Digital Typography in the New Millennium: Flexible Documents by a

Flexible Engine

Christos KK Loverdos

Department of Informatics and Telecommunications
University of Athens

TYPA Buildings, Panepistimioupolis

GR-157 84 Athens

Greece

loverdos@di.uoa.gr

Apostolos Syropoulos
Greek TEX Friends Group
366, 28th October Str.
GR-671 00 Xanthi

Greece
apostolo@obelix.ee.duth.gr

Abstract

The TEX family of electronic typesetters is the primary typesetting tools for
the preparation of demanding documents, and have been in use for many years.
However, our era is characterized, among others, by Unicode, XML and the in-
troduction of interactive documents. In addition, the Open Source movement,
which is breaking new ground in the areas of project support and development,
enables masses of programmers to work simultaneously. As a direct consequence,
it is reasonable to demand the incorporation of certain facilities to a highly mod-
ular implementation of a TEX-like system. Facilities such as the ability to extend
the engine using common scripting languages (e.g., Perl, Python, Ruby, etc.) will
help in reaching a greater level of overall architectural modularity. Obviously, in
order to achieve such a goal, it is mandatory to attract a greater programming
audience and leverage the Open Source programming community. We argue that
the successful TEX-successor should be built around a microkernel/exokernel ar-
chitecture. Thus, services such as client-side scripting, font selection and use, out-
put routines and the design and implementation of formats can be programmed
as extension modules. In order to leverage the huge amount of existing code,
and keep document source compatibility, the existing programming interface is
demonstrated to be just another service/module.

1 Introduction

The first steps towards computer typesetting took
place in the 1950s, but it was not until Donald E.
Knuth introduced TEX in 1978 [16] that true quality
was brought to software-based typesetting. The his-
tory of TEX is well-known and the interested reader
is referred to [16] for more details.

Today, the original TEX is a closed project in
the sense that its creator has decided to freeze its
development. As a direct consequence no other pro-
grams are allowed to be called TEX. In addition,
the freely available source code of the system was a
major step on the road towards the formation of the

PREPRINTS for the 2004 Annual Meeting

Open Source movement, which, in turn, borrowed
ideas and practices from the Unix world. Furthe-
more, the development of TEX and its companion
system, METAFONT, had made obvious the need for
properly documented programs. This, in turn, ini-
tiated Knuth’s creation of the literate programming
program development methodology. This method-
ology advances the idea that the program code and
documentation should be intermixed and developed
simultaneously.

The source code of TEX and METAFONT be-
ing freely available has had enormous consequences.
Anyone can not only inspect the source code, but

Christos KK Loverdos and Apostolos Syropoulos

also experiment freely with it. Combined with TEX’s
(primitive, we should note, but quite effective for the
time) ability to extend itself, this led to such suc-
cess stories as IMNTEX and its enormous supporting
codebase, in the form of packages. As a direct con-
sequence of the fact that the source code is frozen,
stability was brought forth. Note that this was ex-
actly the intention Knuth had when developing his
systems. A common referred-to core, unchanged in
the passing of time and almost free of bugs, offered
a “secure” environment to produce with and even
experiment with.

However, in an everchanging world, especially
in the fast-paced field of computer science, almost
anything must eventually be surpassed. And it is
the emerging needs of each era that dictate possible
future directions. TEX has undoubtedly served its
purpose well. Its Turing-completeness has been a
most powerful asset/weapon in the battles for and of
evolution. Yet, the desired abstraction level, needed
to cope with increasing complexity, has not been
reached. Unfortunately, with TEX being bound to a
fixed core, it cannot be reached.

Furthermore, the now widely accepted user-un-
friendliness of TEX as a language poses another ob-
stacle to TEX’s evolution. It has created the myth
of those few, very special and quite extraordinary
“creatures”! able to decrypt and produce code frag-

ments such as the following:?

\def\s@vig{{\EO@m=\EO@n
\divide\EO@n by20 \relax
\ifnum\EO@n>0\s@vig\fi
\E0@k=\EQ@n\relax
\multiply\EO@k by-20\relax
\advance\EO@m by \EO@k\relax
\global\advance\EOQL by \@ne
\expandafter\xdef\csname E0@d\@roman{\E0@1l}\endcsname{’,
\ifnum\EO@m=0\noexpand\noexpand\EOzero
\else\expandafter\noexpand
\expandafter\csname EO\@roman{\EO@m}\endcsname\fi}
\expandafter\@rightappend
\csname E0@d\@roman{\E0@l}\endcsname
\t@\epi@lmecDigits}}

Of course, to be fair, programmers in several
languages (C and Perl among others) are often ac-
cused of producing ununderstandable code and the
well-known obfuscated code contests just prove it.
On the other hand, with the advent of quite so-
phisticated assemblers, today one can even write
well-structured assembly language, adhering even to
“advanced” techniques/paradigms, such as object-
oriented programming. Naturally, this should not
lead to the conclusion that we should start writing
in assembly (again)! In our opinion, software com-

1 The second author may be regarded as one of Gandalf’s
famuli, while the first author is just a Hobbit, wishing to have
been an Elf.

2 Taken from the documentation of the epiolmec package
by the second author.

plexity should be tackled with an emphasis on ab-
straction that will eventually lead to increased pro-
ductivity, as is shown in the following figure:

) requires : increases .
Complexity requires, Abstraction| —— > | Productivity

TEX’s programming language is more or less an
“assembly language” for electronic typesetting. It
is true that higher level constructs can be made—
macros and macro packages built on top of that. But
the essence remains the same. Although it is true
that TEX is essentially bug free and its macro ex-
pansion facility behaves the way it is specified (i.e.,
as defined in [9]), it still remains a fact that it takes
a non-specialist quite some time to fully understand
the macro expansion rules in spite of Knuth’s initial
intentions [12, page 6].

The fact that one should program in the lan-
guage of his/her choice is just another reason for
moving away from a low-level language. And it
is true that we envision an environment where as
many programmers as possible can—and the most
important, wish to—contribute. In the era of the
Open Source revolution, we would like to attract
the Open Source community and not just a few dedi-
cated low-level developers. Open Source should also
mean, in our opinion, “open possibilities” to evolve
the source. This is one of our major motivations
for reengineering the most successful typesetting en-
gine.

Richard Palais, the founding chairman of TUG,
pointed out back in 1992 [12, page 7] that when
developing TEX, Knuth

... had NSF grant support that not only provided
him with the time and equipment he needed, but
also supported a team of devoted and brilliant
graduate students who did an enormous amount
of work helping design and write the large quan-
tity of ancillary software needed to make the TEX
system work . ..

and immediately after this, he poses the fundamen-
tal question:
Where will the resources come from what will
have to be at least an equally massive effort? And
will the provider of those resources be willing, at
the end of the project, to put the fruits of all his
effort in the Public Domain?

The answer seems obvious now. The way has been
paved by the GNU/Linux/BSD revolutionary devel-
opment model, as has been explained crystal clearly
in The Cathedral and the Bazaar [15].

This paper is an attempt to define a service-
oriented architecture for a future typesetting en-
gine, which will be capable of modular evolution.

PREPRINTS for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

We take a layered approach of designing some core
functionality and then define extensible services on
top of the core. The engine is not restricted to a
specific programming language either for its basic/
bootstrapping implementation or, even more impor-
tant, for its future enhancement. At the same time,
we are bound to provide a 100% TEX-compatible
environment, as the only means of supporting the
vast quantity of existing TEX-based documents. We
intend to achieve such a goal by leveraging the pro-
posed architecture’s own flexibility. Specifically, a
TEX compatibility mode is to be supported and it
should give complete “trip-test” compliance. Later
on, we shall see that this compatibility is divided
into two parts: source code compatibility and inter-
nal core compatibility. Both are provided by plug-
gable modules.

Structure of the paper In the following sec-
tions we briefly review the most important and in-
fluential approaches to extending or reengineering
TEX, including TEX’s inherent abilities to evolve.
Then we discuss a few desired characteristics for any
next generation typesetting engine. We advance by
proposing an architecture to support these emerging
needs. Finally, we conclude by discussing further
and future work.

2 A Better TEX?
2.1 TgX the Program

TEX supports a Turing-complete programming lan-
guage. Simply, this means that if it lacks a feature,
it can be programmed. It contains only a few con-
cepts and belongs to the LISP family of languages.
In particular, it is a list-based macro-language with
late binding [5, Sec. 3.3]:

Its data constructs are simpler than in Common
Lisp: ‘token list’ is the only first order type.
Glue, boxes, numbers, etc., are engine concepts;
instances of them are described by token lists. Its
lezical analysis is simpler than CL: One cannot
program it. One can only configure it. Its control
constructs are simpler than in CL: Only macros,
no functions. And the macros are only simple
ones, one can’t compute in them.

Further analysis of TEX’s notions and inner workings
such as category codes, TEX’s mouth and stomach is
beyond the scope of this paper and the interested
reader is referred to the classic [9] or the excellent [3].

TEX the program is written in the WEB sys-
tem of literate programming. Thus, its source code
is self-documented. The programs tangle and weave
are used to extract the Pascal code and the docu-
mentation, respectively, from the WEB code. The

PREPRINTS for the 2004 Annual Meeting

documentation is of course specified in the TEX no-
tation. Although the TEX source is structured in a
monolithic style, its architecture provides for some
kind of future evolution.

First, TEX can be “extended” by the construc-
tion of large collections of macros that are simply
called formats. Each format can be transformed to a
quickly loadable binary form, which can be thought
of as a primitive form of the module concept.

Also, by the prescient inclusion of the \special
primitive command, TEX provides the means to ex-
press things beyond its built-in “comprehension”.
For example, TEX knows absolutely nothing about
PostScript graphics, yet by using \special and with
the appropriate driver program (e.g., dvips), Post-
Script graphics can be easily incorporated into doc-
uments. Color is handled in the same way. In all
cases, all that TEX does is to expand the \special
command arguments and transfer the command to
its normal output, that is, the DVI file (a file format
that contains only page description commands).

Last, but not least, there is the notion of change
file [3, page 243]:

A change file is a list of changes to be made to
the WEB file; a bit like a stream editor script.
These changes can comprise both adaptations of
the WEB file to the particular Pascal compiler
that will be used and bug fizes to TEX. Thus the
TeX.web file needs never to be edited.

Thus, change files provide a form of incremental
modification. This is similar to the patch mecha-
nism of Unix.

Yet, no matter how foresighted these methods
may be, twenty years after its conception TEX has
started to show its age. Today’s trends, and more
importantly the programming community’s contin-
uing demand for even more flexible techniques and
systems, call for new modes of expressiveness.

2.2 The ETEX Format

KTEX [10], which was released around 1985, is the
most widely known TEX format. Nowadays, it seems
that IATEX is the de facto standard for the communi-
cation and publication of scientific documents (i.e.,
documents that contain a lot of mathematical no-
tation). BTEX “programs” have a Pascal-like struc-
ture and the basic functionality is augmented with
the incorporation of independently developed col-
lections of macro packages. In addition, classes are
used to define major document characteristics and
are in essence document types, such as book, article,
etc. Thus, each KTEX “program” is characterized
by the document class to which it belongs, by the

Christos KK Loverdos and Apostolos Syropoulos

packages it utilizes, and any new macro commands
it may provide.

The current version of IMTEX is called I TEX 2¢.
Work is in progress to produce and widely distribute
the next major version, IATEX3 [11]. Among the
several enhancements that the new system will bring
forth, are:

e Overall robustness
e Extensibility, relating to the package interface

e Better specification and inclusion of graphical
material

e Better layout specification and handling
e Inclusion of requirements of hypertext systems

The ITEX3 core team expects that a major reim-
plementation of XTEX is needed in order to support
the above goals.

The ConTEXt [13] format, developed by Hans
Hagen, is monolithic when compared to KTEX. As a
result, the lessons learned from its development are
not of great interest to our study.

2.3 N7S: The New Typesetting System

The N7TS project [14] was established in 1992 as
an attempt to extend TEX’s typesetting capabilities
and at the same time to propose a new underlying
programmatic model. Its originators recognised that
TEX lacked user-friendliness and as a consequence it
attracted many fewer users than it could (or should).
Moreover, TEX (both as a name and a program) was
frozen by Knuth, so any enhancements should be
implemented in a completely new system.

NTS was the first attempt to recognize that
TEX’s monolithic structure and implementation in
an obsolete language (i.e., the Pascal programming
language) are characteristics that could only impede
its evolution. The techniques used to implement
TEX, particuarly its “tight”, static and memory con-
servative data structures have no (good) reason to
exist today (or even when NS was conceived, in
1992), when we have had a paradigm shift to flexi-
ble programming techniques.

After considering and evaluating several pro-
gramming paradigms [19] including functional, pro-
cedural and logic programming, the A77S project
team decided to proceed with a Java-based imple-
mentation. Java’s object-oriented features and its
network awareness were the main reasons for adopt-
ing Java, as N7S was envisioned as a network-based
program, able to download and combine elements
from the network.

Today, there is a Java codebase, which has de-
constructed the several functional pieces of TEX and
reconstructed them in a more object-oriented way

with cleaner interfaces, a property that the original
TEX source clearly lacks. In spite of the promis-
ing nature of N'7S, the directory listing at CTAN?
shows that the project is inactive since 2001.* Tt
seems that the main focus is now the development
of e-TEX, which is presented in the following section.

2.4 TEX

e-TEX [17] was released by the AN7S team as soon
as it was recognized that AV7S itself was very am-
bitious and that a more immediate and more easily
conceivable goal should be set. So, it was decided
that the first step towards a new typesetting system
was to start with a reimplemented but 100% TEX
compatible program.

e-TEX was released in 1996, after three years of
development and testing. It adds about thirty new
primitives to the standard TEX core, including han-
dling of bidirectional text (right-to-left typesetting).
It can operate in three distinct modes:

1. “compatibility” mode, where it behaves exactly
like standard TEX.

2. “extended” mode, where its new primitives are
enabled. Full compatibility with TEX is not
actually sought and the primary concern is to
make typesetting easier through its new primi-
tives.

3. “enhanced” mode, where bidirectional text is
also supported. This mode is taken to be a
radical departure from standard TEX.

Today, e-TEX is part of all widely used TEX distri-
butions and has proven to be very stable. Indeed,
in 2003 the IXTEX team requested that future distri-
butions use e-TEX by default for BTEX commands,
which has since been implemented in TEX Live and
other distributions.

25 Q

Q [16], which was first released in 1996, is primarily
the work of two people: Yannis Haralambous and
John Plaice. It extends TEX in order to support the
typesetting of multilingual documents. € provides
new primitives and new facilities for this reason. Q’s
default character encoding is the Unicode UCS-2 en-
coding, while it can easily process files in almost any
imaginable character encoding. In addition to that,
Q supports the parameterization of paragraph and
page direction, thus allowing the typesetting of text
in any imaginable writing method.?

3 http://www.ctan.org/tex-archive/systems/nts/.

4 We have last accessed the above URL in March 2004.

5 Currently the the boustrophedon writing method is the
only one not supported.

PREPRINTS for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

Much of its power comes from its new notion
of QTPs (2 Translation Processes). In general, an
QTP is normally used to transform a document from
a particular character encoding to another. Obvi-
ously, an QTP can be used to transform text from
one character set to another. An QTP is actually a
finite state automaton and, thus, it can easily han-
dle cases where the typesetting of particular charac-
ters are context dependent. For example, in tradi-
tional Greek typography, there are two forms of the
small letter theta, which are supported by Unicode
[namely 9 (03D1) and 6 (03B8)]. The first form is
used at the beginning of a word, while the second in
the middle of a word. The following code borrowed
from [16] implements exactly this feature:
input: 2; output: 2;
aliases:
LETTER = (Q@"03AC-Q"03D1 | @"03D5 | @"03D6 |

@"03F0-@"03F3 | @"1F00-Q@"1FFF) ;
expressions:
~ ({LETTER})@"03B8 ({LETTER} | @"0027)

=> \1 @"3D1 \3;
.= \1;

For performance reasons, QQTPs are compiled into
QCPs (© Compiled Processes).

External QTPs are programs in any program-
ming language that can handle problems that can-
not be handled by ordinary QQTPs. For example,
one can prepare a Perl script that can insert spaces
in a Thai language document. Technically, external
QTPs are programs that read from the standard in-
put and write to the standard output. Thus, € is
forking a new process to allow the use of an external
QTP. In [16] there are a number of examples (some
of them were borrowed from [7]).

We should note that the field of multilingual
typesetting is an active research field, which is the
main reason why € is still an experimental system.
We should also note that e-Q [4], by Giuseppe Bil-
otta, is an extension of) that tries to incorporate
the best features of e-TEX and €2 in a new typeset-
ting engine.

2.6 pdfTEX
pdfTEX [18] is yet another TEX extension that can
directly produce a file in Adobe’s PDF format. Re-

cently, pdf-e-TEX was introduced, merging the ca-
pabilities of both pdfTEX and e-TEX.

3 Towards a Universal Typesetting Engine

From the discussion above, it is obvious that there
is a trend to create new typesetting engines that
provide the best features of different existing type-
setting engines. Therefore, a Universal Typesetting

PREPRINTS for the 2004 Annual Meeting

Engine should incorporate all the novelties that the
various TEX-like derivatives have presented so far.
In addition, such a system should be designed by
taking into serious consideration all aspects of mod-
ern software development and maintance. However,
our departure should not be too radical, in order to
be able to use the existing codebase. Let us now
examine all these issues in turn.

3.1 Discussion of Features

Data Structures TEX’s inherent limitations are
due to the fact that it was developed in a time when
computer resources were quite scarce. In addition,
TEX was developed using the now outdated struc-
tured programming program development method-
ology.

Nowadays, hardware imposes virtually no lim-
its in design and development of software. Also,
new programming paradigms (e.g., aspect-oriented
programming [8], generative programming [2], etc.)
and techniques (e.g., extreme programming [1]) have
emerged, which have substantially changed the way
software is designed and developed.

These remarks suggest that a new typesetting
engine should be free of “artificial” limitations. Nat-
urally, this is not enough as we have to leave behind
the outdated programming techniques and make use
of modern techniques to ensure the future of the Uni-
versal Typesetting Engine. Certainly, N'7S was a
step in the right direction, but in the light of current
developments in the area of software engineering it
is now a rather outdated piece of software.

New Primitive Commands Modern document
manipulation demands new capabilities that could
not have been foreseen at the time TEX was cre-
ated. A modern typesetting engine should provide
a number of new primitive commands to meet the
new challenges imposed by modern document prepa-
ration. Although the new primitives introduced by
e-TEX and 2 solve certain problems (e.g., bidirec-
tional or, more generally, multidirectional typeset-
ting), they are still unable to tackle other issues,
such as the inclusion of audio and/or animation.

Input Formats For reasons of compatibility, the
current input format must be supported. At the
same time the proliferation of XML and its applica-
tions makes it more than mandatory to provide sup-
port for XML content. Currently, XMLTEX is a TEX
format that can be used to typeset validated XML

Christos KK Loverdos and Apostolos Syropoulos

files.% In addition, XIATEX [6] is an effort to recon-
cile the TEX world with the XML world. In partic-
ular, XIATEX is an XML Document Type Definition
(DTD) designed to provide an XMLized syntax for
IXTEX. However, we should learn from the mistakes
of the past and make the system quite adaptable.
This means that as new document formats emerge,
the system should be easily reconfigurable to “com-
prehend” these new formats.

Output Formats The pdfI4TEX variant has be-
come quite widespread, due to its ability to directly
produce output in a very popular document for-
mat (namely Adobe’s Portable Document Format).
Commercial versions of TEX are capable of directly
generating PostScript files without the need of any
driver programs. However, as in the case of the in-
put formats, it is quite possible that new document
formats will appear. Thus, we need to make sure
that these document formats will find their way into
TEX sooner or later.

In addition, XML initiatives such as MathML
and SVG (Scalable Vector Graphics) are increasingly
common in electronic publishing of scientific docu-
ments (i.e., quite demanding documents from a ty-
pographical point of view). Thus, it is absolutely
necessary to be able to choose the output format(s)
from a reasonable list of options. For example, when
one makes a drawing using W TEX’s picture environ-
ment, it would be quite useful to have SVG output
in addition to the “standard” output. Currently, Q
can produce XML content, but it cannot generate
PDF files.

Innovative Ideas The assorted typesetting en-
gines that follow TEX’s spirit are not mere exten-
sions of TEX. They have introduced a number of
useful features and/or capabilities. For example,
s QTPs and its ability to handle Unicode input
by default should certainly make their way into a
new typesetting engine. In addition, e-TEX’s new
conditional primitives are quite useful in macro pro-
gramming.

Typesetting Algorithms The paragraph break-
ing and hyphenation algorithms in TEX make the
difference when it comes to typographic quality. Ro-
bust and adaptable as they are, these algorithms
may still not produce satisfactory results for all pos-
sible cases. Thus, it is obvious that we need a mech-

6 Validation should be handled by an external utility. Af-
ter all, there are a number of excellent tools that can accom-
plish this task and thus it is too demanding to ask for the
incorporation of this feature in a typesetting engine.

anism that will adapt the algorithms so they can
successfully handle such difficult cases.

Fonts Typesetting means to put type (i.e., font
glyphs) on paper. Currently, only METAFONT fonts
and PostScript Type 1 fonts can be used with all
different TEX derivatives. Although € is Unicode
aware, still it cannot handle TrueType fonts in a
satisfactory degree (one has to resort to programs
like ttf2tfm in order to make use of these fonts).
In addition, for new font formats such as OpenType
and SVG fonts there is only experimental support, or
none at all. A new typesetting engine should provide
font support in the form of plug-ins so that support
for new font formats could be easily provided.

Scripting Scripting is widely accepted as a means
of producing a larger software product from smaller
components by “gluing” them together. It plays a
significant role in producing flexible and open sys-
tems. Its realization is made through the so-called
“scripting languages”, which usually are different
from the language used to implement the individ-
ual software components.

One could advance the idea that scripting in
TEX is possible by using TEX the language itself.
This is true to some extent, since TEX works in a
form of “interpretive mode” where expressions can
be created and evaluated dynamically at runtime—a
feature providing the desired flexibility of scripting
languages. But TEX itself is a closed system, in that
almost everything needs to be programmed within
TEX itself. This clearly does not lead to the desired
openness.

A next generation typesetting engine should be
made of components that can be “glued” together
using any popular scripting language. To be able
to program in one’s language of choice is a highly
wanted feature. In fact, we believe it is the only
way to attract as many contributors as possible.

Development Method Those software engineer-
ing techniques which have proven successful in the
development of real-world applications should form
the core of the program methodology which will
be eventually used for the design and implementa-
tion of a next generation typesetting engine. Obvi-
ously, generic programming and extreme program-
ming as well as aspect-oriented programming should
be closely examined in order to devise a suitable de-
velopment method.

All the features mentioned above as well as the
desired ones are summarized in Table 1.

PREPRINTS for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

TEX NTS e-TEX Q KTEX(3) Desired
implementation language | traditional Java traditional | traditional | traditional | perhaps scripting
architecture monolithic | modular? | monolithic | monolithic | monolithic modular
TEX compatibility 100% yes 100% 100% 100% via module
input transformations QTPs pluggable
Unicode (Babel) (Java) (Babel) true true
XML yes via package yes
typesetting algorithms TEX TEX-like TEX-like TEX-like TEX-like pluggable
scripting language TEX NTS (7) e-TEX Q TEX any
output drivers dvi(ps,pdf) dvi(?) dvi(ps,pdf) | dvi(ps,pdf) | dvi(ps,pdf) any
TRIP-compatible yes almost e-TRIP yes yes yes (via module)
library mode no no no no no yes
daemon (server) mode no no no no no yes
programming community < BTEX 1 person? < TEX very small big > BTEX

Table 1: Summary of features of TEX and its extensions.

3.2 Architectural Abstractions

Roughly speaking, the Universal Typesetting Engine
we are proposing in this paper, is a project to design
and, later, to implement a new system that will sup-
port all the “good features” incorporated in various
TEX derivatives plus some novel ideas, which have
not found their way in any existing TEX derivative.

Obviously, it is not enough to just propose the
general features the new system should have—we
need to lay down the concrete design principles that
will govern the development of the system. A rea-
sonable way to accomplish this task is to identify the
various concepts that are involved. These concepts
will make up the upper abstraction layer. By fol-
lowing a top-down analysis, eventually, we will be
in position to have a complete picture of what is
needed in order to proceed with the design of the
system.

The next step in the design process is to choose
a particular system architecture. TEX and its deriva-
tives are definitely monolithic systems. Other com-
monly used system architectures include the micro-
kernel and exokernel architectures, both well-known
from operating system research.

Microkernel Architecture A microkernel-based
design has a number of advantages. First, it
is potentially more reliable than a conventional
monolithic architecture, as it allows for mov-
ing the major part of system functionality to
other components, which make use of the mi-
crokernel. Second, a microkernel implements a
flexible set of primitives, providing high level of
abstraction, while imposing little or no limita-
tions on system architecture. Therefore, build-
ing a system on top of an existing microkernel
is significantly easier than developing it from
scratch.

PREPRINTS for the 2004 Annual Meeting

Exokernel Architecture Exokernels follow a rad-
ically different approach. As with microkernels,
they take as much out of the kernel as pos-
sible, but rather than placing that code into
external programs (mostly user-space servers)
as microkernels do, they place it into shared
libraries that can be directly linked into appli-
cation code. Exokernels are extremely small,
since they arbitrarily limit their functionality
to the protection and multiplexing of resources.

Both approaches have their pros and cons. We
believe that a mixed approach is the best solution.
For example, we can have libraries capable of han-
dling the various font formats (e.g., Type 1, True-
Type, OpenType, etc.) that will be utilized by ex-
ternal programs that implement various aspects of
the typesetting process (e.g., generation of Post-
Script or PDF files). Let us now elaborate on the
architecture we are proposing. The underlying com-
ponents are given in Figure 1.

The Typesetting Kernel (TK) is one of the two
core components at the first layer. It can be viewed
as a “stripped-down” version of TEX, meaning that
its role as a piece of software is the orchestration
of several typesetting activities. A number of ba-
sic algorithms are included in this kernel both as
abstract notions—mnecessary for a general-purpose
typesetting engine—and concrete implementations.
So, TK incorporates the notions of paragraph and
page breaking, mathematical typesetting and is Uni-
code-aware (utilizing UCS-4 internally). It must be
emphasized that TK “knows” the concept of para-
graph breaking and the role it plays in typesetting
but it is not bound to a specific paragraph breaking
algorithm. The same principle applies to all needed
algorithms.

Christos KK Loverdos and Apostolos Syropoulos

I
\ \bibtex, makeindex

latex && bibtex && latex

L (Fonts) {As) (DMs) \ESEsJ (HyP) -+ .

Terms
Typesetting Kernel

ASK Active Scripting Kernel
Al Al pung
. EXIEX, XETEX TAs Typesetting Algorithms
Type 3, dvips + Type 1 DMs Document Models
L SEs Scripting Engines
L \ASK HyP Hyphenation Patterns
WFs Workflows
TEX, e-TEX, ©

Figure 1: The proposed microkernel-based layered architecture. The arrows show rough correspondence
between the several architectural abstractions and their counterparts in existing monolithic typesetting

engines.

The Active Scripting Kernel (ASK) is the sec-
ond of the core components and the one that al-
lows scripting at various levels, using a programming
(scripting) language of one’s choice. It is in essence
a standardized way of communicating between sev-
eral languages (TEX, Perl, Python), achieved by pro-
viding a consistent Application Programming Inter-
face (API). The most interesting property of ASK
is its activeness. This simply means that any ex-
tension programmed in some language is visible to
any other available languages, as long as they ad-
here to the standard Active Scripting Kernel API.
For example, an external module/service written in
Perl that provides a new page breaking algorithm is
not only visible but also available for immediate use
from Python, C, etc.

Above TK and ASK, at the second layer, we find
a collection of typesetting abstractions.

Fonts are at the heart of any typesetting engine.
It is evident that font architectures change with the
passing of time, and the only way to allow for flex-
ibility in this part is to be open. Although there
many different font formats, all are used to define
glyphs and their properties. So instead of directly
supporting all possible font formats, we propose the
use of an abstract font format (much like all font ed-
itors have their own internal font format). With the
use of external libraries that provide access to popu-
lar font formats (e.g., a Free Type library, a Type 1
font library, etc.), it should be straightforward to
support any existing or future font format.

The various Typesetting Algorithms (TAs)—al-
gorithms that implement a particular typographic
feature—should be coded using the Active Scripting
Kernel API. In a system providing the high degree
of flexibility we are proposing, it will be possible to
exhibit, in the same document, the result of applying

10

several paragraph and page breaking algorithms. By
simply changing a few runtime parameters it will be
possible to produce different typographic “flavors”
of the same document.

A Scripting Engine (SE) is the realization of the
ASK APIs for a particular scripting language. For
reasons of uniformity, the TEX programming lan-
guage will be provided as a Scripting Engine, along
with engines for Perl, Ruby and Python. This will
make all the existing TEX codebase available for im-
mediate use and it will provide for cooperation be-
tween existing IWTEX packages and future enhance-
ments in other languages. Thus, a level of 100% TEX
compatibility will be achieved, merely as a “side-
effect” of the provided flexibility.

The idea of a Document Model (DM) concerns
two specific points: The document external repre-
sentation, as it is “edited” for example in an editor,
or “saved” on a hard disk, and its internal repre-
sentation, used by the typesetting engine itself. It
is clear that under this distinction, current KTEX
documents follow the (fictional) “KTEX Document
Model”, XKTEX documents follow the “XIATEX doc-
ument model” and an XML document with its cor-
responding DTD follows an analogous “XML+DTD
Document Model”.

We strongly believe that how a document is
written should be separated by its processing. For
the last part, an internal representation like the Ab-
stract Syntax Trees (ASTs) used in compiler technol-
ogy is highly beneficial. One way to think of DM is as
the typographic equivalent of the Document Object
Model (DOM). That is, it will be a platform-neutral
and language-neutral representation allowing scripts
to dynamically access and update the content, struc-
ture and style of documents.

PREPRINTS for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

Several Document Processors (DPs) may be ap-
plied to a specific document before actual type-
setting takes place. DPs are the analog of QTPs.
By leveraging the scripting power of ASK, the rep-
resentation expressiveness of DPs is increased—as
opposed to algorithmic expressiveness (Turing-com-
pleteness), which is evident, e.g., in €, but is not
the sole issue.

The Workflows (WF) and Tools are at the high-
est architectural layer. Currently, there are a num-
ber of tools that may not produce a final typeset re-
sult, but are important for the proper preparation of
a document. For example, such tools include bibli-
ography, index and glossary generation tools. In the
proposed architecture, all these programs will take
advantage of other architectural abstractions—such
as the Document Model or the Scripting Engines—
in order to be more closely integrated in the type-
setting engine as a whole.

Of particular importance is the introduction of
the Workflows notion. A workflow is closely related
to the operation or, to be more precise, cooperation
of several tools and the typesetting engine in the
course of producing a typeset document. In effect,
a workflow specifies the series of execution (proba-
bly conditional) steps and the respective inputs/out-
puts during the “preparation” of a document. By
introducing a workflow specification for each tool,
we relieve the user from manually specifying all the
necessary actions in order to get a “final” .pdf (or
whatever output format has been requested). In-
stead, the user will declaratively specify that the
services of a tool are needed and the engine will load
the respective workflows, compose them and execute
them.

We shall give a workflow example concerning a
bibtex-like tool. What we do here is to transform
our exerience of using bibtex into declarations spec-
ifying its behaviour in cooperation with latex:

WORKFLOW DEFINITION bibtex

SERVICE bibtex NEEDS latex
SERVICE bibtex INTRODUCES latex

In effect, this translates a hypothetical Makefile:

all:
latex mydoc
bibtex mydoc
latex mydoc

for the preparation of the fictitious mydoc.tex doc-

ument into a declarative specification that is given
only once as part of the bibtex tool!

PREPRINTS for the 2004 Annual Meeting

3.3 On Design and Evolution

Recent advances in software engineering advocate
the use of multidimensional separation of concerns
as a guiding design principle. Different concerns
should be handled at different parts of code and
ideally should be separated. For example, the repre-
sentation of a document and its processing are two
separate concerns and should be treated as such.
Their interaction is better specified out of their in-
dividual specifications. Thus, we have introduced
the Document Models notion to cope with the exist-
ing TEX/IATEX base as well as any future document
representation.

Several architectural abstractions of Figure 1
are candidates to be specified as “services” at dif-
ferent granularities. For example, any Tool of the
third layer can be thought of as a service that is
registered with a naming authority and discovered
dynamically, for immediate use on demand. A True-
Type Font Service, regarding the second layer Font
abstraction, is another example, this time more of a
fine-grained nature, in the sense that a Tool (coarse-
grained service) utilizes a Font (fine-grained ser-
vice).

The proposed architecture makes special provi-
sions for evolution by keeping rigid design decisions
to a minimum. Built-in Unicode awareness is such a
notable rigid design decision, but we feel that its in-
corporation is mandatory. Besides that, the ideas of
pluggable algorithms and scripting are ubiquitious
and help maintain the desired high degree of flexi-
bility.

At the programming level, any style of design
and development that promotes evolution can be
applied. In the previous section we have actually
demonstrated that the proposed architecture can
even handle unanticipated evolution at the work-
flow level: the bibtex tool workflow specification
causes the execution of an existing tool (latex) but
we have neither altered any workflow for latex nor
does latex need to know that “something new” is
using it. In effect, we have introduced (the use of the
keyword INTRODUCE was deliberate) a new aspect [8].

4 Conclusions and Future Work

In this paper we have reviewed the most widespread
modern approaches to extending TEX, THE type-
setting engine. After analyzing weaknesses of the
approaches and the existing support for several fea-
tures, we have presented our views on the architec-
ture of an open and flexible typesetting engine.

We have laid down the basic architectural ab-
stractions and discussed their need and purpose. Of

11

Christos KK Loverdos and Apostolos Syropoulos

course, the work is still at the beginning stages and
we are now working on refining the ideas and eval-
uating design and implementation approaches.

The introduction of the Active Scripting Kernel
is of prime importance and there is ongoing work to
completely specify a) the form of a standard pro-
cedural API and b) support for other programming
styles, including object-oriented and functional pro-
gramming. This way, an object may for example
take advantage of an algorithm that is better de-
scribed in a functional form. There are parallel
plans for transforming TEX into a Scripting Engine
and at the same time providing Engines powered by
Perl and Python.

We are also investigating the application of the
workflow approach at several parts in the architec-
ture other than the interaction among tools. This,
in turn, may raise the need for the incorporation of
a Workflow Kernel at the core layer, along with the
Typesetting Kernel and the Active Scripting Kernel.

References

[1] chromatic. Extreme Programming Pocket
Guide. O’Reilly & Associates, Sebastopol, CA,
USA, 2003.

[2] Krzysztof Czarnecki and Ulrich Eisenecker.
Generative Programming: Methods, Tools, and
Applications. Addison—Wesley Publ. Co., Read-
ing, MA, USA, 2002.

[3] Victor Eijkhout. TEX by Topic. http://www.
cs.utk.edu/~eijkhout/tbt.

[4] e-Q Project home page. http://www.ctan.
org/tex-archive/systems/eomega/.

[5] N7S FAQ. http://www.ctan.org/
tex-archive/info/NTS-FAQ.

[6] Yannis Haralambous and John Plaice. Omega,
OpenType and the XML World. The 24/th An-
nual Meeting and Conference of the TeX Users
Group, TUG 2003.

[7] Yannis Haralambous and John Plaice. Traite-
ment automatique des langues et compositions
sous omega. Cahiers GUTenberg, pages 139—
166, 2001.

12

[8] Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In M. Aksit and
S. Matsuoka, editors, ECOOP ’97— Object-
Oriented Programming: 11th Furopean Confer-
ence, Jyvdskyld, Finland, June 1997. Proceed-
ings, number 1241 in Lecture Notes in Com-
puter Science, pages 220-242. Springer-Verlag,
Berlin, 1997.

[9] Donald Erwin Knuth. The TpXbook. Addison-
Wesley, 1984.

[10] Leslie Lamport. HTEX: A Document Prepara-
tion System. Addison—Wesley Publ. Co., Read-
ing, MA, USA, 2nd edition, 1994.

[11] WTEX3 Project home page. http://www.
latex-project.org/latex3.html.

[12] Richard Palais. Position Paper on the future of
TEX. http://www.loria.fr/services/tex/
moteurs/nts-9207.dvi, reached from http:
//tex.loria.fr/english/moteurs.html,
October 1992.

[13] PRAGMA Advanced Document
neering. ConTEXt home page.
//www.pragma-ade.com/.

[14] NS Project home page. http://www.dante.
de/projects/nts/.

[15] Eric E. Raymond. The Cathedral and
the Bazaar. http://www.catb.org/~esr/
writings/cathedral-bazaar/.

Engi-
http:

[16] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital Typography Using
ETEX. Springer-Verlag, New York, NY, USA,
2003.

[17] N7S Team and Peter Breitenlohner. The e-TEX
manual, Version 2. MAPS, (20):248-263, 1998.

[18] Han Thé Thanh, Sebastian Rahtz, and Hans
Hagen. The pdfTEX users manual. MAPS,
(22):94-114, 1999.

[19] Jiff Zlatuska. AN7S: Programming Lan-
guages and Paradigms. EuroTEX 1999,
http://www.uni-giessen.de/partosch/
eurotex99/zlatuska.pdf.

PREPRINTS for the 2004 Annual Meeting

