
MlBibTEX: Beyond LATEX

Jean-Michel Hufflen
LIFC (FRE CNRS 2661)

University of Franche-Comté
16, route de Gray
25030 Besançon Cedex
France
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article sums up our experience with MlBibTEX, our multilingual imple-
mentation of BibTEX, and points out some possible improvements for better co-
operation between LATEX and MlBibTEX. Also, MlBibTEX may be used to gen-
erate bibliographies written according to other formalisms, especially formalisms
related to XML, and we give some ways to ease that.
Keywords: Bibliographies, multilingual features, BibTEX, MlBibTEX, bst, nbst,
XML, XSLT, XSL-FO, DocBook.

1 Introduction

MlBibTEX (for ‘MultiLingual BibTEX’) is a reim-
plementation of BibTEX [21], the bibliography pro-
cessor associated with LATEX [19]. The project began
in October 2000, and has resulted in two experimen-
tal versions [9, 11] and the present version (1.3), that
will be available publicly by the time this article ap-
pears. As we explained in [15], a prototype using the
Scheme programming language is working whilst we
are developing a more robust program written in C.
The prototype has allowed us to get some experience
with real-sized bibliographies: this is the purpose of
the first part of this article, after a short review of
the modus operandi of MlBibTEX.

MlBibTEX’s present version no longer uses the
bst language of BibTEX for bibliography styles [20].
Such .bst files were used in MlBibTEX’s first version,
but since this old-fashioned language, based on sim-
ple stack manipulations, is not modular, we quickly
realised that this choice would have led us to styles
that were too complicated [12]. Thus, Version 1.3
uses the nbst (for ‘New Bibliography STyles’) lan-
guage, described in [13] and similar to XSLT,1 the
language of transformations designed for XML texts
[32]. More precisely, MlBibTEX 1.3 uses XML2 as
a central formalism in the sense that parsing files
containing bibliographical entries (.bib files) results

1 EXtensible Stylesheet Language Transformations.
2 EXtensible Markup Language. A good introduction

to this formalism issued by the W3C (World Wide Web
Consortium) is [24].

in a DOM3 tree. Bibliography styles written using
nbst are XML texts, too.

Of course, nbst can be used to generate bibli-
ographies for documents other than those processed
with LATEX.4 In particular, nbst eases the genera-
tion of bibliographies for documents written using
XML-like syntax. Nevertheless, dealing with .bib
files raises some problems: we go into them thor-
oughly in Section 4.

Reading this article requires only a basic knowl-
edge of LATEX, BibTEX and XML. Some examples
given in the next section will use the commands pro-
vided by the multilingual babel package of LATEX2ε
[2]. Other examples given in Section 4 will use the
Scheme programming language, but if need be, re-
ferring to an introductory book such as [28] is suffi-
cient to understand them.

2 Architecture of MlBIBTEX

2.1 How MlBIBTEX Works

As a simple example of using MlBibTEX with LATEX,
let us consider the silke1988 bibliographical entry
given in Figure 1. As we explain in [15], the sequence
‘[...] ! 〈idf〉’ is one of the multilingual features

3 Document Object Model. This is a W3C recommen-
dation for a standard tree-based programming approach [24,
p. 306–308], very often used to implement XML trees.

4 This is also the case with the bst language of BibTEX,
but in practice, it seems that this feature has not been used,
except for documents written in SCRIBE [25], a predecessor
of LATEX.

Preprints for the 2004 Annual Meeting 77

Jean-Michel Hufflen

@BOOK{silke1988,
AUTHOR = {James~R. Silke},
TITLE = {Prisoner of the Horned Helmet},
PUBLISHER = {Grafton Books},
YEAR = 1988,

NUMBER = 1,

SERIES = {Frank Frazetta’s Death Dealer},
NOTE = {[Pas de traduction fran\c{c}aise

connue] ! french

[Keine deutsche Übersetzung]

! german},
LANGUAGE = english}

Figure 1: Example of a bibliographical entry in
MlBibTEX.

provided by MlBibTEX, defining a string to be in-
cluded when the language of a corresponding refer-
ence, appearing within a bibliography, is idf . So if
this entry is cited throughout a document written in
French and the ‘References’ section is also written
in French, it will appear as:

[1] James R. Silke : Prisoner of the Horned
Helmet. No 1 in Frank Frazetta’s Death
Dealer. Grafton Books, 1988. Pas de tra-
duction française connue.

Here and in the bibliography of this article, we
use a ‘plain’ style, that is, references are labelled
with numbers. More precisely, the source processed
by LATEX, included into the .bbl file generated by
MlBibTEX, is:
\begin{thebibliography}{...}

...

\bibitem{silke1988}

\begin{otherlanguage*}{english}

James~R. \textsc{Silke}: \emph{Prisoner of the

Horned Helmet}.

\foreignlanguage{french}{\bblno~1 \bblof}

\emph{Frank Frazetta’s Death Dealer}. Grafton

Books, 1988. \foreignlanguage{french}{Pas de

traduction fran\c{c}aise connue}.

\end{otherlanguage*}

...

\end{thebibliography}

Let us examine this source text. We can no-
tice the use of additional LATEX commands to put
some keywords (‘\bblin’ for ‘in’, ‘\bblno’ for ‘No’,
that is, ‘number’ in French). In [14], we explain
how to put them into action within LATEX and how
MlBibTEX uses them. This source also shows how
English words, originating from an entry in English
(see the value of the LANGUAGE field in Figure 1), are
processed. If the document uses the babel package,
and if the french option of this package is selected, we
use the \foreignlanguage command of this pack-

<book id="silke1988" language="english">

<author>

<name>

<personname>

<first>James R.</first>

<last>Silke</last>

</personname>

</name>

</author>

<title>Prisoner of the Horned Helmet</title>

<publisher>Grafton Books</publisher>

<year>1988</year>

<number>1</number>

<series>

Frank Frazetta’s Death Dealer

</series>

<note>

<group language="french">

Pas de traduction française connue

</group>

<group language="german">

Keine deutsche Übersetzung

</group>

</note>

</book>

Figure 2: The XML tree corresponding to the
entry of Figure 1.

age [2], as shown above. Users do not have to select
its english option; if it is not active, the source text
generated by MlBibTEX looks like:
\bibitem{silke1988}James~R. \textsc{Silke}:

\emph{Prisoner of the Horned Helmet}. \bblno~1

\bblof\ \emph{Frank Frazetta’s Death Dealer}.

Grafton Books, 1988. Pas de traduction

fran\c{c}aise connue.

but the English words belonging to this reference
will be taken as French by LATEX and thus may be
processed or hyphenated incorrectly.

2.2 The Modules of MlBIBTEX

As mentioned in the introduction, parsing a .bib file
results in a DOM tree. In fact, .bib files are pro-
cessed as if they were XML trees, but without white-
space nodes.5 Following this approach, the entry
silke1988 given in Figure 1 is viewed as the tree of
Figure 2, except that the whitespace nodes that an
XML parser would produce are excluded.

5 These are text nodes whose contents are only whitespace
characters, originating from what has been typed between two
tags [27, p. 25–26]. For example, if the XML text of Figure 2
is parsed, there is a whitespace node, containing a newline
and four space characters between the opening tags <author>
and <name>. XML parsers are bound by the ‘all text counts’
constraint included in the XML specification [33, § 2.10], and
cannot ignore such whitespace characters.

78 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

We can see that some LATEX commands and
special characters are converted according to the
conventions of XML.
• The commands used for accents and special let-

ters are replaced by the letter itself. This poses
no problem since DOM trees are encoded in Uni-
code [29]. As an example, the ‘\c{c}’ sequence
in the value of the NOTE field in Figure 1 is re-
placed by ‘ç’ in Figure 2. (By the way, let us re-
mark that MlBibTEX can handle the 8-bit latin1
encoding:6 notice the ‘Ü’ character inside this
value.)

• Likewise, the commands:
– ‘\ ’ for a simple space character,
– ‘\\’ for an end-of-line character,

and the sequences of characters:
– ‘~’, for an unbreakable space character,
– ‘--’, and ‘---’ for dash characters,

are replaced by the corresponding Unicode val-
ues for these characters:7

 – —

An example is given by the value of the AUTHOR
field, see Figures 1 & 2.

• Some characters escaped in LATEX (for example,
‘$’, ‘%’, ‘&’) lose the escape character:

\% =⇒ %

The escape is restored if MlBibTEX generates a
.bbl file to be processed by LATEX. Other char-
acters are replaced by a reference to a character
entity:8

\& =⇒ & < =⇒ < > =⇒ >

• Balanced delimiters for quotations (“ ‘ ” and
“ ’ ” or ‘ ‘‘ ’ and ‘ ’’ ’) are replaced by an emph
element:9

‘Tooth and Claw’ =⇒
<emph emf=’no’ quotedf=’yes’>
Tooth and Claw

</emph>

If ‘ ’ ’ or ‘ " ’ characters are unbalanced, they
are replaced by references to character entities
used in XML documents:

’ =⇒ ' " =⇒ "

6 See [7, Table C.4] for more details.
7 That was not the case in earlier versions; for instance,

[12, Figure 3] improperly includes a tilde character in a text
node. This bug was fixed at the end of 2003.

8 See [24, p. 48] for more details.
9 ‘emph’ is of course for ‘emphasise’: all the attributes

(for example, ‘quotedf’ for ‘quoted-flag’, used for specifying
a quotation) default to no, except emf, which defaults to yes.
The complete specification is given in [10].

Such an XML tree, resulting from our parser,
may be validated using a DTD;10 more precisely, by
a revised version of the DTD sketched in [10].

Some examples of using nbst for bibliography
styles are given in [12, 13, 14]. We give another ex-
ample in Figure 3. We can see that this language
is close to XSLT and it uses path expressions as in
the XPath language [31]. Also, the example shows
how multilingual features (for example, the sequence
‘[...] ! ...’) are processed: we use some external
functions in order to determine which LATEX com-
mand can be used to switch to another language.
These external functions are written using the lan-
guage of MlBibTEX’s implementation: Scheme for
the prototype, C for the final program.

3 MlBIBTEX with LATEX

When BibTEX generates a .bbl file, it does not use
the source file processed by LATEX, but only the
auxiliary (.aux) file, in which the definition of all
the labels provided by the commands \label and
\bibitem is stored. This file also contains the name
of the bibliography style to be used and the paths of
bibliography data bases to be searched, so BibTEX
need not look at any other file.

This is not true for MlBibTEX. It still uses the
.aux file as far as possible, but it also has to deter-
mine which multilingual packages are used: first of
all babel, but also some packages devoted to particu-
lar languages: french [6], german [23], . . . So we have
to do a partial parsing of the .tex file for that. For
better co-operation between LATEX and MlBibTEX,
this could be improved, in that information about
multilingual packages used, and languages available,
could be put in the .aux file. In fact, the external
functions of our new bibliography styles are only
used to manage information extracted from a .tex
file. Expressing such operations using nbst would
be tedious.

Another improvement regarding the natural
languages known by LATEX would be a connection
between:
a) the language codes used in XML, specified by

means of a two-letter language abbreviation,
optionally followed by a two-letter country code
[1] (for example, ‘de’ for ‘deutsch’ (‘German’),
‘en-UK’, ‘en-US, etc.)’; and

b) the resources usable to write texts in these lan-
guages.

For example, a default framework could be the use
of the babel package, and ‘de’ would get access to

10 Document Type Definition. A DTD defines a document
markup model [24, Ch.5].

Preprints for the 2004 Annual Meeting 79

Jean-Michel Hufflen

<nbst:template match="group">
<nbst:if test="@language=$language">
<!-- The $language variable is set to the current language. -->
<nbst:value-of select="call(language open change,@language)"/>
<!-- If the babel package is used and a known option has been selected, this external function

writes the \foreignlanguage command. . .
-->

<nbst:apply-templates use-language="@language"/>
<nbst:value-of select="call(language close change,@language)"/>
<!-- . . . and this external function puts a closing brace. -->

<nbst:if>
</nbst:template>

Figure 3: Example of calling an external function.

the german option of this package, although it could
be redefined to use the ad hoc package name german.
In the future, such a framework would allow us to
homogenise all the notations for natural languages
to those of XML. In addition, let us notice that
ConTEXt11 [8], already uses these two-letter codes
in its \selectlanguage command.

And last but not least, auxiliary files should in-
clude information about the encoding used in the
source text. As can be seen in the examples of Sec-
tion 2.1, accented letters are replaced by the com-
mands used to produce them in LATEX, even though
LATEX can of course handle 8-bit encodings (pro-
vided that the inputenc package is loaded with the
right option). This is to avoid encoding problems.
In addition, such information would ease the pro-
cessing of languages written using non-Latin alpha-
bets.

4 Towards the XML World

Since a .bib file can be processed as an XML tree by a
bibliography style written in nbst, MlBibTEX opens
a window on XML’s world. A converter from .bib
files to a file written using HTML,12 the language of
Web pages, becomes easy to write. So does a tool to
write a bibliography as an XSL-FO13 document [34].
More precisely, we give in Figure 4 an example of
using the root element of nbst. Possible values for
the method of the nbst:output element are:

11 TEX, defined by Donald E. Knuth [18], provides a gen-
eral framework to format texts. To be fit for use, the defi-
nitions of this framework need to be organised in a format.
Two such formats are plain TEX and LATEX, and another is
ConTEXt, created by Hans Hagen.

12 HyperText Markup Language.
13 EXtensible Stylesheet Language—Formatting Objects:

this language aims to describe high-quality print outputs.
Such documents can be processed by the shell command
xmltex (resp. the shell command pdfxmltex) from PassiveTEX
[22, p. 180] to get .dvi files (resp. .pdf files).

<nbst:bst version="1.3" id="plain" xmlns:nbst=

"http://lifc.univ-fcomte.fr/~hufflen/mlbibtex"

>

<nbst:output method="LaTeX"/>

...

</nbst:bst>

Figure 4: Root element for a bibliography style
written using nbst.

LaTeX xml html text

Nevertheless, this approach has an important
limitation in practice. Since BibTEX has tradition-
ally been used to generate files suitable for LATEX,
users often put LATEX commands inside values of
BibTEX fields.14 For example:

ORGANIZATION = {\textsc{tug}}
In such a case, we would have to write a mini-LATEX
program (or perhaps a new output mode for LATEX)
that would transform such a value into a string suit-
able for an XML parser.

The problem is more complicated when com-
mands are defined by end-users. For instance:

ORGANIZATION = {\logo{tug}}
works with BibTEX—or MlBibTEX when we use it
for generating LATEX output—even though \logo
has an arbitrary definition; for example,

\newcommand{\logo}[1]{\textsc{#1}}

according to LATEX’s conventions, or:

\def\logo#1{\textsc{#1}}

if a style close to plain TEX is used. Likewise, such
commands can be known when an output file from
MlBibTEX is processed by ConTEXt.

14 The author personally confesses to using many
\foreignlanguage commands within the values of BibTEX
fields, before deciding to develop MlBibTEX.

80 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

<bibliography>

<title>References</title>

<biblioentry>

<abbrev>silke1989</abbrev>

<authorgroup>

<author>

<firstname>James R.</firstname>

<surname>Silke</surname>

</author>

</authorgroup>

<copyright><year>1989</year></copyright>

<isbn>0-586-07018-4</isbn>

<publisher>

<publishername>

Grafton Books

</publishername>

</publisher>

<title>Lords of Destruction</title>

<seriesinfo>

<title>

<othercredit>

<firstname>Frank</firstname>

<surname>Frazetta</surname>

</othercredit>’s Death Dealer

</title>

<volumenum>2</volumenum>

</seriesinfo>

</biblioentry>

</bibliography>

Figure 5: The bibliographical reference from
Figure 1 expressed in DocBook. Note the ad hoc
tag <othercredit>.

Moreover, let us consider the bibliographical
reference given in Figure 5, according to the con-
ventions of DocBook, a system for writing struc-
tured documents [36] (we use the conventions of the
XML version of DocBook, described in [26]). We
can see that some information is more precise than
that provided in Figure 1. But there are still com-
plexities: the person name given in the value of the
SERIES field is surrounded by an ad hoc element in
the DocBook version.

If we want to take advantage of the expressive
power of DocBook, we can:

• directly process an XML file for bibliographi-
cal entries. In this case, our DTD should be
extended; that is possible, but we still need a
solution to process the huge number of existing
.bib files;

• introduce some new syntax inside .bib files, that
might be complicated and thus perhaps unused
in practice,

• introduce new LATEX commands, to process like
the \logo example mentioned above.

We have experimentally gone quite far in the
third direction, which also allows to us to deal with
the LATEX commands already in .bib files. In Fig-
ure 6, we give some examples of such processing, as
implemented in the prototype.15

As can be seen, we have defined a new func-
tion in Scheme, named define-pattern, with two
formal arguments. The first is a string viewed as a
pattern, following the conventions of TEX for defin-
ing commands, that is, the arguments of a command
are denoted by ‘#1’, ‘#2’, . . . (cf. [18, Ch. 20]). The
second argument may also be a string, in which case
it specifies a replacement. The arguments of the cor-
responding command are processed recursively. In
case of conflict among patterns, the longest is cho-
sen. So, the pattern "\\logo{#1}"16 takes prece-
dence over the pattern "{#1}".

If the second argument of the define-pattern
function is not a string, it must be a zero-argument
function that results in a string. In this case, all
the operations must be specified explicitly, using the
following functions we wrote:

pattern-matches? returns a true value if its first
argument matches the second, a false value oth-
erwise;

pattern-process recursively processes its only ar-
gument, after replacing sub-patterns by corre-
sponding values;17

pattern-replace replaces the sub-patterns of its
argument by corresponding values; these value
are not processed, just replaced verbatim.

Whether given directly as the second argument to
define-pattern or resulting from applying a zero-
argument function, the string must be well-formed
w.r.t. XML’s conventions, that is, tags must be bal-
anced, attributes must be well-formed, etc. In other
words, such a string must be acceptable to an XML

parser: in our case, the parser is SSAX18 [17].
The examples given in Figure 6 allow us to see

that we can deal with simple commands, like:

\logo{...} =⇒ <emph ...>...</emph>

15 This feature has not yet been implemented in the final
version.

16 Let us recall that in Scheme, the backslash character
(‘\’) is used to escape special characters in string constants.
To include it within a string, it must itself be escaped.

17 In fact, using a string s as a second argument of
define-pattern yields the evaluation of the expression
(lambda () (pattern-process s)).

18 Scheme implementation of SAX. ‘SAX’ is for ‘Simple
API (Application Programming Interface) for XML’: this
name denotes a kind of parser, see [24, p. 290–292].

Preprints for the 2004 Annual Meeting 81

Jean-Michel Hufflen

(define-pattern "{#1}"
;; The asitis element is used for words that should never be uncapitalised, that is, proper names. In BIBTEX,
;; we specify such behaviour by surrounding words by additional braces.
"<asitis>#1</asitis>")

(define-pattern "\\logo{#1}" "<emph emf=’no’ scf=’yes’>#1</emph>")

(define-pattern "\\foreignlanguage{#1}{#2}"
"<foreigngroup language=’#1’>#2</foreigngroup>")

(define-pattern "\\iflanguage{#1}{#2}{#3}"
(lambda () ; Zero-argument function.

(string-append ; Concatenation of strings.
"<nonemptyinformation>"

"<group language=’" (pattern-replace "#1") "’>" (pattern-process "#2")

"</group>"

(let loop ((pattern (pattern-replace "#3")))

;; This form—named let (cf. [28, Exercise 14.8])—defines an internal function loop and
;; launches its first call:
(if (pattern-matches? "\\iflanguage{#4}{#5}{#6}" pattern)

(string-append "<group language=’" (pattern-replace "#4") "’>"

(pattern-process "#5")

"</group>"

;; The internal function loop is recursively called with a new value:
(loop (pattern-replace "#6")))

(string-append "<group>" (pattern-process pattern) "</group>")))

"</nonemptyinformation>")))

Figure 6: Patterns for some LATEX commands in Scheme.

as well as more complicated cases, like a cascade of
\iflanguage commands [2]:

\iflanguage{...}{...}{%
\iflanguage{...}{...}{ ... }}

which becomes:

<nonemptyinformation>
<group language=’...’>...</group>
<group language=’...’>...</group>
...

</nonemptyinformation>

The nonemptyinformation element is used for in-
formation that must be output, possibly in a default
language if no translation into the current language
is available.

What we do by means of our define-pattern
function is like the additional procedures in Perl19

that the converter LaTeX2HTML [4] can use to trans-
late additional commands.

5 Conclusion

Managing several formalisms can be tedious. This
fact was one of main elements in XML’s design: giv-
ing a central formalism, able to be used for repre-
senting trees, and allowing many tools using differ-
ent formalisms to communicate.

19 Practical Extraction and Report Language.

BibTEX deals with three formalisms: .aux files,
.bib files and .bst files. As Jonathan Fine notes
in [5], the applications devoted to a particular for-
malism cannot be shared with other applications.
MlBibTEX attempts to use XML as far as possible,
although there is still much to do. For example,
defining a syntax for the entries for which we are
looking, when using MlBibTEX to generate XSL-FO

or DocBook documents. (For our tests, this list of
entry names is simply given on the command line).

The next step will probably be a more inten-
sive use of XML, that is, the direct writing of bibli-
ographical entries using XML conventions. For this,
we need something more powerful than DTDs, with
a richer type structure, namely, schemas.20 In ad-
dition, we should be able to easily add new fields
to bibliographical entries: the example given using
DocBook shows that additional information must be
able to be supplied to take advantage of the expres-
sive power of this system. But such additions are

20 Schemas have more expressive power than DTDs, be-
cause they allow users to define types precisely, which in turn
makes for a better validation of an XML text. In addition,
this approach is more homogeneous since schemas are XML

texts, whereas DTDs are not.
There are currently four ways to specify schemas: Relax NG

[3], Schematron [16], Examplotron [30], XML Schema [35]. At
present, it seems to us that XML Schema is the most suitable
for describing bibliographical entries.

82 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

difficult to model with DTDs.21 We are presently go-
ing thoroughly into replacing our DTD by a schema;
when this work reaches maturity, bibliographical en-
tries using XML syntax could be directly validated
using schemas.

6 Acknowledgements

Many thanks to Karl Berry for his patience while
waiting for this article. In addition he proofread a
first version and gave me many constructive criti-
cisms. Thanks also to Barbara Beeton.

References

[1] Harald Tveit Alvestrand: Request for Com-
ments: 1766. Tags for the Identification of Lan-
guages. UNINETT, Network Working Group.
March 1995. http://www.cis.ohio-state.
edu/cgi-bin/rfc/rfc1766.html.

[2] Joannes Braams: Babel, a Multilingual Pack-
age for Use with LATEX’s Standard Document
Classes. Version 3.7. May 2002. CTAN:macros/
latex/required/babel/babel.dvi.

[3] James Clark et al.: Relax NG. http://www.
oasis-open.org/committees/relax-ng/.
2002.

[4] Nicos Drakos: The LATEX2HTML Translator.
March 1999. Computer Based Learning Unit,
University of Leeds.

[5] Jonathan Fine: “TEX as a Callable Func-
tion”. In: EuroTEX 2002, (pp. 26–30). Ba-
chotek, Poland. April 2002.

[6] Bernard Gaulle : Notice d’utilisation du style
french multilingue pour LATEX. Version pro
V5.01. Janvier 2001. CTAN:loria/language/
french/pro/french/ALIRE.pdf.

[7] Michel Goossens, Sebastian Rahtz and Frank
Mittelbach: The LATEX Graphics Compan-
ion. Illustrating Documents with TEX and
PostScript. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts. March 1997.

[8] Hans Hagen: ConTEXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com.

[9] Jean-Michel Hufflen: “MlBibTEX: A New
Implementation of BibTEX”. In: EuroTEX
2001, (pp. 74–94). Kerkrade, The Netherlands.
September 2001.

[10] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: From XML to
MlBibTEX”. In: EuroTEX 2002, (pp. 46–59).
Bachotek, Poland. April 2002.

21 Whereas that is easy with ‘old’ BibTEX, provided that
you use a bibliography style able to deal with additional fields.

[11] Jean-Michel Hufflen: Towards MlBIBTEX’s
Versions 1.2 & 1.3. MaTEX Conference. Bu-
dapest, Hungary. November 2002.

[12] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. EuroTEX 2003,
Brest, France. June 2003. (To appear in TUG-
boat.)

[13] Jean-Michel Hufflen: MlBIBTEX’s Ver-
sion 1.3. TUG 2003, Outrigger Waikoloa Beach
Resort, Hawaii. July 2003.

[14] Jean-Michel Hufflen: “Making MlBibTEX
Fit for a Particular Language. Example of the
Polish Language”. Biuletyn GUST. Forthcom-
ing. Presented at the BachoTEX 2003 confer-
ence. 2004.

[15] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”. Biule-
tyn GUST, Vol. 20, pp. 21–28. In Proc. Ba-
choTEX Conference. April 2004.

[16] ISO/IEC 19757: The Schematron. An XML

Structure Validation Language Using Pat-
terns in Trees. http://www.ascc.net/xml/
resource/schematron/schematron.html.
June 2003.

[17] Oleg Kiselyov: “A Better XML Parser
through Functional Programming”. In: 4th
International Symposium on Practical Aspects
of Declarative Languages, Vol. 2257 of Lecture
Notes in Computer Science. Springer-Verlag.
2002.

[18] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[19] Leslie Lamport: LATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[20] Oren Patashnik: Designing BIBTEX styles.
February 1988. Part of the BibTEX distribu-
tion.

[21] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[22] Dave Pawson: XSL-FO. O’Reilly & Associates,
Inc. August 2002.

[23] Bernd Raichle: Die Makropakete ”german“
und ”ngerman“ für LATEX2ε, LATEX 2.09,
Plain-TEX and andere darauf Basierende For-
mate. Version 2.5. Juli 1998. Im Software
LATEX.

[24] Erik T. Ray: Learning XML. O’Reilly & Asso-
ciates, Inc. January 2001.

Preprints for the 2004 Annual Meeting 83

Jean-Michel Hufflen

[25] Brian Keith Reid: SCRIBE Document Produc-
tion System User Manual. Technical Report,
Unilogic, Ltd. 1984.

[26] Thomas Schraitle: DocBook-XML—Medien-
neutrales und plattformunabhändiges Publizie-
ren. SuSE Press. 2004.

[27] John E. Simpson: XPath and XPointer.
O’Reilly & Associates, Inc. August 2002.

[28] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

[29] The Unicode Standard Version 3.0. Addison-
Wesley. February 2000.

[30] Eric van der Vlist: Examplotron. http://
examplotron.org. February 2003.

[31] W3C: XML Path Language (XPath). Ver-
sion 1.0. W3C Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

[32] W3C: XSL Transformations (XSLT). Ver-
sion 1.0. W3C Recommendation. Writ-
ten by Sharon Adler, Anders Berglund, Jeff
Caruso, Stephen Deach, Tony Graham, Paul
Grosso, Eduardo Gutentag, Alex Milowski,
Scott Parnell, Jeremy Richman and Steve
Zilles. November 1999. http://www.w3.org/
TR/1999/REC-xslt-19991116.

[33] W3C: Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommen-
dation. Edited by Tim Bray, Jean Paoli,
C. M. Sperberg-McQueen and Eve Maler. Oc-
tober 2000. http://www.w3.org/TR/2000/
REC-xml-20001006.

[34] W3C: Extensible Stylesheet Language (XSL).
Version 1.0. W3C Recommendation. Edited by
James Clark. October 2001. http://www.w3.
org/TR/2001/REC-xsl-20011015/.

[35] W3C: XML Schema. November 2003. http:
//www.w3.org/XML/Schema.

[36] Norman Walsh and Leonard Muellner:
DocBook: The Definitive Guide. O’Reilly & As-
sociates, Inc. October 1999.

84 Preprints for the 2004 Annual Meeting

