
FEATPOST and a Review of 3D METAPOST Packages

L. N. Gonçalves
CFMC-UL, Av. Prof. Gama Pinto 2

1649-003 Lisboa

Portugal

nobre@lince.cii.fc.ul.pt

http://matagalatlante.org

Abstract

METAPOST is able to produce figures that look almost like ray-traced raster im-
ages but that remain vector-based. A small review of three-dimensional perspec-
tive implementations with METAPOST is presented. Special emphasis is given to
the abilities of the author’s implementation: FEATPOST.

1 Introduction

There are at least four METAPOST packages related
to three-dimensional diagrams:

• GNU 3DLDF — http://www.gnu.org/

directory/graphics/3D/3DLDF.html

• 3d/3dgeom— http://tug.org/tex-archive/

graphics/metapost/macros/3d/

• m3D — http://www-math.univ-poitiers.

fr/∼phan/m3Dplain.html

• FEATPOST — http://matagalatlante.org/

nobre/featpost/doc/featexamples.html

All of these packages are individual and independent
works “under construction”. There has been neither
collaboration nor competition among the authors.
Each produces different kinds of diagrams and each
uses a different graphic pipeline. The following sec-
tions of this document describe these packages, in a
mainly independent way.

2 GNU 3DLDF

3DLDF is not a pure METAPOST package, as it is
written in C++ using CWEB. Diagrams are also
coded in C++ and are compiled together with the
package. Nevertheless, this is, of all four, the pack-
age with the greatest promise for a future three-
dimensional-capable METAPOST.

1. It outputs METAPOST.

2. Its syntax is similar to METAPOST.

3. It overcomes the arithmetic limitations inherent
in METAPOST.

4. Both the affine transformations and the graph-
ics pipeline are implemented through 4× 4 ma-
trices.

5. Its author, Laurence D. Finston, is actively im-
proving and maintaining the package. His plan

includes, among many other ideas, the develop-
ment of an input routine (to allow interactive
use) and the implementation of three-dimens-
ional paths via NURBS.

Given the possible computational efficiency of this
approach, one can foresee a system that merges the
METAPOST language with the capabilities of stan-
dard ray-tracing software.

3 3d/3dgeom

This was the first documented extension of META-
POST into the third dimension—and also into the
fourth dimension (time). Denis B. Roegel created,
back in 1997, the 3d package to produce animations
of polyhedra. In 2003 he added the 3dgeom “mod-
ule” which is focused on space geometry. It remains
the least computationally intensive package of those
presented here.

1. Each component of a point or a vector is stored
in a different numeric array. This eases control
of a stack of points. Points are used to define
planar polygons (faces of polyhedra) and the
polygons are used to define convex polyhedra.

2. When defining a polygon, a sequence of points
must be provided such that advancing on the
sequence is the same as rotating clockwise on
the polygon, when the polygon is visible. This
means that, when a polyhedron is to be drawn,
the selection of polygons to be drawn is very
easy: only those whose points rotate clockwise
(the visible ones). Hidden line removal is thus
achieved without sorting the polygons.

3. Points can also be used to define other points
according to rules that are common in the ge-
ometry of polyhedra or according to operations
involving straight lines and/or planes and/or
angles.

Preprints for the 2004 Annual Meeting 99

L. N. Gonçalves

4. The author plans to release an updated version
with the ability to graph parametric lines and
surfaces.

4 m3D

Anthony Phan developed this very interesting pack-
age but has not yet written its documentation. Cer-
tainly, this is, of all four, the package that can pro-
duce the most complex and beautiful diagrams. It
achieves this using, almost exclusively, four-sided
polygons.

1. Complex objects can be defined and composed
(see figure 1). For example, one of its many
predefined objects is the fractal known as the
“Menger Sponge”.

2. It can render revolution surfaces defined from a
standard METAPOST path (see figure 2).

3. Objects or groups of polygons can be sorted
and drawn as if reflecting light from a punctual
source and/or disappearing in a foggy environ-
ment.

Figure 1: A diagram produced by m3D showing a
single object, composed of spheres and cylindrical
connections, under a spherical perspective.

5 FEATPOST

Geared towards the production of physics diagrams,
FEATPOST sacrifices programming style and com-
putational efficiency for a large feature set.

1. Besides the usual parallel and central perspec-
tives it can make a sort of “spherical distortion”
as if a diagram is observed through a fish-eye
lens1. This kind of perspective is advantageous
for animations as it allows the point of view to
be inside or among the diagram objects. When
using the central perspective, points that are as

1 Also possible with m3D.

Figure 2: A diagram produced by m3D showing a
revolution surface under a central perspective.

distant from the projection plane as the point
of view get projected at infinity, and MetaPost
overflows and crashes. The spherical projection
is always finite.

2. It can mark and measure angles in space.

3. It can produce shadows of some objects (see
figure 9). Shadows are calculated in much the
same way as perspectives. The perspective pro-
jection, from 3D into 2D, is a calculation of
the intersection of a straight line and a plane.
A shadow is also a projection from 3D into
2D, only the line and the plane are different.
The shadow must be projected onto the paper
page before the object that creates the shadow.
Shadows are drawn after two projections, ob-
jects are drawn after one projection and after
their shadows.

4. It can correctly draw intersecting polygons (see
figure 12).

5. It knows how to perform hidden line removal on
some curved surface objects. Imagine a solid
cylinder. Now consider the part of the cylin-
der’s base that is the farthest away. You only
see a part of its edge. In order to draw that
part, it is necessary to know the two points at
which the edge becomes hidden. FEATPOST

calculates this. Note that the edge is a circle, a
curved line. FEATPOST does not use polygons
to hide lines on some curved surface objects.

6. Supported objects include: dots, vectors, an-
gles, ropes, circles, ellipses, cones, cylinders,
globes, other curved surface objects, polygons,
cuboids, polyhedra, functional and parametric

100 Preprints for the 2004 Annual Meeting

FEATPOST and a Review of 3D METAPOST Packages

surface plots, direction fields, field lines and tra-
jectories in conservative force fields.

Many of the drawable objects are not made of poly-
gons, but rather of two-dimensional paths. FEAT-
POST does not attempt to draw surfaces of these ob-
jects, only their edges. This is partly because of the
use of intrinsic METAPOST functions and partly be-
cause it eases the production of diagrams that com-
bine space and planar (on paper) objects.

One of the intrinsic METAPOST functions that
became fundamental for FEATPOST is the compo-
sition makepath makepen. As this converts a path

into its convex form, it very much simplifies the de-
termination of some edges.

Another important aspect of the problem is hid-
den line removal. Hidden line removal of a group of
polygons can, in some cases, be performed by draw-
ing the polygons by decreasing order of distance to
the point of view. FEATPOST generally uses the
Shell sorting method, although when the polygons
are just the faces of one cuboid FEATPOST has a
small specific trick. There is also a specific method
for hidden line removal on cylinders and another for
other curved surface objects.

5.1 Examples

Some of the FEATPOST macros are presented here.
Detailed information is available at

• http://matagalatlante.org/nobre/

featpost/doc/macroMan.html

• http://www.ctan.org/tex-archive/

graphics/metapost/macros/featpost/

Each perspective depends on the point of view.
FEATPOST uses the global variable f, of type color,
to store the (X, Y, Z) coordinates of the point of
view. Also important is the aim of view (global
variable viewcentr). Both together define the line
of view.

The perspective consists of a projection from
space coordinates into planar (u, v) coordinates on
the projection plane. FEATPOST uses a projection
plane that is perpendicular to the line of view and
contains the viewcentr. Furthermore, one of the
projection plane axes is horizontal and the other is
on the intersection of a vertical plane with the pro-
jection plane. “Horizontal” means parallel to the
XY plane.

One consequence of this setup is that f and
viewcentr must not be on the same vertical line
(as long as the author avoids solving this problem,
at least!). The three kinds of projection known to
FEATPOST are schematized in figures 3, 4 and 5.

The macro that actually does the projection is, in
all cases, rp.

�

Figure 3: Parallel projection.

�

���������

Figure 4: Central projection.

Physics problems often require defining angles,
and diagrams are needed to visualize their meanings.
The angline and squareangline macros (see figure
6 and the code below) support this.

f := (5,3.5,1);

beginfig(2);

cartaxes(1,1,1);

color va, vb, vc, vd;

va = (0.29,0.7,1.0);

vb = (X(va),Y(va),0);

vc = N((-Y(va),X(va),0));

vd = (0,Y(vc),0);

drawarrow rp(black)--rp(va);

draw rp(black)--rp(vb)--

rp(va) dashed evenly;

draw rp(vc)--rp(vd) dashed evenly;

drawarrow rp(black)--rp(vc);

squareangline(va, vc, black, 0.15);

Preprints for the 2004 Annual Meeting 101

L. N. Gonçalves

�

Figure 5: Spherical projection. The spherical
projection is the composition of two operations:
(i) there is a projection onto a sphere and (ii) the
sphere is plaited onto the projection plane.

angline(va,red,black,0.75,

decimal getangle(va,red),lft);

endfig;

x
y

z

76.63591

Figure 6: FEATPOST diagram using angline.

Visualizing parametric lines is another need of
physicists. When two lines cross, one should be able
to see which line is in front of the other. The macro
emptyline can help here (see figure 7 and the code
below).

f := (2,4,1.8);

def theline(expr TheVal) =

begingroup

numeric cred, cgre, cblu, param;

param = TheVal*(6*360);

cred = -0.3*cosd(param);

cblu = 0.3*sind(param);

cgre = param/850;

((cred,cgre,cblu))

endgroup

enddef;

beginfig(1);

numeric axsize, zaxpos, zaxlen;

color xbeg, xend, ybeg,

yend, zbeg, zend;

axsize = 0.85;

zaxpos = 0.55;

zaxlen = 2.1;

pickup pencircle scaled 1.5pt;

xbeg = (axsize,0,0);

xend = (-axsize,0,0);

ybeg = (0,0,-axsize);

yend = (0,0,axsize);

zbeg = (zaxpos,-zaxpos,0);

zend = (zaxpos,zaxlen,0);

drawarrow rp(xbeg)--rp(xend);

drawarrow rp(ybeg)--rp(yend);

defaultscale := 1.95;

label.rt("A", rp(xend));

label.lft("B", rp(yend));

emptyline(false,1,black,

0.5black,1000,0.82,2,theline);

drawarrow rp(zbeg)--rp(zend);

label.bot("C", rp(zend));

endfig;

A

B

C

Figure 7: FEATPOST diagram using emptyline.

Cuboids and labels are always needed. The
macros kindofcube and labelinspace fulfill this
need (see figure 8 and the code below). The macro
labelinspace does not project labels from 3D into
2D. It only Transforms the label in the same way as
its bounding box, that is, the same way as two per-
pendicular sides of its bounding box. This is only
exact for parallel perspectives.

f := (2,1,0.5);

ParallelProj := true;

verbatimtex

102 Preprints for the 2004 Annual Meeting

FEATPOST and a Review of 3D METAPOST Packages

\documentclass{article}

\usepackage{beton,concmath,ccfonts}

\begin{document}

etex

beginfig(1);

kindofcube(false,true,(0,-0.5,0),

90,0,0,1.2,0.1,0.4);

kindofcube(false,true,(0,0,0),

0,0,0,0.5,0.1,0.8);

labelinspace(false,(0.45,0.1,0.65),

(-0.4,0,0),(0,0,0.1),

btex

\framebox{\textsc{Label}}

etex);

endfig;

verbatimtex \end{document} etex

���
��

Figure 8: FEATPOST diagram using the macros
kindofcube and labelinspace.

Some curved surface solid objects can be drawn
with FEATPOST. Among them are cones (very-
goodcone), cylinders (rigorousdisc) and globes
(tropicalglobe). These can also cast their shad-
ows on a horizontal plane (see figure 9 and the
code below). The production of shadows involves
the global variables LightSource, ShadowOn and
HoriZon.

f := (13,6,4.5); ShadowOn := true;

LightSource := 10*(4,-3,6);

beginfig(3);

numeric reflen, frac, coordg;

numeric fws, NumLines;

path ella, ellb;

color axe, cubevertex, conecenter,

conevertex, allellaxe, ellaaxe,

pca, pcb;

frac := 0.5; wang := 60;

axe := (0,cosd(90-wang),

sind(90-wang));

fws := 4; reflen := 0.35*fws;

coordg := frac*fws;

NumLines := 45;

HoriZon := -0.5*fws;

setthestage(0.5*NumLines,3.3*fws);

cubevertex = (0.3*fws,-0.5*fws,0);

tropicalglobe(7, cubevertex,

0.5*fws, axe);

allellaxe:=reflen*(0.707,0.707,0);

ellaaxe:= reflen*(0.5, -0.5, 0);

pcb := (-coordg, coordg, 0);

rigorousdisc(0, true, pcb,

0.5*fws, -ellaaxe);

conecenter =

(coordg, coordg, -0.5*fws);

conevertex = conecenter +

(0, 0, 0.9*fws);

verygoodcone(false,conecenter,

blue,reflen,conevertex);

endfig;

Figure 9: FEATPOST diagram using the macros
rigorousdisc, verygoodcone, tropicalglobe
and setthestage.

Another very common need is the plotting of
functions, usually satisfied by software such as Gnu-
plot (http://www.gnuplot.info/). Nevertheless,
there are always new plots to draw. One kind of
FEATPOST plot that just became possible is the
“triangular grid triangular domain surface” (see fig-
ure 10 and this code):

f := 16*(4,1,1);

LightSource := 10*(4,-3,4);

def zsu(expr xc, yc) =

cosd(xc*57)*cosd(yc*57)+

4*mexp(-(xc**2+yc**2)*6.4) enddef;

beginfig(1);

hexagonaltrimesh(false,52,15,zsu);

endfig;

Preprints for the 2004 Annual Meeting 103

L. N. Gonçalves

Figure 10: FEATPOST surface plot using the
macro hexagonaltrimesh.

One feature that merges 2D and 3D involves
what might be called “fat sticks”. A fat stick re-
sembles the Teflon magnets used to mix chemicals.
They have volume but can be drawn like a small
straight line segment stroked with a pencircle. Fat
sticks may be used to represent direction fields (uni-
tary vector fields without arrows). See figure 11 (the
code is skipped from now on).

Figure 11: FEATPOST direction field macro
director invisible was used to produce this
representation of the molecular structure of a
Smectic A liquid crystal.

Finally, it is important to remember that some
capabilities of FEATPOST, although usable, may be
considered “buggy” or only partially implemented.
These include the calculation of intersections among
polygons, as in figure 12, and the drawing of toruses,
as in figure 13. These two figures show “usable”
situations but their code is skipped.

FEATPOST has many macros: some are specif-
ically for physics diagrams, others may be useful for
general purposes, some do not fit in this article and,

Figure 12: Intersecting polygons drawn with the
macro sharpraytrace.

Figure 13: Final FEATPOST example containing
a smoothtorus and a rigorousdisc with a hole.
These macros may fail for some view points.

sadly, some are not anywhere documented. For in-
stance, the tools for producing animations are not
yet documented. (These tools are completely ex-
ternal to TEX: the control of an animation is done
with a Python script, and Ghostscript and netpbm

are used to produce MPEG videos.)

In summary, the collection of three-dimension-
al METAPOST software, such as the four reviewed
packages, is large and growing in many independent
directions. It constitutes an excellent resource for
those desiring to produce good diagrams.

6 Acknowledgements

Many people have contributed to make FEATPOST

what it is today. Perhaps it would have never come
into being without the early intervention of Jorge
Bárrios, providing access to his father’s computer.
Another fundamental moment happened when José
Esteves first spoke about METAPOST.

More recently, the very accurate criticism of
Cristian Barbarosie has significantly contributed to
the improvement of these macros. Jens Schwaiger
contributed new macros. Pedro Sebastião, João Di-
nis and Gonçalo Morais proposed challenging new
features. The authors of the other packages gra-
ciously reviewed the paper, and Karl Berry actually
entered new text into this document. They all have
my deep thanks.

104 Preprints for the 2004 Annual Meeting

