
Interactive Editing of MathML Markup Using TEX Syntax∗

Luca Padovani
Department of Computer Science, University of Bologna

Mura Anteo Zamboni, 7

40127 Bologna

Italy

lpadovan@cs.unibo.it

http://www.cs.unibo.it/~lpadovan/

Abstract

We describe the architecture of a syntax-directed editor for authoring struc-
tured mathematical documents which can be used for the generation of MathML
markup [4]. The author interacts with the editor by typing TEX markup as he
would do in a normal text editor, with the difference that the typed markup is
parsed and displayed on-the-fly. We discuss issues regarding both the parsing and
presentation phases and we propose implementations for them. In contrast with
existing similar tools, the architecture we propose offers better compatibility with
TEX syntax, a pervasive use of standard technologies and a clearer separation of
content and presentation aspects of the information.

1 Introduction

MathML [4] is an XML [2] application for the rep-
resentation of mathematical expressions. Like most
XML applications, MathML is unsuitable to be writ-
ten directly because of its verbosity except in the
simplest cases. Hence the editing of MathML doc-
uments needs the assistance of dedicated tools. As
of today, such tools can be classified into two main
categories:

1. WYSIWYG (What You See Is What You Get)
editors that allow the author to see the format-
ted document on the screen while it is being
composed. The editor usually provides some
“export mechanism” that creates XML

with embedded MathML from the internal rep-
resentation of the document;

2. conversion tools that generate MathML markup
from different sources, typically other markup
languages for scientific documents, such as
TEX [5].

Tools in the first category are appealing, but
they suffer from at least two limitations: a) edit-
ing is typically presentation oriented — the author
is primarily concerned about the “look” of the docu-
ment and tends to forget about its content. b) They
may slow down the editing process because they of-
ten involve the use of menus, palettes of symbols,

∗ This work has been supported by the European Project

IST-2001-33562 MoWGLI.

and, in general, the pointing device for completing
most operations.

In this paper we describe the architecture of
a tool that tries to synthesize the “best of both
worlds”. The basic idea is to create a WYSIWYG

editor in which editing is achieved by typing con-
crete markup as the author would do in an actual
plain text editor. The markup is then tokenized
and parsed on-the-fly, a corresponding presentation
is created by means of suitable transformations, and
finally displayed. The editor is meant not only as an
authoring tool, but more generally as an interface for
math applications.

Although in the paper we assume that the con-
crete markup typed by the user is TEX (more pre-
cisely the subset of TEX concerned about mathe-
matics) and that presentation markup is MathML,
the system we are presenting is by no means tied to
these languages and can be targeted to other con-
texts as well. One question that could arise is: “why
TEX syntax?” We can see at least three motivations:
first of all because of TEX popularity in many com-
munities. Second, because macros, which are a fun-
damental concept in TEX, are also the key to editing
at a more content-oriented level, which is a primary
requirement for many applications handling mathe-
matics. Finally, because, as we will see, TEX markup
has good locality properties which make it suitable
in the interactive environment of our concern.

26 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

The body of the paper is structured into four
main sections: in Section 2 we overview the architec-
ture of the tool while in Sections 3, 4, 5 we describe
in more detail the main phases of the editing process
(lexing, parsing, and transformation). Familiarity
with TEX syntax and XML-related technologies is
assumed.

2 Architecture

Several tools for the conversion of TEX markup suf-
fer from two major drawbacks that we are not willing
to tolerate in our design: (1) they rely on the TEX
system itself for parsing the markup. While guaran-
teeing perfect compatibility with TEX, this implies
the installation of the whole system. Moreover, the
original TEX parser does not meet the incremental
requirements that we need; (2) the lack of flexibility
in the generation of the target document represen-
tation, which is either fixed by the conversion tool
or it is only slightly customizable by the user.

To cope with problem (1) we need to write our
own parser for TEX markup. This is well known to
be a non-trivial task, because of some fancy aspects
regarding the very nature of TEX syntax and the
lack of a proper “TEX grammar”. We will commit
ourselves with a subset of TEX syntax which appears
to be just what an average author needs when writ-
ing a document. As we will see, the loss in the range
of syntactic expression is compensated by a cleaner
and more general transformation phase. As for the
lack of a TEX grammar, we perceive this as a fea-
ture rather than a weakness: after all TEX is built
around the fact that authors are free to define their
own macros. Macros are the fundamental entities
giving structure to the document.

Let us now turn our attention to problem (2):
recall that the general form of a TEX macro defini-
tion (see The TEXbook, [5]) is

\def〈control sequence〉〈parameter text〉
{〈replacement text〉}

where the 〈parameter text〉 gives the syntax for in-
voking the macro and its parameters whereas the
〈replacement text〉 defines somehow the “semantics”
of the macro (typically a presentational semantics).
Thus the ultimate semantic load of a macro is invari-
ably associated with the configuration of the macro
at the point of definition.

We solve problem (2) by splitting up macro
definitions so that structure and semantics can be
treated independently. A well-formed TEX docu-
ment can be represented as a tree whose leaves are
either literals (strings of characters) or macros with
no parameters, and each internal node represents a

(a) “TEX tree” (b) MathML tree

g

over

1 sp

g

x + 1

2

math

mfrac

mn

1

msup

mrow

mi

x

mo

+

mn

1

mn

2

Figure 1: Tree representation for
{1\over{x+1}^2} and corresponding MathML

markup.

macro and the node’s children are the macro’s pa-
rameters. Entities like delimiters, square brackets
surrounding optional parameters or literals occur-
ring in the 〈parameter text〉 of macro definitions are
purely syntactic and need not be represented in the
tree if our main concern is capturing the structure
of the document. Fig. 1(a) shows the tree structure
of a simple mathematical formula.

Once the document is represented as a tree,
the process of macro expansion — that is, interpre-

tation —can be defined as a recursive transforma-
tion on the nodes of the tree. As we will represent
trees using XML, transformations can be very natu-
rally implemented by means of XSLT stylesheets [3].
Fig. 1(b) shows the MathML tree corresponding to
the TEX tree on the left hand side. The two trees
are basically isomorphic except for the name of the
nodes and the presence of explicit token nodes for
literals in the MathML tree. This is to say that the
MathML tree can be generated from the TEX tree
by simple transformations. However, once the in-
terpretation phase is independent of parsing (some-
thing which does not happen in TEX) it is natural to
define much more general transformations that are
not just node-by-node rewritings.

The following are the main components of an
interactive, syntax-based editor for structured doc-
uments:

Input Buffer: the sequence of concrete charac-
ters typed by the author;

Lexical Analyzer: responsible for the tokeniza-
tion of the characters in the input buffer;

Dictionary: a map from 〈control sequence〉 to
〈parameter text〉 which is used to know the syn-
tax of macros;

Parser: for the creation of the internal tree struc-
ture representing the document;

Preprints for the 2004 Annual Meeting 27

Luca Padovani

Transformation Engine: for mapping the inter-
nal tree into the desired format.

No doubt these entities are common to all tools con-
verting TEX markup into a different format, but the
degree of mutual interdependence and the way they
are implemented may differ considerably, especially
when interactivity is a main concern. The added
value of our approach is that it allows the author
to independently customize both the dictionary and
the transformation engine, and the advanced user of
the editor the possibility of adapting the lexical an-
alyzer to languages other than TEX (we will spend
a few more words on this topic in the conclusions).

Notation We will use the following conventions
regarding lists. Lists are uniformly typed, that is
elements of a list are all of the same type. We use
α∗ to denote the type of a list whose elements have
type α. [] is the empty list; n :: x is the list with
head element n and tail x; x@y is the concatenation
of two lists x and y; [n1; . . . ; nk] is a short form for
n1 :: · · · :: nk :: [].

3 Lexical Analysis

The purpose of this phase is to tokenize the input
buffer. As we are talking about an interactive tool,
the presence of an input buffer may look surprising.
Implementations for the input buffer range from vir-

tual buffers (there is no buffer at all, characters are
collected by the lexical analyzer which outputs to-
kens as they are completed) to flat buffers (just a
string of characters as in a text editor) to structured

buffers. For efficiency, we do not investigate in detail
all the possibilities in this paper, but early experi-
ments have shown that working with virtual buffers
can be extremely difficult. As long as insert oper-
ations are performed at the right end of the buffer
the restructuring operations on the parsing tree are
fairly easy, but when it comes to deletion or to mod-
ifications in arbitrary positions, the complexity of
restructuring operations rises rapidly to an unman-
ageable level. Hence, from now on we will assume
that a flat input buffer is available. Whether the
buffer should be visible or not is a subjective matter,
and may also depend on the kind of visual feedback
given by the editor on incomplete and/or incorrect
typed markup.

The outcome of the lexer is a stream (list) of
tokens. Each token may have one of three forms: a
literal, that is a single character to be treated “as is”,
a space, that is a sequence of one or more space-like
characters, or a control sequence, that is the name
of a macro.

Since the token stream is the only interface be-
tween the lexer and the parser, the lexer has the free-
dom to perform arbitrary mappings from the char-
acters in the input buffer to tokens in the stream.
In particular, some TEX commands like \alpha or
\rightarrow are just placeholders for Unicode char-
acters. There is no point in communicating these
entities as control sequences as the internal tree rep-
resentation (XML) is able to accommodate Unicode
characters naturally; also, treating them as literals
simplifies the subsequent transformation phase.

On the other hand, there are characters, such
as curly braces { and } or scripting operators _ and
^, that have a special meaning. Logically these are
just short names for macros that obey their own
rules regarding parameters. What we propose is a
general classification of parameter types which, in
addition to parameters in normal TEX definitions,
allows us

• to deal with optional parameters as LATEX [6]
does;

• to treat { as just an abbreviation for \bgroup

and make \bgroup a macro with one parameter
delimited by \egroup, which we treat as the
expansion for }. In order for this “trick” to
work we have to design the parser carefully, as
we will see in Sect. 4;

• to treat scripting operators _ and ^ as the two
macros \sb and \sp both accepting a so-called
pre-parameter (a parameter that occurs before

the macro in the input buffer) and a so-called
post-parameter (a parameter that occurs after

the macro in the input buffer);

• to deal with macros that have “open” parame-
ters. For instance \rm affects the markup fol-
lowing it until the first delimiter coming from
an outermost macro is met. We treat \rm as
a macro with an open post-parameter that ex-
tends as far as possible to the right. Similarly,
\over can be seen as a macro with open pre-
and post-parameters.

In order to describe parameter types we need to
define the concept of term. A term is either a literal
or a macro along with all its parameters (equiva-
lently, a term is a subtree in the parsing tree). A
simple parameter consists of one sole term. A com-

pound parameter consists of one or more terms ex-
tending as far as possible to the left or to the right
of the macro depending on whether the parameter
is “pre-” or “post-”. A delimited parameter consists
of one or more terms extending as far as possible
to the right up to but not including a given token

28 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

Table 1: Examples of TEX and LATEX macros along with their signature.

Parameters
Macro pre post

overline [simple]
sqrt [simple] (TEX)

[optional; simple] (LATEX)
root [delimited(control(of)); simple]
over, choose [compound] [compound]
frac [simple; simple]
rm, bf, tt, it [compound]
left [simple; delimited(control(right)); simple]
sb, sp [simple] [simple]
bgroup [delimited(control(egroup))]
begin [simple; optional; delimited(control(end)); simple]
proclaim [token(space); delimited(literal(.)); token(space);

delimited(control(par))]

t. An optional parameter is either empty or it con-
sists of one or more terms enclosed within a pair or
square brackets [and]. The absence of the open-
ing bracket means that the optional parameter is
not given. A token parameter is a given token t rep-
resenting pure syntactic sugar. It does not properly
qualify as a parameter and does not appear in the
parsing tree.

Formally tokens and parameter types are de-
fined as follows:

token ::= literal(v) | space | control〈p1,p2〉(v)
type ::= simple | compound | delimited(t)

| optional | token(t)

where t ∈ token, v ∈ string is an arbitrary string of
Unicode characters, p1 ∈ {simple, compound}∗ and
p2 ∈ type∗ are lists of parameter types for the pre-
and post-parameters respectively. Note that pre-
parameters can be of type simple or compound only.

The dictionary is a total map

dictionary : string 7→ token

such that for each unknown control sequence v we
have dictionary(v) = control〈[],[]〉(v). Table 1 shows
part of a possible dictionary for some TEX and LATEX
commands (mostly for mathematics). Note how it is
possible to encode the signature for the \begin con-
trol sequence, although it is not possible to enforce
the constraint that the first and the last parameters
must have equal value in order for the construct to
be balanced.

4 Parsing

We now come to the problem of building the TEX
parsing tree starting the stream of tokens produced
by the lexical analyzer. As we have already pointed

out there is no fixed grammar that we can use to
generate the parser automatically: authors are free
to introduce new macros and hence new ways of
structuring the parse tree. Thus we will build the
parser “by hand”. More reasons for writing an ad-
hoc parser, namely error recovery and incremental-
ity, will be discussed later in this section.

The following grammar captures formally the
structure of a TEX parsing tree, which is the out-
come of the parser:

node ::= empty

| literal(v) v ∈ string

| macro(v, x) v ∈ string , x ∈ param∗

param ::= {a} a ∈ node∗

Note that a parameter is made of a list of nodes and
that literals are strings instead of single characters.
The empty node is used to denote a missing term
when one was expected; its role will be clarified later
in this section.

The appendix contains the Document Type
Definition for the XML representation of TEX pars-
ing trees. It is simpler than the TEXML DTD [7]
and we are providing it as mere reference.

4.1 Parsing Functions

Table 2 gives the operational semantics of the parser.
In this table only, for each a ∈ node∗ we define
a! = [empty] if a = [] and a! = a otherwise. There
are four parsing functions: T for terms, A for pre-
parameters, B for post-parameters, and C for de-
limited sequences of terms. Each parsing function
is defined by induction on the structure of its ar-
guments. Axioms (rules with no horizontal line) de-
note base cases, while inference rules define the value

Preprints for the 2004 Annual Meeting 29

Luca Padovani

Table 2: Parsing functions for the simplified TEX markup.

∀d ∈ token∗ T (d)
−→ : node∗ × token∗ → node∗ × token∗

A
−→ : node∗ × type∗ → node∗ × param∗

∀d ∈ token∗ B(d)
−→ : type∗ × token∗ → param∗ × token∗

∀d ∈ token∗, ∀b ∈ bool
C(d,b)
−→ : node∗ × token∗ → node∗ × token∗

(T.1) a, []
T (d)
−→ a, [] (T.2) a, t :: l

T (d)
−→ a, t :: l (t occurs in d)

(T.3) a, literal(v) :: l
T (d)
−→ a@[literal(v)], l (T.4)

a, l
T (d)
−→ a′, l′

a, space :: l
T (d)
−→ a′, l′

(T.5)
a, p1

A
−→ a′, x p2, l

B(d)
−→ y, l′

a, control〈p1,p2〉(v) :: l
T (d)
−→ a′@[macro(v, x@y)], l′

(A.1) a, []
A
−→ a, [] (A.2)

[], p
A
−→ a, x

[], s :: p
A
−→ a, x@[{[empty]}]

(A.3)
a, p

A
−→ a′, x

a@[n], simple :: p
A
−→ a′, x@[{[n]}]

(A.4)
[], p

A
−→ a′, x

a, compound :: p
A
−→ a′, x@[{a}]

(B.1) [], l
B(d)
−→ [], l (B.2)

p, t′ :: l
B(d)
−→ x, a

token(t) :: p, t′ :: l
B(d)
−→ x, a

† (t 6= t′)

(B.3)
p, []

B(d)
−→ x, l

token(t) :: p, []
B(d)
−→ x, l

† (B.4)
p, l

B(d)
−→ x, l′

token(t) :: p, t :: l
B(d)
−→ x, l′

(B.5)
[], l

T (d)
−→ a, l′ p, l′

B(d)
−→ x, l′′

simple :: p, l
B(d)
−→ {a!} :: x, l′′

(B.6)
[], l

C(d,false)
−→ a, l′ p, l′

B(d)
−→ x, l′′

compound :: p, l
B(d)
−→ {a!} :: x, l′′

(B.7)
p, []

B(d)
−→ x, l

optional :: p, []
B(d)
−→ {[]} :: x, l

(B.8)
[], l

C(literal(])::d,true)
−→ a, l′ p, l′

B(d)
−→ x, l′′

optional :: p, literal([) :: l
B(d)
−→ {a} :: x, l′′

(B.9)
p, t :: l

B(d)
−→ x, l′

optional :: p, t :: l
B(d)
−→ {[]} :: x, l′

(t 6= literal([))

(B.10)
[], l

C(t::d,true)
−→ a, l′ p, l′

B(d)
−→ x, l′′

delimited(t) :: p, l
B(d)
−→ {a!} :: x, l′′

(C.1) a, []
C(d,b)
−→ a, []

(C.2) a, t :: l
C(t::d,true)

−→ a, l (C.3) a, t :: l
C(d,b)
−→ a, t :: l (t occurs in d)

(C.4)
a, t :: l

T (d)
−→ a′, l′ a′, l′

C(d,b)
−→ a′′, l′′

a, t :: l
C(d,b)
−→ a′′, l′′

(t 6∈ d)

30 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

of a parsing function (the conclusion, below the line)
in terms of the value of one or more recursive calls
to other functions (the premises, above the line).
Right arrows denote the action of parsing. Arrows
are decorated with a label that identifies the parser
along with its parameters, if any. The T , B, and
C parsers have a parameter representing the list of
delimiters in the order they are expected, with the
head of the list being the first expected delimiter.
The C parser also has a boolean parameter indicat-
ing whether the parser should or should not “eat”
the delimiter when it is eventually met.

The root parsing function is T . Given a delim-
iter t ∈ token and a token stream l ∈ token∗ we
have

[], l
T ([t])
−→ [n], l′

where n ∈ node is the parsed term and l′ ∈ token∗

is the part of the token stream that has not been
consumed. Spaces are ignored when parsing terms
and pre-parameters (rule T.4), but not when pars-
ing post-parameters (rule B.4). The A function dif-
fers from the other parsing functions because by the
time a macro with pre-parameters is encountered,
pre-parameters have already been parsed. The lists
a ∈ node∗ in the T , A, and C parsers represent the
terms accumulated before the term being parsed.
Note that pre-parameters are inserted at the end
of the parameter list (rules A.2 to A.4) and that
post-parameters are inserted at the beginning of the
parameter list (rules B.5 to B.10). This way pa-
rameter nodes appear in the parse tree in the same
order as in the original token stream (rule T.5).

4.1.1 Example

Given that the input buffer contains the TEX source
shown in Fig. 1, the lexical analyzer would produce
the following stream of tokens:

l0
def
= [control〈[],[delimited(control(egroup))]〉(bgroup);

literal(1); control〈[compound],[compound]〉(over);
control〈[],[delimited(control(egroup))]〉(bgroup);
literal(x); literal(+); literal(1);
control(egroup); control〈[simple],[simple]〉(sp);
literal(2); control(egroup)]

By the application of the parsing rules given in Ta-
ble 2 it can be shown that

[], l0@[control(eoi)]
T ([control(eoi)])

−→ [n], [control(eoi)]

where n ∈ node is the same tree shown in Fig. 1
except that the g nodes are labeled with bgroup.

4.2 Error Recovery

Parsing functions are all total functions, they al-
ways produce a result, even when the input token

stream is malformed. Unlike parsers of batch TEX
converters or the TEX parser itself, there will often
be moments during the editing process when the in-
put buffer contains incorrect or incomplete markup,
for example because not all the required parameters
of a macro have been entered yet. The parser must
recover from such situations in a tolerant and hope-
fully sensible way. We distinguish three kinds of
situations: missing parameters, pattern mismatch,
and ambiguity, which we examine in the rest of this
section.

4.2.1 Missing Parameters

Consider an input token stream representing the sole
\over macro with no arguments provided:

l1
def
= [control〈[compound],[compound]〉(over);

control(eoi)]

It is easy to check that

[], l1
T ([control(eoi)])

−→ [macro(over, [empty; empty])],
[control(eoi)]

More generally the parser inserts empty nodes
in the parsing tree wherever an expected parameter
is not found in the token stream. This behavior
can be seen in rule A.2 and also in rules B.5, B.6,
and B.10 where the ! operator is used. For optional
parameters an empty node list is admitted (rules
B.7 and B.8).

The presence of empty nodes guarantees that
the generated tree is structurally well-formed, which
is crucial for the subsequent transformation phase.
It also allows the application to give the user feed-
back indicating the absence of required parameters.
In the example above, for instance, the application
may display something like �

�
suggesting that a frac-

tion was entered, but neither the numerator nor the
denominator have been.

4.2.2 Pattern Mismatch

Rules B.2 and B.3 have been marked with a † to
indicate that the parser expects a token which is
not found in the token stream. In both cases the
parser will typically notify the user with a warning
message.

4.2.3 Ambiguities

In TEX one cannot pass a macro with parameters as
the parameter of another macro, unless the parame-
ter is enclosed within a group. For example, it is an
error to write \sqrt\sqrt{x}, the correct form is
\sqrt{\sqrt{x}}. Because we treat the left curly
brace like any other macro, grouping would not help
our parser in resolving ambiguities. However, the

Preprints for the 2004 Annual Meeting 31

Luca Padovani

parser knows how many parameters a macro needs,
because the token representing the control sequence
has been annotated with such information by the
lexer. When processing a macro with arguments
the parser behaves “recursively”, it does not let an
incomplete macro to be “captured” if it was passed
as parameter of an outer macro. A consequence of
this extension is that any well-formed fragment of
TEX markup is accepted by our parser resulting in
the same structure, but there are some strings ac-
cepted by our parser that cause the TEX parser to
fail.

4.3 Incremental Parsing

Parsing must be efficient because it is performed in
real-time, in principle at every modification of the
input buffer, no matter how simple the modifica-
tion is. Fortunately TEX markup exhibits good lo-

cality, that is small modifications in the document
cause small modifications in the parsing tree. Con-
sequently we can avoid re-parsing the whole source
document, we just need to re-parse a small inter-
val of the input buffer around the point where the
modification has occurred, and adjust the parsing
tree accordingly. Let us consider again the example
of Fig. 1 and suppose that a change is made in the
markup

{1\over{1+x}^2} ⇒ {1\over{1+x+y}^2}

(a +y is added to the denominator of the fraction).
To be conservative we can re-parse the smallest term
within braces that includes the modified part (the
underlined fragments). Once the term has been re-
parsed it has to be substituted in place of the old
term in the parsing tree.

In order to compute the interval of the input
buffer to be re-parsed we annotate the nodes of the
parsing tree with information about the first and
the last characters of the buffer which were scanned
while building the node and all of its children. A
simple visit of the tree can locate the smaller interval
affected by the modification.

Curly braces occur frequently enough in the
markup to give good granularity for re-parsing. At
the same time limiting re-parsing to braced terms
helps control the costs related to the visit to the
parsing tree and to the implementation of the incre-
mental parsing and transformation machinery.

5 Transformation

The transformation phase recognizes structured pat-
terns in the parsing tree and generates correspond-
ing fragments of the result document. We have al-
ready anticipated that XSLT is a very natural choice

for the implementation of this phase. Besides, XSLT

stylesheets can be extended very easily, by providing
new templates that recognize and properly handle
new macros that an author has introduced.

We can see in Fig. 2 two sample templates taken
from an XSLT stylesheet for converting the internal
parsing tree into a MathML tree. Both templates
have a preamble made of an xsl:if construct which
we will discuss later in this section. Since the TEX
tree and the MathML tree are almost isomorphic
(Fig. 1) the transformation is generally very sim-
ple and in many cases it amounts at just renam-
ing the node labels. Template (a) is one such case:
it matches any node in the parsing tree with label
macro and having the name attribute set to over.
The node for the \over macro corresponds natu-
rally to the mfrac element in MathML. The two
parameters of \over are transformed recursively by
applying the stylesheet templates to the first and
second child nodes (p[1] means “the first p child
of this node”, similarly p[2] refers to the second p

child).
Template (b) is slightly more complicated and

shows one case where there is some change in the
structure. For combined sub/super scripts TEX ac-
cepts a sequence of _ and ^ no matter in what order
they occur, but MathML has a specific element for
such expressions, namely msubsup. The template
matches an sb node whose first parameter contains
an sp node, thus detecting a ...^..._... fragment
of markup, then the corresponding msubsup element
is created and its three children accessed in the
proper position of the parsing tree. A symmetric
template will handle the case where the subscript
occurs before the superscript.

5.1 Incremental Transformation

As we have done for parsing, for transformations we
also need to account for their cost. In a batch, one-
shot conversion from TEX this is not generally an
issue, but in an interactive authoring tool a trans-
formation is required at every modification of the
parsing tree in order to update the view of the doc-
ument.

Intuitively, we can reason that if only a frag-
ment of the parsing tree has changed, we need re-
transform only that fragment and substitute the re-
sult in the final document. This technique makes
two assumptions: (1) that transformations are
context-free; that is, the transformation of a frag-
ment in the parsing tree is not affected by the con-
text in which the fragment occurs; (2) that we are
able to relate corresponding fragments between the
parsing and the result trees.

32 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

<xsl:template
match="macro[@name=’over’]">
<m:mfrac>
<xsl:if test="@id">
<xsl:attribute name="xref">
<xsl:value-of select="@id"/>
</xsl:attribute>

</xsl:if>
<xsl:apply-templates select="p[1]"/>
<xsl:apply-templates select="p[2]"/>

</m:mfrac>
</xsl:template>

<xsl:template
match="macro[@name=’sb’]

[p[1]/*[1][self::macro[@name=’sp’]]]">
<m:msubsup>
<xsl:if test="@id">
<xsl:attribute name="xref">
<xsl:value-of select="@id"/>

</xsl:attribute>
</xsl:if>
<xsl:apply-templates select="p[1]/*/p[1]"/>
<xsl:apply-templates select="p[2]"/>
<xsl:apply-templates select="p[1]/*/p[2]"/>

</m:msubsup>
</xsl:template>

(a) (b)

Figure 2: Example of XSLT templates for the transformation of the internal parsing tree into a MathML

tree. MathML elements can be distinguished because of the m: prefix.

Template (b) in Fig. 2 shows one case where
the transformation is not context free: the deeper sp
node is not processed as if it would occur alone, but
it is “merged” together with its parent. More gener-
ally we can imagine that transformations can make
almost arbitrary re-arrangements of the structure.
This problem cannot be solved unless we make some
assumptions, and the one we have already commit-
ted to in Sect. 4 is that braces define “black-box”
fragments which can be transformed in isolation,
without context dependencies.

As for the matter of relating corresponding frag-
ments of the two documents, we use identifiers and
references. Each node in the parsing tree is anno-
tated with a unique identifier (in our sample tem-
plates we are assuming that the identifier is a string
in the id attribute). Templates create correspond-
ing xref attributes in the result document “point-
ing” to the fragment with the same identifier in the
parsing tree. This way, whenever a fragment of the
parsing tree is re-transformed, it replaces the frag-
ment in the result document with the same identi-
fier.

More generally, back-pointers provide a mecha-
nism for relating the view of the document with the
source markup. This way it is possible to perform
operations like selection or cut-and-paste that, while
having a visual effect in the view, act indirectly at
the content/markup level.

6 Conclusion

We have presented architectural and implementa-
tion issues of an interactive editor based on TEX syn-
tax which allows flexible customization and content-
oriented authoring. TEXmacs2 is probably the exist-
ing application that most closely adopts such archi-
tecture, with the difference that TEXmacs does not

2 http://www.texmacs.org/

stick to TEX syntax as closely as we do and that,
apart from being a complete (and cumbersome) edit-
ing tool and not just an interface, it uses encoding
and transformation technologies not based on stan-
dard languages (XML [2] and XSLT [3]).

Among batch conversion tools we observe a ten-
dency to move towards the processing of content.
The TEX to MathML converter by Igor Rodionov
and Stephen Watt at the University of Western On-
tario [8, 9] is one such tool, and the recent Her-
mes converter by Romeo Anghelache [10] is another.
These represent significant steps forwards when
compared to converters such as LATEX2HTML.3

A prototype tool called EdiTEX, based on the
architecture described in this paper, has been de-
veloped and is freely available along with its source
code.4 No mention of MathML is made in the name
of the tool to remark the fact that the architec-
ture is very general and can be adapted to other
kinds of markup. The prototype is currently be-
ing used as interface for a proof-assistant applica-
tion where editing of complex mathematical formu-
las and proofs is required. In this respect we should
remark that TEX syntax is natural for “real” math-
ematics, but it quickly becomes clumsy when used
for writing terms of programming languages or λ-
calculus. This is mainly due to the conventions re-
garding spaces (for instance, spaces in the λ-calculus
denote function application) and identifiers (the rule
“one character is one identifier” is fine for math-
ematics, but not for many other languages). Note
however that, since the lexical analyzer is completely
separate from the rest of the architecture, the token
stream being its interface, it can be easily targeted
to a language with different conventions than those
of TEX.

3 http://www.latex2html.org/
4 http://helm.cs.unibo.it/software/editex/

Preprints for the 2004 Annual Meeting 33

Luca Padovani

The idea of using some sort of restricted TEX
syntax for representing mathematical expressions is
not new. For example, John Forkosh’s MimeTEX5

generates bitmap images of expressions to be em-
bedded in Web pages. However, to the best of our
knowledge the formal specification of the parser for
simplified TEX markup presented in Sect. 4 is unique
of its kind. A straightforward implementation based
directly on the rules given in Table 2 amounts at
only just 70 lines of functional code (in an ML di-
alect), which can be considered something of an
achievement given that parsing TEX is normally re-
garded as a hard task. By comparison, the parsing
code in MimeTEX amounts to nearly 350 lines of C
code after stripping away the comments.

One may argue that the simplified TEX markup
is too restrictive, but in our view this is just the sen-
sible fragment of TEX syntax that the average user
should be concerned about. In fact the remaining
syntactic expressiveness provided by TEX is mainly
required for the implementation of complex macros
and of system internals, which should never surface
at the document level. By separating the transfor-
mation phase we shift the mechanics of macro ex-
pansion to a different level which can approached
with different (more appropriate) languages. Since
this mode of operation makes the system more flex-
ible we believe that our design is a valuable contri-
bution which may provide an architecture for other
implementers to adopt.

References

[1] The Unicode Consortium: The Unicode Stan-
dard, Version 4.0, Boston, MA, Addison-Wesley
(2003). http://www.unicode.org/

[2] Tim Bray, Jean Paoli, C.M. Sperberg-
McQueen, Eve Maler (editors): Extensible
Markup Language (XML) 1.0 (2nd Edi-
tion), W3C Recommendation (2000). http:

//www.w3.org/TR/2000/REC-xml-20001006

[3] James Clark (editor): XML Transformations
(XSLT) Version 1.0, W3C Recommenda-
tion (1999). http://www.w3.org/TR/1999/

REC-xslt-19991116

[4] Ron Ausbrooks, Stephen Buswell, Stéphane
Dalmas, Stan Devitt, Angel Diaz, et al.:
Mathematical Markup Language (MathML)
Version 2.0 (2nd Edition) W3C Recommen-
dation, (2003). http://www.w3.org/TR/2003/
REC-MathML2-20031021/

5 http://www.ctan.org/tex-archive/support/mimetex/

[5] Donald E. Knuth: The TEXbook, Addison-
Wesley, Reading, MA, USA (1994).

[6] Leslie Lamport: A Document Preparation Sys-
tem: LATEX, Addison-Wesley, Reading, MA,
USA (1986).

[7] Douglas Lovell: TEXML: Typesetting XML with
TEX, TUGboat, 20(3), pp. 176–183 (September
1999).

[8] Sandy Huerter, Igor Rodionov, Stephen
M. Watt: Content-Faithful Transformations
for MathML, Proc. International Confer-
ence on MathML and Math on the Web
(MathML 2002), Chicago, USA (2002).
http://www.mathmlconference.org/2002/

presentations/huerter/

[9] Stephen M. Watt: Conserving implicit mathe-
matical semantics in conversion between TEX
and MathML, TUGboat, 23(1), pp. 108–108
(2002).

[10] Romeo Anghelache: LATEX-based authoring
tool, Deliverable D4.d, MoWGLI Project
(2003). http://relativity.livingreviews.

org/Info/AboutLR/mowgli/index.html

Appendix: The TML DTD

<!ENTITY % TML.node "

empty|space|literal|macro">

<!ENTITY % TML.common.attrib "

id CDATA #IMPLIED

xref CDATA #IMPLIED

start NMTOKEN #IMPLIED

end NMTOKEN #IMPLIED">

<!ELEMENT empty EMPTY>

<!ATTLIST empty %TML.common.attrib;>

<!ELEMENT space EMPTY>

<!ATTLIST space

%TML.common.attrib

name NMTOKEN #IMPLIED

literal CDATA #IMPLIED>

<!ELEMENT literal #PCDATA>

<!ATTLIST literal

%TML.common.attrib;

name NMTOKEN #IMPLIED>

<!ELEMENT macro (p)*>

<!ATTLIST macro

%TML.common.attrib;

name NMTOKEN #REQUIRED

literal CDATA #IMPLIED>

<!ELEMENT p (%TML.node;)*>

<!ATTLIST p %TML.common.attrib;>

34 Preprints for the 2004 Annual Meeting

