoTrace: problems with recognizing corners,

generation of unwanted bumps and holes
• potrace: sharp connections, thus loss of tangent

continuity, violation of horizontal or vertical di-
rections

• automatic and correct (auto)hinting may yield
poor results due to these irregularities

62 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

4.2 MetaType1

Advantages:
• complete support for Type 1 font generation
• manual insertion of hinting information possible

via simple hinting commands
• font file compression via subroutines

Disadvantages:
• conversion of METAFONT to METAPOST often

requires manual rewriting, possibly non-trivial
and time-consuming

• bad pen stroking algorithm; in particular, re-
sults for complicated fonts using rotated ellip-
tical pens are unusable

• difficulties with removing overlaps in tangential
cases

4.3 MetaFog

Advantages:
• fully automatic conversion of METAPOST out-

put to outlines
• “typical” fonts usually achieve perfect results
• even for very complex fonts (again, with rotated

elliptical pens), adaptations of METAPOST out-
put and manual editing with weeder make it
plausible to obtain perfect outlines

• results fulfill the Type 1 conventions in most
cases (except for those very complex fonts)

Disadvantages:
• MetaFog reads METAPOST output, thus cannot

process METAFONT-specific definitions
• complex fonts may still need manual reduction

with weeder or subsequent optimization of out-
lines to reach conciseness

• processing is slow

4.4 Final Font Processing and Common
Problems

The conversion systems discussed here, with the ex-
ception of MetaType1, do not include internal hint-
ing subsystems. To insert hints, we can use font
editors, for example FontForge [22]. For success-
ful automatic hinting, however, the font outlines
must fulfill certain conditions. Irregularities — ab-
sence of nodes at extrema or presence of bumps
and holes — are not compatible with autohinting,
because extrema points correspond to hinting zones
while bumps or holes do not fit them, thus caus-
ing outliers. The resulting difference of ±1 unit in
the integer glyph coordinate system, after rounding
to integers, is not acceptable for high-quality fonts.
Problems may also be caused by other “rounding to

integer” effects, and by the presence of close dou-
blets or triplets.

In my view, these experiments show that the
quality of primary outline approximation is crucial
to achieve perfect final Type 1 fonts. It is virtually
impossible to recreate discarded METAFONT infor-
mation, or to find exact conditions for a secondary
fit that corrects primary contours that were created
with irregularities or artifacts. Starting with high-
resolution bitmaps is problematic, as too much infor-
mation has been lost, making subsequent processes
of improvement, optimization and hinting difficult
at best, not possible to automate and usually not
successful.

5 Acknowledgements

I would like to thank all the authors of the free
conversion programs, Richard Kinch for donating
his MetaFog and weeder, the authors of the pub-
lic METAFONT fonts for Indic languages and other
sources used in the contribution, and Karl Berry for
help with editing of this article.

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1990.

[2] Alfred V. Aho, Brian W. Kernighan, and Peter
J. Weinberger, The AWK Programming Lan-
guage, Addison-Wesley, 1988.

[3] Karl Berry. “Making outline fonts from bitmap
images.” TUGboat, 22(4), pp. 281–285, 2001.

[4] Free Software Foundation. GNU awk, http://
www.gnu.org/software/gawk.

[5] Jeroen Hellingman. Malayalam fonts, CTAN:
language/malayalam.

[6] John D. Hobby. A User’s Manual for META-
POST. AT&T Bell Laboratories, Computing
Science Technical Report 162, 1994.

[7] Taco Hoekwater. “Generating Type 1 Fonts
from METAFONT Sources”, TUGboat, 19(3),
pp. 256–266, 1998.

[8] Bogus law Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. “MetaType1: A METAPOST-based
Engine for Generating Type 1 Fonts”, Pro-
ceedings of the XII EuroTEX 2001 conference,
pp. 111–119, Kerkrade, the Netherlands, 23–27
September 2001.

[9] Bogus law Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. “Programming PostScript Type 1
Fonts Using MetaType1: Auditing, Enhancing,
Creating. Preprints of the XIV EuroTEX 2003

Preprints for the 2004 Annual Meeting 63

Karel Ṕı̌ska

conference, pp. 151–157, Brest, France, 24–27
June 2003 (to appear in TUGboat).

[10] MetaType1distribution: ftp://bop.eps.gda.
pl/pub/metatype1.

[11] Richard J. Kinch. “MetaFog: Converting
METAFONT Shapes to Contours”, TUGboat,
16(3), pp. 233–243, 1995.

[12] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. Volume C of Computers
and Typesetting.

[13] Eddie Kohler. t1utils (Type 1 tools), http://
freshmeat.net/projects/t1utils.

[14] Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 1”,
TUGboat, 16(1), pp. 60–68, 1995.

[15] Han-Wen Nienhuys. mftrace, http://www.cs.
uu.nl/∼hanwen/mftrace.

[16] Karel Ṕı̌ska. “A conversion of public Indic fonts
from METAFONT into Type 1 format with TEX-
trace.” TUGboat, 23(1), pp. 70–73, 2002.

[17] Peter Selinger. potrace, http://potrace.
sourceforge.net.

[18] Péter Szabó. “Conversion of TEX fonts into
Type 1 format”, Proceedings of the XII Euro-
TEX 2001 conference, pp. 192–206, Kerkrade,
the Netherlands, 23–27 September 2001.
http://www.inf.bme.hu/∼pts/textrace;
http://textrace.sourceforge.net.

[19] Frans J. Velthuis. Devanagari fonts, CTAN:
language/devanagari.

[20] Vladimir Volovich: CM-super fonts: CTAN:
fonts/ps-type1/cm-super.

[21] Martin Weber. AutoTrace, http://autotrace.
sourceforge.net.

[22] George Williams. FontForge: A PostScript Font
Editor, http://fontforge.sourceforge.net.

64 Preprints for the 2004 Annual Meeting

