More TEX-PostScript links

Bogustaw Jackowski, Piotr Pianowski, Piotr Strzelczyk

BOP s.c.
ul. Piastowska 70, Gdanisk, Poland

B.Jackowski@gust.org.pl, P.Pianowski@gust.org.pl, P.Strzelczyk@gust.org.pl

Introduction

According to Donald E. Knuth’s decision, TEX stays
frozen. This does not mean, however, that it cannot
be improved. There are several ways to conform to
Knuth’s idea of keeping TEX frozen while improving
it at the same time:

e developing macro packages;

e writing utility programs: drivers, pre- and post-
processors of DVI files, programs for generat-
ing TEX documents, graphic utilities (such as
METAPOST), etc.;

e providing links to other languages and/or sys-
tems: RTF, PDF, HTML, SGML, PostScript,
databases (bibliography), WWW pages, etc.

We shall focus our attention on one of the many
aspects, namely on PostScript applications. Linking
TEX and PostScript was a giant step towards mak-
ing a professional typesetting system out of TEX.
PostScript and TEX fit excellently together, as Post-
Script is a powerful, well-defined, world-wide stan-
dard language of graphic and text page description,
and so is TEX. Since most phototypesetters and
many printers understand PostScript, it is crucial
that TEX also understands PostScript.

Of course, the basic link is a good PostScript
driver. Fortunately, such a driver exists —it is Tom
Rokicki’s dvips. But the driver alone is nowhere
near enough—it provides access to nearly all of
PostScript’s features, but many of these need extra
tools in order to make them easy to use. The more
so as PostScript, unlike TEX, continues to develop
rapidly (recently, Adobe released PostScript Level 3)
and thus one can presume that more and more new
tools will be needed.

We describe here the tools we have developed
for our own purposes. We make them available
to the public in the hope that others will find
them useful too. The tools were released at the
GUST meeting in Bachotek, 1998. The release
can be considered as a continuation of a series of
earlier releases of similar tools, such as the PS_VIEW
previewer, the CEP utility for compressing EPS files,
EPS2MF and MF2EPS converters, and others.

Tiff2ps

Encapsulated PostScript files (EPS) are commonly
used with TEX for including graphics. Unfortu-
nately, not all systems support encapsulated Post-
Script. It is understandable, since in order to in-
terpret EPS files, a nearly complete PostScript in-
terpreter is necessary. Therefore, some applications
prefer simpler formats. Perhaps one of the most
popular is TIFF: a tag-based file format for stor-
ing and interchanging raster images. Despite being
simpler than EPS, TIFF is rich enough to describe a
broad range of bitmap images.

In order to convert a TIFF file to an EPS file
a special program is needed. There are several
programs available, but we do not know of any writ-
ten in PostScript. We decided to write our tiff2ps
converter in PostScript (actually, in Ghostscript)
for several reasons: (a) PostScript has fundamental
compression algorithms implemented, which simpli-
fies the processing of TIFF data; (b) the portability
of PostScript programs is higher than that of those
written in C, and comparable with the portabil-
ity of programs written in TEX; (c) by definition,
PostScript programs exist only in source form and
thus modifications and enhancements by third par-
ties are possible; and last but not least, (d) em-
ploying Ghostscript guarantees surprisingly efficient
processing.

The tiff2ps converter accepts most TIFF files
conforming to the TIFF 6.0 specification, including
gray, palletted, RGB, CMYK colour models, and
LZW, RLE, CCITT (fax) compression; JPEG com-
pression is expected to be available soon.

The resulting EPS files can be compressed using
LZW, RLE, or Flate PostScript filters; moreover,
the resulting bitmap can be written in either a
hexadecimal or an ASCII85 encoded form.

The package also can be used for generating
colour-separated EPS files (out of CMYK TIFFs) and
“EPS thumbnails”, i.e., EPS files with a reduced
resolution. Moreover, EPS headers, containing only
a pointer to a source TIFF file, can be created.
Such an approach has many advantages, as headers
are usually negligibly small, which increases the

272 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



efficiency of the processing of documents and saves
disk space. This form is similar to the OPI (Open
Prepress Interface) standard used in prepress sys-
tems. One should be aware, however, that not all
PostScript devices (phototypesetters) are equipped
to accept such header files.

The present version of the tiff2ps converter is
under development — more facilities and more TIFF
formats are to be implemented; nevertheless, back-
ward compatibility will be preserved.

Pf2afim

A “canonical” PostScript Type 1 font comes in
two files: an AFM (Adobe Font Metrics) file and a
PFB or PFA file (PostScript Font Binary or Post-
Script Font ASCII, respectively). PFB and PFA
files contain exactly the same information, namely
the description of glyph shapes; the only difference
being that PFB—as the name suggests — contains
the data in a binary form, while PFA exploits ASCII
(hexadecimal) representation of the data. The most
important part of an AFM file contains information
about the dimensions of glyphs and about kern
pairs.

PostScript interpreters make no use of AFM
files. The information is—as Adobe says— for
“communicating font metric information to people
and programs.”

TEX takes metric information from TFM files,
not from AFM ones. Fortunately, the AFM format
is so general that it can serve not only for “appli-
cation programs that generate PostScript language
page descriptions”; it can also be used by auxiliary
programs that prepare metric data for typesetting
systems. One of such programs is the well-known
afm2tfm (written by T. Rokicki and D. E. Knuth)
which produces TFM files out of AFM ones and thus
makes PostScript fonts available for TEX users.

It should be emphasized that for TEX, users
having both PFB/PFA and AFM files is crucial.
Alas, with the advent of Windows systems, a new
form of font metrics emerged, namely PFM (Printer
Font Metrics), containing a subset of the informa-
tion stored in AFM files. PFM files are used by
Adobe Type Manager (ATM) for Windows.

As a result, some vendors started to distribute
PostScript Type 1 fonts with PFM files instead
of AFM ones. We looked for a reliable program
to convert PFM files to TFM ones, but we found
none. Although a few programs converting PFM
to AFM exist, we were not satisfied with them.
We were thinking about writing our own converter,
when we encountered in the Ghostscript distribution
a PostScript program printafm, written at some

More TEX-PostScript links

point by James Clark. The program is capable of
extracting metric information from a PostScript font
and writing the data in an AFM form. We decided
to enhance Clark’s program in such a way that it
could make use of the data stored in a related PFM
file, whenever available. Moreover, we added an

interface facilitating batch processing.

The result of the enhancement is the pf2afm
converter, or, more adequately, the pf2afm patch.
Figure 1 shows the place of pf2afm in a simplified
TEX file processing scheme.

afmtotfm,
viinst,
TOIL, etc.

pf2afm

Figure 1: TEX file processing scheme

In general, the retrieval of the complete metric
information from PFB/PFA and PFM files is impos-
sible; only if we are lucky, i.e., if the Encoding vector
of a given font contains all the characters we need,
can we conveniently use the resulting AFM; other-
wise, hand-tuning may turn out to be necessary.

We believe that such a patch (or converter)
may prove useful for people dealing with PostScript
fonts, not only for TEX users. Anyway, the pf2afm
tool has been included in the standard Ghostscript
distribution.

In our practice, on several occasions, we en-
countered situations when missing AFM files caused
trouble. Before we created the pf2afm converter,
we had had to use special font programs, such as
Fontographer, which we would gladly avoid, to a
large extent because of the low reliability of much
“professional” software.

Ttf2pf

When a TrueType font format (TTF) was intro-
duced by Apple and Microsoft, Adobe responded by
equipping PostScript with a TrueType substitute,
Type 42 font format, and by including a TrueType
rendering engine in their PostScript interpreter.
The relationship between TrueType and Type 42 is
schematically shown in Figure 2.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 273



Bogustaw Jackowski, Piotr Pianowski, Piotr Strzelczyk

Type 42 font

POSTSCRIPT-specific

TrueType font font header

POSTSCRIPT strings
one-to-one

TrueType containing
- — :
file correspondence TrueType file
data

POSTSCRIPT-specific
font (Type 42) trailer

Figure 2: The relationship between TrueType
and Type 42 formats

The details are unimportant here. We only
observe that Type 42 is, in fact, an equivalent of
the TrueType format: TrueType data are simply
stored inside a Type 42 file, i.e., no surgery on font
intestines takes place and the intact TrueType data
can be retrieved from the Type 42 file. Note that the
conversion between Type 1 and Type 42/TrueType
involves fundamental changes of the representation
of glyphs, in particular the hinting information can-
not be preserved.

In other words, the conversion between True-
Type and Type 42 is purely formal, something like
the conversion between PFB and PFA, although the
latter is significantly simpler.

Since the font market has been recently flooded
with TrueType fonts, we decided that they should be
available for TEX users. The best starting point —
as usual—turned out to be Ghostscript. Actually,
the ttf2pf converter is based on PostScript programs
to be found in a standard Ghostscript distribution;
ttf2pf itself will be probably included in the standard
Ghostscript distribution.

The ttf2pf converter generates two files: Type 42
and AFM; the Type 42 file appears in an ASCII
form, thus it can be included by dvips as an ordinary
header file; the AFM file allows the generation of a
TFM file using standard tools.

It should be noted that not all phototypesetters
cope with Type 42 fonts. We also had trouble in
converting PostScript files containing Type 42 fonts
to PDF format using Adobe’s Acrobat Distiller. A
careful inspection showed that they were properly
embedded in PDF files as genuine TrueType fonts,
but the Acrobat Reader displayed uniform rectan-
gles instead of glyphs (although it was able to rec-

ognize that a document contained TrueType fonts).
That’s it for the bad news.

For the good news: Ghostscript renders Type 42
fonts smoothly. Incidentally, there is a possibility
that during the TUG meeting in Torun the Ghost-
script release compatible with PostScript Level 3
will be available.!

Colormap

Occasionally, a modification of a bitmap graphic is
necessary. For example, one may wish to have a
pale version of a scanned photo in order to use it as
a background. Such an intervention can be easily
accomplished using special graphics programs, but
this means that both the original and the modified
images need to be stored, which is inconvenient.
Moreover, GUI programs usually do not allow users
to define such changes numerically.

Fortunately, modifications of this kind can be
performed by a PostScript engine, and thus it is
possible to also perform them at the TEX level;
colormap is a tiny package of TEX macros that makes
possible nearly arbitrary colouring of gray bitmap
images.

The basic method of specifying colour change
is to define the colours to which black and white
should be mapped, assuming that for the interme-
diate colours a linear interpolation is applied. You
can specify the mapping using either gray or CMYK

1 Ghostscript 5.50 (released a few weeks after the confer-
ence) is still not fully compatible with PostScript Level 3 but
has a lot of its features.

Figure 3: The picture to the left is an

original image, placed using the command
\epsffile{tiger.eps} (assuming the

usage of the epsf package from the standard
dvips distribution); the picture to the

right is obtained using the command
\lingraymap[.85:.95]{\epsffile{tiger.eps},
where \lingraymap is defined in colormap.

274 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



models. For example, in order to make an image
pale, one should map black to ca 15% of black and
white to ca 5% of black, i.e., following the PostScript
custom, to 85% and 95% of gray, respectively. Fig-
ure 3 shows the result of such a modification.

The linear interpolation of colour is not oblig-
atory. It is possible to apply an arbitrary mapping,
given by an array (having 256 entries), represented
as a PostScript hexadecimal string. The string can
be either created manually or computed by an aux-
iliary program.

Actually, the colormap package defines four
macros, allowing users to map a grey-scale image to:

e another grey-scale image using a linear interpo-
lation (\lingraymap)

e a CMYK-model image using a linear interpola-
tion (\lincmykmap)

e another grey-scale image using an arbitrary
mapping (\gengraymap)

e a CMYK-model image using using an arbitrary
mapping (\gencmykmap)

More TEX-PostScript links

For details, see the file colormap.tex. Al-
though the colormap macro package is written in
plain TEX, it is also supposed to work with IATEX.

Acknowledgements

It should be emphasized that all the tools described
in this paper could be developed only thanks to
L. Peter Deutsch’s marvelous interpreter of the Post-
Script language: it is Ghostscript that provided a
convenient platform for creating such tools. We
are grateful to L. Peter Deutsch for making Ghost-
script available as freeware, for maintaining and
developing it, and for helping us promptly whenever
we met difficulties.

Postscript

Any trademarks, trade names, service marks, or
service names owned or registered by any other com-
pany and used in this publication are the property
of their respective companies.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 275



